北京市平谷区2023届高三一模数学试题(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题
二、多选题
1. 若一个三棱锥的底面是斜边长为
的等腰直角三角形,三条侧棱长均为
,则该三棱锥的外接球的表面积为( )
A
.
B
.
C
.
D
.
2. 已知
为函数
的导函数,当
是斜率为的直线的倾斜角时,若不等式
恒成立,则( )
A
.B
.C
.
D
.
3. 已知四棱锥
的底面是矩形,高为
,则四棱锥的外接球的体积为
( )
A
.
B
.
C
.
D
.
4. 设O 为坐标原点,F 为抛物线C :
的焦点,直线
与抛物线C 交于A ,B
两点,若
,则抛物线C 的准线方
程为( )
A
.B
.C .
或
D .
或
5.
已知等差数列
满足
,
,则数列
的前5项和为( )
A .10
B .15
C .20
D .30
6.
已知双曲线
与直线
有唯一的公共点
,过点
且与垂直的直线分别交轴、
轴于
两点.当点
运动时,点
的轨迹方程是( )
A
.B
.C
.
D
.
7. 水车是一种利用水流动力进行灌溉的工具,是人类一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个水车的示意图,已
知水车逆时针匀速旋转一圈的时间是80秒,半径为3米,水车中心(即圆心)距水面1.5米.若以水面为
轴,圆心到水面的垂线为轴建立直角坐标系,水车的一个水斗从出水面点处开始计时,经过 秒后转到点的位置,则点到水面的距离与时间的函数关系式为(
)
A
.B
.C
.
D
.
8.
已知数列
为等差数列,满足
,其中
在一条直线上,为直线
外一点,记数列
的前项和为
,则
的值为
A
.
B .2015
C .2016
D .2013
9. 在平面直角坐标系
中,双曲线
的左、右焦点分别是,
,渐近线方程为
,M 为双曲线E 上
北京市平谷区2023届高三一模数学试题(1)
北京市平谷区2023届高三一模数学试题(1)
三、填空题
四、解答题
任意一点,
平分,且,
,则( )
A
.双曲线的离心率为B
.双曲线的标准方程为
C .点M
到两条渐近线的距离之积为D .若直线
与双曲线E 的另一个交点为P ,Q 为
的中点,则
10.
如图,
为正方体中所在棱的中点,过
两点作正方体的截面,则截面的形状可能为(
)
A .三角形
B .四边形
C .五边形
D .六边形
11.
若
,则
的值可能为( )
A .2
B .3
C
.D
.
12. 已知函数
(e
为自然对数的底数,
),则关于函数
,下列结论正确的是( )
A .有2个零点
B .有2个极值点
C .在
单调递增
D .最小值为1
13.
设
,使不等式
成立的的取值范围为__________.
14.
设
的小数部分为
,则
__________.
15. 已知函数
,若,则当时,
的最小值为________.
16. 如图1,已知四边形
为直角梯形,
,,,M 为CF 的中点.将
沿折起,使得
点C 与点A 重合,如图2,且平面
平面
,
分别为
的中点.
(1)求证:平面平面;
(2)
求二面角
的余弦值.
17.
在四边形中,,
,其中.
(1)若,求
;(2)若
,求
.
18. 已知抛物线
的焦点为.点在
上,
.
(1)求;
(2)过作两条互相垂直的直线,与交于两点,与直线交于点,判断是否为定值?若是,求出
其值;若不是,说明理由.
19. 已知数列的前项和为,且.
(1)求数列的通项公式;
(2)设,,求使成立的最小的正整数的值.
20. 如图,正三棱柱中,E,F分别是棱,上的点,平面平面,M是AB的中点.
(1)证明:平面BEF;
(2)若,求平面BEF与平面ABC夹角的大小.
21. 已知函数的两个极值点满足,且,其中是自然对数的底数.
(1)时,求的值;
(2)求的取值范围.。