宝丰县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝丰县一中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可
构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()
A. C. D.
2.已知函数f(x)的图象如图,则它的一个可能的解析式为()
A.y=2B.y=log3(x+1)C.y=4﹣D.y=
3.已知正△ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()
A.B.C.D.
4.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()
A.y=x﹣1B.y=lnx C.y=x3D.y=|x|
5.设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()
A.﹣13 B.6 C.79 D.37
6.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()
A.1 B.3 C.5 D.9
7.已知集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则实数a的范围是()
A.[3,+∞)B.(3,+∞)C.[﹣∞,3] D.[﹣∞,3)
8.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
9. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
A .
B . C. D .1111]
10.已知点P (1,﹣),则它的极坐标是( )
A .
B .
C .
D .
11.如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )
A .﹣2
B .﹣1
C .1
D .2 12.把“二进制”数101101(2)化为“八进制”数是( )
A .40(8)
B .45(8)
C .50(8)
D .55(8)
二、填空题
13.若不等式组表示的平面区域是一个锐角三角形,则k 的取值范围是 .
14.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .
15.给出下列命题:
①存在实数α,使
②函数是偶函数

是函数
的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sin α<sin β 其中正确命题的序号是 .
16.已知各项都不相等的等差数列{}n a ,满足223n n a a =-,且2
6121a a a =∙,则数列12n n S -⎧⎫

⎬⎩⎭
项中 的最大值为_________.
17.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,
b ∈R .若=,则a+3b 的值为 .
18.方程(x+y ﹣1)
=0所表示的曲线是 .
三、解答题
19.如图,已知椭圆C
,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 的另外一个交
点为A ,且线段AB 的中点E 在直线y=x 上. (1)求直线AB 的方程;
(2)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,直线BM 交椭圆C 于另外一点Q . ①证明:OM •ON 为定值; ②证明:A 、Q 、N 三点共线.
20.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
21.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).
(1)讨论f(x)的单调性;
(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.
22.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).
(Ⅰ)求S n与数列{a n}的通项公式;
(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.
23.求曲线y=x3的过(1,1)的切线方程.
24.已知数列{a n}的首项a1=2,且满足a n+1=2a n+3•2n+1,(n∈N*).(1)设b n=,证明数列{b n}是等差数列;
(2)求数列{a n}的前n项和S n.
宝丰县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,
由于f(x)==1+,
①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,
满足条件.
②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.
③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.
综上可得,≤t≤2,
故实数t的取值范围是[,2],
故选D.
【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.
2.【答案】C
【解析】解:由图可得,y=4为函数图象的渐近线,
函数y=2,y=log3(x+1),y=的值域均含4,
即y=4不是它们的渐近线,
函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),
故y=4为函数图象的渐近线,
故选:C
【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.
3.【答案】D
【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,
画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,
∴△A′B′C′的高为=,
∴△A′B′C′的面积S==.
故选D.
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.4.【答案】D
【解析】解:选项A:y=在(0,+∞)上单调递减,不正确;
选项B:定义域为(0,+∞),不关于原点对称,故y=lnx为非奇非偶函数,不正确;
选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;
选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.
故选D
5.【答案】D
【解析】
二项式系数的性质.
【专题】二项式定理.
【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.
【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,
可得2m+5n=16 ①.
再根据m、n为正整数,可得m=3、n=2,
故含x2项的系数是(﹣2)2+(﹣5)2=37,
故选:D.
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.6.【答案】C
【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},
∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;
当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;
当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;
∴B={﹣2,﹣1,0,1,2},
∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.
故选C.
7.【答案】B
【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},
若A⊆B,则a>3,
故选:B.
【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.
8.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱
锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面
直线AE、BF所成的角不是定值,故D错误;
故选D.
9.【答案】A
【解析】
考点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
10.【答案】C
【解析】解:∵点P的直角坐标为,∴ρ==2.
再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,
即点P的极坐标为(2,),
故选C.
【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.
11.【答案】A
【解析】解:结合向量数量积的几何意义及点O在线段AB,AC上的射影为相应线段的中点,
可得,,则•==16﹣18=
﹣2;
故选A.
【点评】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题
12.【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).
再利用“除8取余法”可得:45(10)=55(8).
故答案选D.
二、填空题
13.【答案】(﹣1,0).
【解析】解:作出不等式组表示的平面区域,
得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)
△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,
将直线AC绕A点旋转,可得
当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,
当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,
当点C位于C1、C2之间时,△ABC是锐角三角形,
而点C在其它的位置不能构成三角形
综上所述,可得3<2k+5<5,解之得﹣1<k<0
即k的取值范围是(﹣1,0)
故答案为:(﹣1,0)
【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
14.【答案】.
【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),
故斜率为=,
∴由斜截式可得直线l的方程为,
故答案为.
【点评】本题考查直线的斜率公式,直线方程的斜截式.
15.【答案】②③.
【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,
②函数=cosx是偶函数,故②正确,
③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数
的一条对称轴方程,故③正确,
④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,
故答案为:②③.
【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.
16.【答案】
【解析】
考点:1.等差数列的通项公式;2.等差数列的前项和.
【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及
1,,,,
n n
a a d n S五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量代换作用,而
1
,a d是等差数列的两个基本量,用它们表示已知和未知是常用方法. 17.【答案】﹣10.
【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,
∴f()=f(﹣)=1﹣a,f()=;又=,
∴1﹣a=①
又f(﹣1)=f(1),
∴2a+b=0,②
由①②解得a=2,b=﹣4;
∴a+3b=﹣10.
故答案为:﹣10.
18.【答案】两条射线和一个圆.
【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.
由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,
故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,
故答案为:两条射线和一个圆.
【点评】本题主要考查直线和圆的方程的特征,属于基础题.
三、解答题
19.【答案】
【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),
∵点A在椭圆C上,∴,
整理得:6t2+4t=0,解得t=﹣或t=0(舍去),
∴E(﹣,﹣),A(﹣,﹣),
∴直线AB的方程为:x+2y+2=0;
(2)证明:设P(x0,y0),则,
①直线AP方程为:y+=(x+),
联立直线AP与直线y=x的方程,解得:x M=,
直线BP的方程为:y+1=,
联立直线BP与直线y=x的方程,解得:x N=,
∴OM•ON=|x M||x N|
=2•||•||
=||
=||
=||
=.
②设直线MB的方程为:y=kx﹣1(其中k==),
联立,整理得:(1+2k2)x2﹣4kx=0,
∴x Q=,y Q=,
∴k AN===1﹣,k AQ==1﹣,要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,
将k=代入,即证:x M•x N=,
由①的证明过程可知:|x M|•|x N|=,
而x M与x N同号,∴x M•x N=,
即A、Q、N三点共线.
【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.
20.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.
21.【答案】
【解析】解:(1)f(x)=-x2+ax+a2ln x的定义域为{x|x>0},f′(x)=-2x+a+a 2
x
=-2(x+a
2
)(x-a)
x.
①当a<0时,由f′(x)<0得x>-a
2

由f′(x)>0得0<x<-a
2.
此时f(x)在(0,-a
2
)上单调递增,
在(-a
2
,+∞)上单调递减;
②当a>0时,由f′(x)<0得x>a,
由f′(x)>0得0<x<a,
此时f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.
(2)假设存在满足条件的实数a,
∵x∈[1,e]时,f(x)∈[e-1,e2],
∴f(1)=-1+a≥e-1,即a≥e,①
由(1)知f(x)在(0,a)上单调递增,
∴f(x)在[1,e]上单调递增,
∴f(e)=-e2+a e+e2≤e2,即a≤e,②
由①②可得a=e,
故存在a=e,满足条件.
22.【答案】
【解析】解:(Ⅰ)因为=+1(n≥2),
所以是首项为1,公差为1的等差数列,…
则=1+(n﹣1)1=n,…
从而S n=n2.…
当n=1时,a1=S1=1,
当n>1时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1.
因为a1=1也符合上式,
所以a n=2n﹣1.…
(Ⅱ)由(Ⅰ)知b n===,…
所以b1+b2+…+b n=
==,…
由,解得n>12.…
所以使不等式成立的最小正整数为13.…
【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想23.【答案】
【解析】解:y=x3的导数y′=3x2,
①若(1,1)为切点,k=3•12=3,
∴切线l:y﹣1=3(x﹣1)即3x﹣y﹣2=0;
②若(1,1)不是切点,
设切点P(m,m3),k=3m2=,
即2m2﹣m﹣1=0,则m=1(舍)或﹣
∴切线l:y﹣1=(x﹣1)即3x﹣4y+1=0.
故切线方程为:3x﹣y﹣2=0或3x﹣4y+1=0.
【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.
24.【答案】
【解析】解:(1)∵=,
∴数列{b n}是以为首项,3为公差的等差数列.
(2)由(1)可知,
∴①

①﹣②得:

∴.
【点评】本题主要考查数列通项公式和前n项和的求解,利用定义法和错位相减法是解决本题的关键.。

相关文档
最新文档