新高中三年级数学下期末模拟试卷(含答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高中三年级数学下期末模拟试卷(含答案)(1)
一、选择题
1.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )
C .若该大学某女生身高增加1cm ,则其体重约增加0.85kg
D .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 2.设是虚数单位,则复数(1)(12)i i -+=( ) A .3+3i
B .-1+3i
C .3+i
D .-1+i
3.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在
[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )
A .14
B .15
C .16
D .17 4.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( )
A .-15x 4
B .15x 4
C .-20i x 4
D .20i x 4
5.已知平面向量a v ,b v 是非零向量,|a v |=2,a v ⊥(a v +2b v ),则向量b v 在向量a v
方向上的投影为( ) A .1 B .-1 C .2 D .-2 6.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )
A .2
B .3
C .22
D .32
7.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A .
1
4
B .
12
C .
2 D .2
8.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab += B .4a b +> C .()()2
2
112
a b -+-<
D .228a b +>
9.已知复数 ,则复数在复平面内对应的点位于( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
10.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )
A .108cm 3
B .100cm 3
C .92cm 3
D .84cm 3
11.设0<a <1,则随机变量X 的分布列是
X
a 1 P
13 13
13
则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小
D .()D X 先减小后增大
12.已知向量a v ,b v 满足2a =v
||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值
为( ) A .
22
B .
23
C 2
D .
24
二、填空题
13.已知曲线ln y x x =+在点()1,1处的切线与曲线()2
21y ax a x =+++相切,则
a= .
14.函数()22,0
26,0x x f x x lnx x ⎧-≤=⎨-+>⎩
的零点个数是________.
15.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 .
16.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1
sin 3
α=
,则cos()αβ-=___________. 17.函数2()log 1f x x =-________.
18.已知点()0,1A ,抛物线()2
:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交
于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.
19.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.
20.设函数2
1()ln 2
f x x ax bx =--,若1x =是()f x 的极大值点,则a 取值范围为_______________.
三、解答题
21.已知函数2
()(1)1
x
x f x a a x -=+
>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;
(2)用反证法证明:()0f x =没有负数根.
22.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是矩形,1A D 与1AD 交于点E .124AA AB AD ===.
(1)证明:AE ⊥平面ECD ;
(2)求直线1A C 与平面EAC 所成角的正弦值.
23.已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (1)求数列{}n a 的通项公式;
(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+ ?若存在,求n 的最小值;若不存在,说明理由. 24.已知函数2()sin(
)sin 32
f x x x x π
=-.
(1)求()f x 的最小正周期和最大值; (2)求()f x 在2[
,]63
ππ
上的单调区间
25.如图所示,在四面体PABC 中,PC⊥AB,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中
(1)DE∥平面BCP ; (2)四边形DEFG 为矩形.
26.如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,
11
30,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.
(1)证明:EF BC ⊥;
(2)求直线EF 与平面1A BC 所成角的余弦值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;
该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;
该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .
2.C
解析:C
因为2
(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.
3.B
解析:B 【解析】 【分析】
计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果. 【详解】
由题意可知,样本在[)2060,的数据个数为300.824⨯=, 样本在[)20,40的数据个数为459+=,
因此,样本在[)40,50、[)50,60内的数据个数为24915-=. 故选:B. 【点睛】
本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.
4.A
解析:A 【解析】 试题分析:二项式的展开式的通项为
,令
,则
,故
展开式中含
的项为
,故选A.
【考点】二项展开式,复数的运算
【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式
可以写为
,则其通项为
,则含
的项为
.
5.B
解析:B 【解析】 【分析】
先根据向量垂直得到a r g (a r +2b r ),=0,化简得到a r g b r
=﹣2,再根据投影的定义即可求出. 【详解】
∵平面向量a r ,b r 是非零向量,|a r |=2,a r ⊥(a r +2b r
), ∴a r g (a r +2b r
),=0, 即()
2·20a a b +=v
v v 即a r g b r
=﹣2
∴向量b r 在向量a r 方向上的投影为·2
2
a b a -=
v
v v =﹣1, 故选B . 【点睛】
本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用.解答关键在于要求熟练应用公式.
6.C
解析:C 【解析】 【分析】
两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】
因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为
d =,
所以公共弦长为:l ==. 故选:C 【点睛】
本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.
7.C
解析:C 【解析】
由题得(1)111122222
i i i i z i z i -+=
===+∴==
+. 故选C. 8.C
解析:C 【解析】 【分析】
根据236a b ==即可得出21l 3og a =+,31l 2og b =+,根据23log log 132⋅=,
33log log 222+>,即可判断出结果.
【详解】 ∵236a b ==;
∴226log 1og 3l a ==+,336log 1og 2l b ==+;
∴2332log 2log 4a b +=++>,2332log og 42l ab =++>,故,A B 正确;
()()
()()23222
2
3211log log 2log 323log 22a b =>⋅-+-+=,故C 错误;
∵()()()22
232223log log 2log 2323log 2a b =+++++
23232324log log l 23og log 82>+⋅+=⋅,故D 正确
故C . 【点睛】
本题主要考查指数式和对数式的互化,对数的运算,以及基本不等式:2a b ab +≥和不等式222a b ab +≥的应用,属于中档题
9.A
解析:A 【解析】
在复平面内对应的点坐标为
在第一象限,故选A.
10.B
解析:B 【解析】
试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.
解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角). ∴该几何体的体积V=6×6×3﹣=100.
故选B .
考点:由三视图求面积、体积.
11.D
解析:D 【解析】 【分析】
利用方差公式结合二次函数的单调性可得结论; 【详解】
解:1111
()013333
a E X a +=⨯+⨯+⨯=,
222111111
()(
)()(1)333333
a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926
a a a a a a =
++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大 故选:D . 【点睛】
本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.
12.D
解析:D 【解析】 【分析】
根据平方运算可求得12
a b ⋅=r r ,利用
cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】
由题意可知:222
2324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12
a b ⋅=r r
2cos ,22
a b a b a b ⋅∴<>===r r r r
r r 本题正确选项:D 【点睛】
本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.
二、填空题
13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】
解析:8 【解析】
试题分析:函数ln y x x =+在(1,1)处的导数为111
|1|2x x y x
===+
=',所以切线方程为;曲线2
(2)1y ax a x =+++的导函数的为
,因与该曲线
相切,可令
,当
时,曲线为直线,与直线
平行,不符合题意;当时,代入曲线方程可求得切点
,代入切线方程即
可求得
.
考点:导函数的运用.
【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.
14.2【解析】【详解】当x≤0时由f (x )=x2﹣2=0解得x=有1个零点;当x >0函数f (x )=2x ﹣6+lnx 单调递增则f (1)<0f (3)>0此时函数f (x )只有一个零点所以共有2个零点故答案为:
解析:2 【解析】 【详解】
当x≤0时,由f (x )=x 2﹣2=0,解得x=2-,有1个零点; 当x >0,函数f (x )=2x ﹣6+lnx ,单调递增,
则f (1)<0,f (3)>0,此时函数f (x )只有一个零点, 所以共有2个零点. 故答案为:2. 【点睛】
判断函数零点个数的方法
直接法(直接求零点):令f (x )=0,如果能求出解,则有几个不同的解就有几个零点, 定理法(零点存在性定理):利用定理不仅要求函数的图象在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点,
图象法(利用图象交点的个数):画出函数f (x )的图象,函数f (x )的图象与x 轴交点的个数就是函数f (x )的零点个数;将函数f (x )拆成两个函数h (x )和g (x )的差,根据f (x )=0⇔h (x )=g (x ),则函数f (x )的零点个数就是函数y =h (x )和y =g (x )的图象的交点个数,
性质法(利用函数性质):若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数
15.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-
【解析】
试题分析:由复数的运算可知,()()12i a i -+是纯虚
数,则其实部必为零,即,所以
.
考点:复数的运算.
16.【解析】试题分析:因为和关于轴对称所以那么(或)所以【考点】同角三角函数诱导公式两角差的余弦公式【名师点睛】本题考查了角的对称关系以及诱导公式常用的一些对称关系包含:若与的终边关于轴对称则若与的终边
解析:7
9
-
【解析】
试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么
1sin sin 3βα==,cos cos 3αβ=-=(或cos cos 3
βα=-=),
所以()2
2
2
7
cos cos cos sin sin cos sin 2sin 19
αβαβαβααα-=+=-+=-=-
. 【考点】同角三角函数,诱导公式,两角差的余弦公式
【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则2,k k Z αβππ-=+∈.
17.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题
解析:[2,+∞) 【解析】
分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.
详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为
[2,)+∞.
点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.
18.【解析】依题意可得焦点的坐标为设在抛物线的准线上的射影为连接由抛物线的定义可知又解得点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用考查了学生数形结合思想和转化与化归思想设出点在抛物线的准
【解析】
依题意可得焦点F 的坐标为04a ⎛⎫ ⎪⎝⎭
,
, 设M 在抛物线的准线上的射影为K ,连接MK 由抛物线的定义可知MF MK =
13FM MN =Q ∶∶
KN KM ∴=∶
又
014
04
FN K a a --=
=-,
22FN KN K KM ==- 422a -∴=-,解得2a = 点睛:本题主要考查的知识点是抛物线的定义以及几何性质的应用,考查了学生数形结合思想和转化与化归思想,设出点M 在抛物线的准线上的射影为K ,由抛物线的定义可知MF MK =,再根据题设得到221KN KM =∶∶,然后利用斜率得到关于a 的方程,进而求解实数a 的值
19.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生
解析:【解析】
【分析】
由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
,结合对数的运算法则可得αβ=1. 【详解】
由条件,得M 12,
33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭
, 即α=lo 2
313g ,β=lo 13
23g . 所以αβ=lo 2313g ·lo 1312233·21333
lg
lg g lg lg ==1. 【点睛】 本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.
20.【解析】试题分析:的定义域为由得所以①若由得当时此时单调递增当时此时单调递减所以是的极大值点;②若由得或因为是的极大值点所以解得综合①②:的取值范围是故答案为考点:1利用导数研究函数的单调性;2利用 解析:
【解析】
试题分析:()f x 的定义域为()()10,,'f x ax b x
+∞=--,由()'00f =,得1b a =-,
所以()()()11'ax x f x x
+-=.①若0a ≥,由()'0f x =,得1x =,当01x <<时,()'0f x >,此时()f x
单调递增,当1x >时,()'0f x <,此时()f x 单调递减,所以1x =是()f x 的极大值点;②若0a <,由()'0f x =,得1x =或1x a
=-.因为1x =是()f x 的极大值点,所以11a
-
>,解得10a -<<,综合①②:a 的取值范围是1a >-,故答案为()1,-+∞. 考点:1、利用导数研究函数的单调性;2、利用导数研究函数的极值. 三、解答题
21.见解析.
【解析】
试题分析:(1)借助题设条件运用函数的单调性进行推证;(2)借助题设条件运用反证法推证.
试题解析:
(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <,
则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >, 所以2121212122()()11x x x x f x f x a a x x ++-=-+-++2121213()0(1)(1)
x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.
(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x a x -=+,且001x a <<,所以002011x x -<<+,即0122
x <<, 与假设00x <矛盾,故方程()0f x =没有负根.
考点:函数单调性的定义及反证法等有关知识的综合运用.
22.(1)证明见解析;(2
【解析】
【分析】
(1)证明1AA CD ⊥,CD AD ⊥,推出CD ⊥平面11AA D D ,得到CD AE ⊥,证明AE ED ⊥,即可证明AE ⊥平面ECD ;
(2)建立坐标系,求出平面的法向量,利用空间向量的数量积求解直线1A C 与平面EAC 所成角的正弦值.
【详解】
(1)证明:∵四棱柱1111ABCD A B C D -是直四棱柱,
∴1AA ⊥平面ABCD ,而CD ⊂平面ABCD ,则1AA CD ⊥,
又CD AD ⊥,1AA AD A =I ,
∴CD ⊥平面11AA D D ,因为平面11AA D D ,∴CD AE ⊥,
∵1AA AD ⊥,1AA AD =,
∴11AA D D 是正方形,∴AE ED ⊥,
又CD ED D =I ,∴AE ⊥平面ECD .
(2)解:建立如图所示的坐标系,1A D 与1AD 交于点E ,124AA AD AB ===,
则()()()()10,0,0,0,0,4,2,4,0,0,4,0A A C D ,
∴()0,2,2E ,
∴()()()12,4,4,2,4,0,0,2,2A C AC AE =-==u u u u r u u u r u u u r ,
设平面EAC 的法向量为(),,n x y z =r ,则·0·
0n AC n AE ⎧=⎨=⎩u u u v v u u u v v ,即240220x y y z +=⎧⎨+=⎩, 不妨取()2,1,1n =--r ,
则直线1A C 与平面EAC 所成角的正弦值为444663666n AC n AC
-+-==r u u u r g r u u u r g . 【点睛】
本题主要考查直线与平面所成角的求法,考查直线与平面垂直的判断和性质,考查推理能力与计算能力,属于中档题.
23.(1) 通项公式为2n a = 或42n a n =-;(2) 当2n a = 时,不存在满足题意的正整数n ;当42n a n =- 时,存在满足题意的正整数n ,其最小值为41.
【解析】
【详解】
(1)依题意,2,2,24d d ++成等比数列,
故有()()2
2224d d +=+,
∴240d d -=,解得4d =或0d =.
∴()21442n a n n =+-⋅=-或2n a =.
(2)当2n a = 时,不存在满足题意的正整数n ;
当42n a n =-,∴()224222n n n S n ⎡⎤+-⎣⎦
==.
令2260800n n >+,即2304000n n -->,
解得40n >或10n <-(舍去),
∴最小正整数41n =.
24.(1)f (x )的最小正周期为π,最大值为
22- (2)f (x )在5[
,]612ππ上单调递增;在52[,]123
ππ上单调递减. 【解析】
【分析】
(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值. (2)根据[]20,3x ππ-
∈,利用正弦函数的单调性,即可求得()f x 在2[,]63ππ上的单调区
间.
【详解】
解:(1)函数2()sin()sin cos sin cos2)2f x x x x x x x π=-=+
1sin 22sin(2)23x x x π==-,
即()sin(2)3f x x π=-
故函数的周期为22T ππ=
=,最大值为12-. (2)当2[,
]63x ππ∈ 时,[]20,3x ππ-∈, 故当0232x ππ
-剟时,即5[,]612
x ππ∈时,()f x 为增函数; 当223x πππ-剟时,即52[,]123
x ππ∈时,()f x 为减函数; 即函数()f x 在5[
,]612ππ上单调递增;在52[,]123
ππ上单调递减. 【点睛】
本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.
25.(1)见解析; (2)见解析.
【解析】
【分析】
(1)根据DE 平行PC 即可证明(2)利用PC ,可知DE 与FG 平行且相等,即可证明.
【详解】
证明:(1)因为D ,E 分别为AP ,AC 的中点,所以DE∥PC.
又因为DE ⊄平面BCP ,PC ⊂平面BCP ,所以DE∥平面BCP.
(2)因为D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点,
所以DE∥PC∥FG,DG∥AB∥EF.
所以四边形DEFG 为平行四边形.
又因为PC⊥AB,所以DE⊥DG.
所以四边形DEFG 为矩形.
【点睛】
本题主要考查了直线与平面平行的判定及中位线的性质,属于中档题.
26.(1)证明见解析;(2)35
. 【解析】
【分析】
(1)由题意首先证得线面垂直,然后利用线面垂直的定义即可证得线线垂直;
(2)建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.
【详解】
(1)如图所示,连结11,A E B E ,
等边1
AAC △中,AE EC =,则1A E AC ⊥, 平面ABC ⊥平面11A ACC ,且平面ABC ∩平面11A ACC AC =,
由面面垂直的性质定理可得:1A E ⊥平面ABC ,故1A E BC ⊥,
由三棱柱的性质可知11A B AB ∥,而AB BC ⊥,故11A B BC ⊥,且1111A B A E A =I , 由线面垂直的判定定理可得:BC ⊥平面11A B E ,
结合EF ⊆平面11A B E ,故EF BC ⊥.
(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.
设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()
1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭, 由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭
, 利用中点坐标公式可得:333,344F ⎛⎫
⎪⎝⎭
,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r ,则: ()()13333,,,,33022223333,,,,002222m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩
, 据此可得平面1A BC 的一个法向量为()
3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552
EF m EF m EF m ⋅===⨯⨯u u u r u r u u u r u r u u u r u r , 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55
EF m θθ===u u u r u r . 【点睛】 本题考查了立体几何中的线线垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关
系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。