动量守恒与动能定理联立公式推导
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒与动能定理联立公式推导
1. 动量守恒定律与动能定理公式
- 动量守恒定律:对于两个相互作用的物体组成的系统,若系统不受外力或所受外力之和为零,则系统的总动量守恒。
表达式为
m_1v_{1}+m_2v_{2}=m_1v_{1}'+m_2v_{2}'(其中m_1、m_2为两个物体的质量,v_1、v_2为作用前的速度,v_1'、v_2'为作用后的速度)。
- 动能定理:合外力对物体做功等于物体动能的变化。
对于单个物体,表达式为W = Δ E_{k},即F_{合}s=(1)/(2)mv^2-(1)/(2)mv_{0}^2。
对于两个物体组成的系统,系统内力做功之和等于系统动能的变化,即W_{内}=Δ E_{k总}。
2. 联立推导(以完全弹性碰撞为例)
- 设两个物体质量分别为m_1和m_2,碰撞前速度分别为v_{1}和v_{2},碰撞后速度分别为v_{1}'和v_{2}'。
- 由动量守恒定律得:m_1v_{1}+m_2v_{2}=m_1v_{1}'+m_2v_{2}',移项可得m_1(v_{1} - v_{1}')=m_2(v_{2}'-v_{2}) 。
- 由动能定理(因为是弹性碰撞,系统动能守恒)得:
(1)/(2)m_1v_{1}^2+(1)/(2)m_2v_{2}^2=(1)/(2)m_1v_{1}'^2+(1)/(2)m_2v_{2}'^2,移项可得m_1(v_{1}^2-v_{1}'^2)=m_2(v_{2}'^2 - v_{2}^2),根据平方差公式a^2-b^2=(a + b)(a - b),则m_1(v_{1}+v_{1}')(v_{1}-v_{1}')=m_2(v_{2}'+v_{2})(v_{2}'-v_{2}) 。
- 用式除以式得:v_{1}+v_{1}'=v_{2}'+v_{2},移项可得v_{1}-v_{2}=v_{2}'-
v_{1}'(这是弹性碰撞中相对速度的关系)。
- 再结合动量守恒方程m_1v_{1}+m_2v_{2}=m_1v_{1}'+m_2v_{2}',可以解出v_{1}'=frac{(m_1 - m_2)v_{1}+2m_2v_{2}}{m_1 + m_2}和v_{2}'=frac{(m_2 -
m_1)v_{2}+2m_1v_{1}}{m_1 + m_2}。