人教【数学】数学圆的综合的专项培优易错试卷练习题(含答案)附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).
(1)若∠BOH=30°,求点H的坐标;
(2)求证:直线PC是⊙A的切线;
(3)若OD=10,求⊙A的半径.
【答案】(1)(132)详见解析;(3)5 3 .
【解析】
【分析】
(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;
(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】
(1)解:如图,过点H作HM⊥y轴,垂足为M.
∵四边形OBCD是平行四边形,
∴∠B=∠ODC
∵四边形OHCD是圆内接四边形
∴∠OHB=∠ODC
∴∠OHB=∠B
∴OH=OB=2
∴在Rt△OMH中,
∵∠BOH=30°,
∴MH=1
2
OH=1,33
∴点H的坐标为(13
(2)连接AC.
∵OA=AD,
∴∠DOF=∠ADO
∴∠DAE=2∠DOF
∵∠PCD=2∠DOF,
∴∠PCD=∠DAE
∵OB与⊙O相切于点A
∴OB⊥OF
∵OB∥CD
∴CD⊥AF
∴∠DAE=∠CAE
∴∠PCD=∠CAE
∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;
(3)解:⊙O的半径为r.
在Rt△OED中,DE=1
2
CD=
1
2
OB=1,OD=10,
∴OE═3
∵OA=AD=r,AE=3﹣r.
在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1
解得r=5
3

【点睛】
此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.
2.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。

(1)如图1,如果点M是线段AB的中点,且⊙M的半径等于4,试判断直线OB与⊙M 的位置关系,并说明理由;
(2)如图2,⊙M与x轴,y轴都相切,切点分别为E,F,试求出点M的坐标;
(3)如图3,⊙M与x轴,y轴,线段AB都相切,切点分别为E,F,G,试求出点M的坐标(直接写出答案)
【答案】(1)OB与⊙M相切;(2)M(-24
7

24
7
);(3)M(-2,2)
【解析】
分析:(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;
(2)求出过点A、B的一次函数关系式是y=3
4
x+6,设M(a,﹣a),把x=a,y=﹣a代
入y=3
4
x+6得出关于a的方程,求出即可.
(3)连接ME、MF、MG、MA、MB、MO,设ME=MF=MG=r,根据
S△ABC=1
2
AO•ME+
1
2
BO•MF+
1
2
AB•MG=
1
2
AO•BO求得r=2,据此可得答案.
详解:(1)直线OB与⊙M相切.理由如下:
设线段OB的中点为D,如图1,连结MD,
∵点M是线段AB的中点,所以MD∥AO,MD=4,∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上.又∵点D在直线OB上,∴直线OB与⊙M相切;(2)如图2,连接ME,MF,
∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴
80
6
k b
b
-+=


=

,解
得:k=3
4
,b=6,即直线AB的函数关系式是y=
3
4
x+6.
∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M
(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=3
4
x+6,得:﹣a=
3
4
a+6,得:a=﹣
24 7,∴点M的坐标为(﹣
2424
77
,).
(3)如图3,连接ME、MF、MG、MA、MB、MO,
∵⊙M与x轴,y轴,线段AB都相切,∴ME⊥AO、MF⊥BO、MG⊥AB,设
ME=MF=MG=r,则S△ABC=1
2
AO•ME+
1
2
BO•MF+
1
2
AB•MG=
1
2
AO•BO.
∵A(﹣8,0),B(0,6),∴AO=8、BO=6,AB,
∴1
2r•8+
1
2
r•6+
1
2
r•10=
1
2
×6×8,解得:r=2,即ME=MF=2,∴点M的坐标为(﹣2,
2).
点睛:本题考查了圆的综合问题,掌握直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解答此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是d,当d=r时,直线l和⊙O 相切.
3.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.
(1)求证:∠AEC=90°;
(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;
(3)若DC=2,求DH的长.
【答案】(1)证明见解析;
(2)四边形AOCD为菱形;
(3)DH=2.
【解析】
试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得
,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出
∠AEC=90°;
(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由
DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.
试题解析:(1)连接OC,
∵EC与⊙O切点C,
∴OC⊥EC,
∴∠OCE=90°,
∵点CD是半圆O的三等分点,
∴,
∴∠DAC=∠CAB,
∵OA=OC,
∴∠CAB=∠OCA,
∴∠DAC=∠OCA,
∴AE∥OC(内错角相等,两直线平行)
∴∠AEC+∠OCE=180°,
∴∠AEC=90°;
(2)四边形AOCD为菱形.理由是:
∵,
∴∠DCA=∠CAB,
∴CD∥OA,
又∵AE∥OC,
∴四边形AOCD是平行四边形,
∵OA=OC,
∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.
∵四边形AOCD为菱形,
∴OA=AD=DC=2,
∵OA=OD,
∴OA=OD=AD=2,
∴△OAD是等边三角形,
∴∠AOD=60°,
∵DH⊥AB于点F,AB为直径,
∴DH=2DF,
在Rt△OFD中,sin∠AOD=,
∴DF=ODsin∠AOD=2sin60°=,
∴DH=2DF=2.
考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.
4.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG
(1)判断CG与⊙O的位置关系,并说明理由;
(2)求证:2OB2=BC•BF;
(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.
【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2
【解析】
【分析】
(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即
OC⊥GC,据此即可得证;
(2)证△ABC∽△FBO得BC AB
BO BF
=,结合AB=2BO即可得;
(3)证ECD∽△EGC得EC ED
EG EC
=,根据CE=3,DG=2.5知
3
2.53
DE
DE
=
+
,解之可
得.
【详解】
解:(1)CG与⊙O相切,理由如下:如图1,连接CE,
∵AB 是⊙O 的直径,
∴∠ACB =∠ACF =90°,
∵点G 是EF 的中点,
∴GF =GE =GC ,
∴∠AEO =∠GEC =∠GCE ,
∵OA =OC ,
∴∠OCA =∠OAC ,
∵OF ⊥AB ,
∴∠OAC +∠AEO =90°,
∴∠OCA +∠GCE =90°,即OC ⊥GC ,
∴CG 与⊙O 相切;
(2)∵∠AOE =∠FCE =90°,∠AEO =∠FEC ,
∴∠OAE =∠F ,
又∵∠B =∠B ,
∴△ABC ∽△FBO , ∴
BC AB BO BF
=,即BO •AB =BC •BF , ∵AB =2BO ,
∴2OB 2=BC •BF ;
(3)由(1)知GC =GE =GF ,
∴∠F =∠GCF ,
∴∠EGC =2∠F ,
又∵∠DCE =2∠F ,
∴∠EGC =∠DCE ,
∵∠DEC =∠CEG ,
∴△ECD ∽△EGC , ∴EC ED EG EC
=, ∵CE =3,DG =2.5, ∴
32.53DE DE =+,
整理,得:DE2+2.5DE﹣9=0,
解得:DE=2或DE=﹣4.5(舍),
故DE=2.
【点睛】
本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.
5.如图,AB是⊙O的直径,弦BC=OB,点D是AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.
(1)求∠DGE的度数;
(2)若CF OF

1
2
,求
BF
GF
的值;
(3)记△CFB,△DGO的面积分别为S1,S2,若
CF
OF
=k,求1
2
S
S的值.(用含k的式子表示)
【答案】(1)∠DGE=60°;(2)
7
2
;(3)1
2
S
S=
21
1
k k
k
++
+
.
【解析】
【分析】
(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE的度数;
(2)过点F作FH⊥AB于点H设CF=1,则OF=2,OC=OB=3,根据勾股定理求出BF的长度,再证得△FGO∽△FCB,进而求得
BF
GF
的值;
(3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k的式子表
示出1
2
S
S的值.
【详解】
解:(1)∵BC=OB=OC,
∴∠COB=60°,
∴∠CDB=1
2
∠COB=30°,
∵OC=OD,点E为CD中点,
∴OE ⊥CD ,
∴∠GED =90°,
∴∠DGE =60°;
(2)过点F 作FH ⊥AB 于点H
设CF =1,则OF =2,OC =OB =3
∵∠COB =60°
∴OH =12
OF =1, ∴HF
HB =OB ﹣OH =2,
在Rt △BHF 中,BF ==
由OC =OB ,∠COB =60°得:∠OCB =60°,
又∵∠OGB =∠DGE =60°,
∴∠OGB =∠OCB ,
∵∠OFG =∠CFB ,
∴△FGO ∽△FCB , ∴OF GF BF CF
=, ∴
, ∴BF GF =72
. (3)过点F 作FH ⊥AB 于点H ,
设OF =1,则CF =k ,OB =OC =k+1,
∵∠COB =60°,
∴OH =12OF=12

∴HF
=
,HB =OB ﹣OH =k+12, 在Rt △BHF 中,
BF =
由(2)得:△FGO ∽△FCB , ∴GO OF
CB BF
=,即1GO k =+, ∴GO
=
过点C 作CP ⊥BD 于点P
∵∠CDB =30°
∴PC
=12CD , ∵
点E 是CD 中点,
∴DE =12
CD , ∴PC =DE ,
∵DE ⊥OE , ∴12S S =BF GO =22111
k k k k k +++++=211k k k +++
【点睛】
圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.
6.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .
(1)当点E 是弧BC 的中点时,求△ADE 的面积;
(2)若3tan 2
AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.
【答案】(1)62ADE S =2)1655
AE =3)23m =,22m =71m =.
【解析】
【分析】
(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,
根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;
(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF AD EF BD =,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.
【详解】 解:(1)如图,作EH ⊥AB ,连接OE ,EB ,
设DH =a ,则HB =2﹣a ,OH =2+a ,
∵点E 是弧BC 中点,
∴∠COE =∠EOH =45°,
∴EH =OH =2+a ,
在Rt △AEB 中,EH 2=AH•BH ,
(2+a )2=(6+a )(2﹣a ), 解得a =222±-,
∴a =222-,
EH=22,
S △ADE =1622
AD EH =;
(2)如图,作DF ⊥AE ,垂足为F ,连接BE
设EF =2x ,DF =3x
∵DF ∥BE

AF AD EF BD = ∴622
AF x ==3 ∴AF =6x
在Rt △AFD 中,AF 2+DF 2=AD 2
(6x )2+(3x )2=(6)2
解得x=2
5 5
AE=8x=16
5 5
(3)当点D为等腰直角三角形直角顶点时,如图
设DH=a
由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH,∴∠DFO=∠EDH
∴△ODF≌△HED
∴OD=EH=2
在Rt△ABE中,EH2=AH•BH
(2)2=(6+a)•(2﹣a)
解得a=±232
-
m=23
当点E为等腰直角三角形直角顶点时,如图
同理得△EFG≌△DEH
设DH=a,则GE=a,EH=FG=2+a
在Rt△ABE中,EH2=AH•BH
(2+a)2=(6+a)(2﹣a)
解得a=222
±-
∴m=22
当点F为等腰直角三角形直角顶点时,如图
同理得△EFM≌△FDO
设OF=a,则ME=a,MF=OD=2
∴EH=a+2
在Rt△ABE中,EH2=AH•BH
(a+2)2=(4+a)•(4﹣a)
解得a=±71
-
m=71
-
【点睛】
此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.
7.定义:
数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.
理解:
⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);
⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;
运用:
⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.
【答案】(1)详见解析;(2)详见解析;(3)P的坐标(
22
3
-,
1
3
),(
22
3

1
3
).
【解析】
试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.
试题解析:
(1)如图1所示:
(2)△AEF是否为“智慧三角形”,
理由如下:设正方形的边长为4a,
∵E是DC的中点,
∴DE=CE=2a,
∵BC:FC=4:1,
∴FC=a,BF=4a﹣a=3a,
在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,
在Rt△ECF中,EF2=(2a)2+a2=5a2,
在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,
∴AE2+EF2=AF2,
∴△AEF是直角三角形,
∵斜边AF上的中线等于AF的一半,
∴△AEF为“智慧三角形”;
(3)如图3所示:
由“智慧三角形”的定义可得△OPQ为直角三角形,
根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,
由勾股定理可得PQ=,
PM=1×2÷3=,
由勾股定理可求得OM=,
故点P的坐标(﹣,),(,).
考点:圆的综合题.
8.如图,AB为⊙O的直径,且AB=m(m为常数),点C为AB的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.
(1)当DC⊥AB时,则DA DB
DC
+
=;
(2)①当点D在AB上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;
②设CD长为t,求△ADB的面积S与t的函数关系式;
(3)当
92
PD
AC
=时,求
DE
OA
的值.
【答案】(12;(2)①DA+DB2DC,②S=1
2
t2﹣
1
4
m2;(3)
242
35
DE
OA
=.
【解析】
【分析】
(1)首先证明当DC⊥AB时,DC也为圆的直径,且△ADB为等腰直角三角形,即可求出结果;
(2)①分别过点A,B作CD的垂线,连接AC,BC,分别构造△ADM和△BDN两个等腰
直角三形及△NBC 和△MCA 两个全等的三角形,容易证出线段DA ,DB ,DC 之间的数量关系;
②通过完全平方公式(DA+DB )2=DA 2+DB 2+2DA•DB 的变形及将已知条件AB =m 代入即可求出结果;
(3)通过设特殊值法,设出PD 的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.
【详解】
解:(1)如图1,∵AB 为⊙O 的直径,
∴∠ADB =90°,
∵C 为AB 的中点,
∴AC BC =,
∴∠ADC =∠BDC =45°,
∵DC ⊥AB ,
∴∠DEA =∠DEB =90°,
∴∠DAE =∠DBE =45°,
∴AE =BE ,
∴点E 与点O 重合,
∴DC 为⊙O 的直径,
∴DC =AB ,
在等腰直角三角形DAB 中,
DA =DB =2AB , ∴DA+DB =2AB =2CD ,
∴DA DB DC
+=2;
(2)①如图2,过点A 作AM ⊥DC 于M ,过点B 作BN ⊥CD 于N ,连接AC ,BC , 由(1)知AC BC =,
∴AC =BC ,
∵AB 为⊙O 的直径,
∴∠ACB =∠BNC =∠CMA =90°,
∴∠NBC+∠BCN =90°,∠BCN+∠MCA =90°,
∴∠NBC =∠MCA ,
在△NBC 和△MCA 中,
BNC CMA NBC MCA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴△NBC ≌△MCA (AAS ),
∴CN =AM ,
由(1)知∠DAE =∠DBE =45°,
AM =2DA ,DN
=2DB , ∴DC =DN+NC =
2DB+2DA =2(DB+DA ), 即DA+DB =2DC ;
②在Rt △DAB 中,
DA 2+DB 2=AB 2=m 2,
∵(DA+DB )2=DA 2+DB 2+2DA•DB ,
且由①知DA+DB 2DC 2t ,
∴2t )2=m 2+2DA•DB ,
∴DA•DB =t 2﹣
12m 2, ∴S △ADB =12DA•DB =12t 2﹣14
m 2, ∴△ADB 的面积S 与t 的函数关系式S =12t 2﹣14
m 2; (3)如图3,过点E 作EH ⊥AD 于H ,EG ⊥DB 于G ,
则NE =ME ,四边形DHEG 为正方形, 由(1)知AC BC =,
∴AC =BC ,
∴△ACB 为等腰直角三角形,
∴AB 2AC ,
∵220
PD AC =, 设PD =2,则AC =20,AB =2,
∵∠DBA =∠DBA ,∠PAB =∠ADB ,
∴△ABD ∽△PBA , ∴AB BD AD PB AB PA ==, ∴20292202
DB =+, ∴DB =162, ∴AD =
22AB DB -=122, 设NE =ME =x ,
∵S △ABD =
12AD•BD =12AD•NE+12BD•ME , ∴12×122×162=12×122•x+12
×162•x , ∴x =
4827, ∴DE =2HE =2x =
967, 又∵AO =
12AB =102, ∴96242735
102DE OA =⨯=.
【点睛】
本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.
9.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.
【答案】(1)见解析(2)332 23
π
-
【解析】
试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;
(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.
试题解析:
(1)证明:连接DO.
∵△ABC是等边三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等边三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°﹣∠C=30°,
∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,
∴DF为⊙O的切线;
(2)∵△OAD是等边三角形,
∴AD=AO=AB=2.
∴CD=AC﹣AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=CD=1.
∴DF=,
连接OE,则CE=2.
∴CF=1,
∴EF=1.
∴S直角梯形FDOE=(EF+OD)•DF=,
∴S扇形OED==,
∴S 阴影=S 直角梯形FDOE ﹣S 扇形OED =﹣.
【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.
10.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=;
()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;
()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.
【答案】(1)证明见解析(2)证明见解析(3)37
【解析】
【分析】
(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;
(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;
(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;
【详解】
()1证明:如图1中,
O 与CE 相切于点C ,
OC CE ∴⊥,
OCE 90∠∴=,
D E 90∠∠∴+=,
2D 2E 180∠∠∴+=,
AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,
AOD 2E 180∠∠∴+=.
()2证明:如图2中,作OR AF ⊥于R .
OCF F ORF 90∠∠∠===,
∴四边形OCFR 是矩形,
AF//CD ∴,CF OR =,
A AOD ∠∠∴=,
在AOR 和ODG 中,
A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,
AOR ∴≌ODG ,
OR DG ∴=,
DG CF ∴=,
()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .
设DG 3m =,则CF 3m =,CE 4m =,
OCF F BTE 90∠∠∠===,
AF//OC//BT ∴,
OA OB =,
CT CF 3m ∴==,
ET m ∴=, CD 为直径,
CBD CND 90CBE ∠∠∠∴===,
E 90EBT CBT ∠∠∠∴=-=,
tan E tan CBT ∠∠∴=,
BT CT ET BT
∴=, BT 3m m BT
∴=, BT 3m(∴=负根已经舍弃),
3m tan E 3∠∴== E 60∠∴=,
CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,
H E 60∠∠∴==,
MON 2HCN 60∠∠∴==,
OM ON =,
OMN ∴是等边三角形,
MN ON ∴=,
QM OB OM ==,
MOQ MQO ∠∠∴=,
MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,
ON NP 141125∴==+=,
CD 2ON 50∴==,MN ON 25==,
在Rt CDN 中,CN 48==,
在Rt CHN 中,CN 48tan H HN HN
∠===
HN ∴=
在Rt KNH 中,1KH HN 2==NK 24==,
在Rt NMK 中,MK 7===,
HM HK MK 7∴=+=.
【点睛】
本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.。

相关文档
最新文档