七年级上册深圳市外国语学校数学期末试卷复习练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册深圳市外国语学校数学期末试卷复习练习(Word版含答
案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .
(1)猜想与的数量关系,并说明理由;
(2)若,求的度数;
(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.
【答案】(1)解:,理由如下:
,
(2)解:如图①,设,则,
由(1)可得,
,
,
(3)解:分两种情况:
①如图1所示,当时,,
又,
;
②如图2所示,当时,,
又,
.
综上所述,等于或时, .
【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.
(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.
(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.
2.已知直线AB∥CD,直线EF与AB,CD分别相交于点E,F.
(1)如图1,若∠1=60°,求∠2,∠3的度数.
(2)若点P是平面内的一个动点,连结PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系.
①当点P在图(2)的位置时,可得∠EPF=∠PEB+∠PFD请阅读下面的解答过程并填空(理由或数学式)
解:如图2,过点P作MN∥AB
则∠EPM=∠PEB(________)
∵AB∥CD(已知)MN∥AB(作图)
∴MN∥CD(________)
∴∠MPF=∠PFD (________)
∴________=∠PEB+∠PFD(等式的性质)
即:∠EPF=∠PEB+∠PFD
②拓展应用,当点P在图3的位置时,此时∠EPF=80°,∠PEB=156°,则∠PFD=________度.
③当点P在图4的位置时,请直接写出∠EPF,∠PEB,∠PFD三个角之间关系________.【答案】(1)解:∵∠2=∠1,∠1=60°
∴∠2=60°,
∵AB∥CD
∴∠3=∠1=60°
(2)两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;124;∠EPF+∠PFD=∠PEB
【解析】【解答】(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等)
∵AB∥CD(已知),MN∥AB,
∴MN∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠MPF=∠PFD(两直线平行,内错角相等)
∴∠EPM+∠MPF=∠PEB+∠PFD(等式的性质)
即∠EPF=∠PEB+∠PFD;
故答案为:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;∠EPM+∠MPF;
②过点P作PM∥AB,如图3所示:
则∠PEB+∠EPM=180°,∠MPF+∠PFD=180°,
∴∠PEB+∠EPM+∠MPF+∠PFD=180°+180°=360°,
即∠EPF+∠PEB+∠PFD=360°,
∴∠PFD=360°﹣80°﹣156°=124°;
故答案为:124;
③∠EPF+∠PFD=∠PEB.
故答案为:∠EPF+∠PFD=∠PEB.
【分析】(1)利用对顶角相等,可证∠1=∠2,可求出∠2的度数,再根据两直线平行,同位角相等,就可求出∠3的度数。
(2)① 利用两直线平行,内错角相等,可证∠EPM=∠PEB,再根据同平行于一条直线的两直线平行,可证得MN∥CD,然后根据两直线平行,内错角相等,可证得结论;②利用平行线的性质:两直线平行,同旁内角互补,可证∠EPF+∠PEB+∠PFD=360°,代入计算可求出∩PFD的度数;③利用平行线的性质可证∠EPF,∠PEB,∠PFD三个角之间关系。
3.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON 内部作射线OC.
(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;
(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数;
(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与
∠NOC之间的数量关系,并说明理由.
【答案】(1)解:∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,
∴射线OC表示的方向为北偏东60°
(2)解:∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°
(3)解:∠AOM=2∠NOC.
令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,
∵∠AOM+∠MOC+∠BOC=180°,
∴γ+90°﹣β+90°﹣β=180°,
∴γ﹣2β=0,即γ=2β,
∴∠AOM=2∠NOC
【解析】【分析】(1)根据∠MOC=∠AOC﹣∠AOM代入数据计算,即得出射线OC表示的方向;(2)根据角的倍分关系以及角平分线的定义即可求解;(3)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.
4.如图①,已知线段AB=12cm,点C为线段AB上的一个动点,点D、E分别是AC和BC 的中点.
(1)若点C恰好是AB的中点,则DE=________cm;若AC=4cm,则DE=________cm;(2)随着C点位置的改变,DE的长是否会改变?如果改变,请说明原因;如果不变,请求出DE的长;
(3)知识迁移:如图②,已知∠AOB=120°,过角的内部任意一点C画射线OC,若O D、OE分别平分∠AOC和∠BOC,试说明∠DOE的度数与射线OC的位置无关.
【答案】(1)6;6
(2)解:DE的长不会改变,理由如下:
∵点D是线段AC的中点
∴
∵点E是线段BC的中点
∴
∴ DE = DC+CE
∴DE的长不会改变
(3)解:∵ OD平分∠AOC, OE平分∠BOC
∴ ,
∴
∴∠DOE的度数与射线OC的位置无关
【解析】【解答】解:(1)若点C恰好是AB的中点,则DE=6cm;
若AC=4cm,则DE=6cm;
【分析】(1)由AB=12cm,点D、E分别是AC和BC的中点,即可推出DE= (AC+BC)= AB;由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出AD=DC,BE=EC,由此即可得到D E的长度;(2)由(1)知,C点位置的
改变后,仍有DE=CD+CE= (AC+BC)=AB,所以DE的长度不会改变;(3)由若OD、OE
分别平分∠AOC和∠BOC,即可推出∠DOE=∠DOC+∠COE= (∠AOC+∠COB)=∠AOB,继而可得到答案.
5.定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.例如:如图1所示,若∠BOC=2∠AOC,则OC是∠AOB的一条三分线.
(1)如图1所示,OC是∠AOB的一条三分线,且∠BOC>∠AOC,若∠AOB=60°,求∠AOC 的度数:
(2)已知∠AOB=90°,如图2所示,若OC,OD是∠AOB的两条三分线.
①求∠COD的度数;
②现以点O为中心,将∠COD顺时针旋转n度得到∠C’DD’,当OA恰好是∠C’OD’的三分线时,求n的值.
【答案】(1)解:如图1,
∵ OC是∠AOB的一条三分线,且∠BOC>∠AOC,
∴∠AOC= ∠AOB,
又∵∠AOB=60°,
∴∠AOC=20°
(2)解:① 如图2,
∵∠AOB=90°,OC,OD是∠AOB的两条三分线,
∴∠COD = ∠AOB =30°;
② 分两种情况:
当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时,
∠AOC'=10°,
∴∠DOC'=30°-10°=20°,
∴∠DOD'=20°+30°=50°;
当OA是∠C'OD'的三分线,且∠AOD'<∠AOC'时,
∠AOC'=20°,
∴∠DOC'=30°-20°=10°,
∴∠DOD'=10°+30°=40°;
综上所述,n=40°或50°
【解析】【分析】(1)根据题中给出的角的三分线的定义结合已知条件可得∠AOC=∠AOB ,计算即可得出答案.
(2)①根据题中给出的角的三分线的定义结合已知条件∠COD =∠AOB,计算即可得出答案;
②根据题意分情况讨论:当OA是∠C′OD'的三分线,且∠AOD'>∠AOC'时;当OA 是∠C'OD'的三分线,且∠AOD'<∠AOC'时;分别结合角的三分线的定义计算即可得出答案.
6.如图,点C在线段AB上,点M,N分别是AC,BC的中点.
(1)若AC=8 cm,CB=6 cm,求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a,其他条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;
(3)若点C在线段AB的延长线上,且满足AC-BC=b,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图.
【答案】(1)解:点M、N分别是AC、BC的中点,
∴CM= AC=4cm,
CN= BC=3cm,
∴MN=CM+CN=4+3=7cm
所以线段MN的长为7cm
(2)解:MN的长度等于 a,
根据图形和题意可得:
MN=MC+CN= AC+ BC= (AC+BC)= a
(3)解:MN的长度等于 b,
根据图形和题意可得:
MN=MC-NC= AC- BC= (AC-BC)= b.
【解析】【分析】(1)据“点M、N分别是AC,BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.
7.如图1,∠MON=90°,点A,B分别在射线OM、ON上.将射线OA绕点O沿顺时针方向以每秒9°的速度旋转,同时射线OB绕点O沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t(0≤t≤40,单位秒).
(1)当t=8时,∠AOB=________°;
(2)在旋转过程中,当∠AOB=36°时,求t的值.
(3)在旋转过程中,当ON、OA、OB三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t的值.
【答案】(1)42
(2)解:此题需要分类讨论:
①当OA在OB后面时,∠AOB=∠MOB-∠MOA=∠MON+∠BON-∠MOA=(90+3t)-9t,又∵∠AOB=36°
∴(90+3t)-9t=36°,解得 t=9;
②当OA在OB前面的时候,∠AOB=∠MOA--∠MOB=∠MOA-∠MON-∠BON-=9t-(90+3t),又∵∠AOB=36°
∴9t-(90+3t)=36°,解得 t=21,
故t=9或t=21;
(3)解:有以下3种情形:
①当ON平分∠AOB时,3t=90-9t,∴t=7.5
②当OA平分∠BON时,3t=2(9t-90),∴t=12
③当OB平分∠AON时,9t-90=2×3t,∴t=30
故t的值为7.5或12或30.
【解析】【解答】解:(1)∵∠NOB=3t=3×8=24°,∠MOA=9t=9×8=72°,
∴∠AOB=∠MOB-∠MOA=∠MON+∠BON-∠MOA=90°+24°-72°=42°;
故答案为:42;
【分析】(1)先求出∠NOB及∠MOA的度数,然后根据∠AOB=∠MOB-∠MOA=∠MON+∠BON-∠MOA即可算出答案;
(2)此题需要分类讨论:①当OA在OB后面时,∠AOB=∠MOB-∠MOA=∠MON+∠BON-∠MOA=(90+3t)-9t=36°列出方程,求解即可;②当OA在OB前面的时候,∠AOB=∠MOA--∠MOB=∠MOA-∠MON-∠BON-=9t-(90+3t)=36°列出方程,求解即可;
(3)分①当ON平分∠AOB时,②当OA平分∠BON时,③当OB平分∠AON时三种情况考虑即可解决问题.
8.如图,将一长方形纸片沿着折叠,已知,,交于点,
过点作,交线段于点 .
(1)判断与是否相等,并说明理由.
(2)①判断是否平分,并说明理由.
②若,求的度数.
【答案】(1)解:∵DF∥CE,
∴∠CGA=∠DFG,
∵GH∥EF,
∴∠AGH=∠GFE,
∴∠CGA+∠AGH=∠DFG+∠GFE,
即∠CGH=∠DFE;
(2)解:① GH平分∠AGE,
证明:∵HG∥FE,
∴∠AGH=∠GFE,∠HGE=∠GEF,
∵AF∥BE,
∴∠GFE+∠BEF=180°,
由折叠的特点知,∠BEF+∠GEF=180°,
∴∠GFE=∠GEF,
∴∠AGH=∠HGE,即GH平分∠AGE;
②∵DF∥CE,
∴∠AGC=∠DFA=52°,
∴∠AGE=180°-∠AGC=180°-52°=128°,
∴∠HGE=∠AGE=×128°=64°.
【解析】【分析】(1)由∵DF∥CE,两直线平行同位角相等,得∠CGA=∠DFG,由GH∥EF,两直线平行同位角相等,得∠AGH=∠GFE,因此根据等式的性质得∠CGA+∠AGH=∠DFG+∠GFE,即∠CGH=∠DFE;
(2)①由于HG∥FE,分别由两直线平行同位角相等和内错角相等,得∠AGH=∠GFE,∠HGE=∠GEF,再由AF∥BE,同旁内角互补得∠GFE+∠BEF=180°,结合折叠的特点,得∠BEF+∠GEF=180°,因此得到:∠GFE=∠GEF,最后等量代换得∠AGH=∠HGE,即GH平分∠AGE;
②由于DF∥CE,两直线平行同位角相等,求得∠AGC=∠DFA=52°,则利用邻补角的性质
定理求得∠AGE的度数,从而由∠HGE=∠AGE求得结果。
9.如图,直线l上有A、B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.
(1)OA=________cm,OB=________cm.
(2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.
(3)若动点P、Q分别从A、B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为t(s),当点P与点Q重合时,P、Q两点停止运动.
①当t为何值时,2OP﹣OQ=8.
②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q 运动,如此往返,直到点P、Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为________ cm.
【答案】(1)16;8
(2)解:设CO=x,则AC=16﹣x,BC=8+x,
∵AC=CO+CB,
∴16﹣x=x+8+x,
∴x= ,
∴CO=
(3)48
【解析】【解答】解:(1)∵AB=24,OA=2OB,
∴20B+OB=24,
∴OB=8,0A=16,
故答案分别为16,8.(3)①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,t= ,当点P在点O右边时,2(2t﹣16)﹣(8+t)=8,t=16,
∴t= 或16s时,2OP﹣OQ=8.
②设点M运动的时间为ts,由题意:t(2﹣1)=16,t=16,
∴点M运动的路程为16×3=48cm.
故答案为48cm.
【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16﹣x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16﹣2t)﹣(8+t)=8,当点P在点O右边时,2(2t﹣16)﹣(8+x)=8,解方程
即可.
②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2﹣1)=16由此即可解决.
10.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补
(1)试判断直线AB与直线CD的位置关系,并说明理由
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH
(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)
【答案】(1)解:如图,
∵∠1和∠2互补,∠2和∠3互补,
∴∠1=∠3
∴AB∥CD
(2)解:如图,
由(1)得AB∥CD,
∴∠BEF+∠EFD=180°
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF
∵GH⊥EG,
∴PF∥GH.
(3)解:∠HPQ的大小不发生变化,理由如下:
∵EG⊥HG,∴∠KGP=90°
∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3
∵∠3=2∠6,
∴∠EPK=90°+2∠6
∵PQ平分∠EPK,
∴∠QPK= ∠EPK=45°+∠6
∴∠HPQ=∠QPK-∠6=45°
∴∠HPQ的大小不发生变化,一直是45°
【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。
(2)利用两直线平行,同旁内角互补,可证得∠BEF+∠EFD=180°,再利用角平分线的定义去证明∠EPF=90°可得到EG⊥PF,然后利用同垂直于一条直线的两直线平行,可证得结论。
(3)利用垂直的定义可证得∠KGP=90°,利用邻补角的定义可证得∠EPK=90°+∠3,再由∠3=2∠6,可得到∠EPK=90°+2∠6,再利用角平分线的定义,可推出∠QPK=45°+∠6,由∠HPQ=∠QPK-∠6,即可求出∠HPQ的度数。
11.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.
(1)若∠A=40°,∠B=76°,求∠DCE的度数;
(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);
(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.
【答案】(1)解:∵∠A=40°,∠B=76°,
∴∠ACB=64°.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB=32°.
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=14°,
∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;
(2)解:∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α;
(3)解:如图所示.
∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α,
由平移可得:GH∥CD,
∴∠HGE=∠DCE β α.
【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线
的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到
∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.
12.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;
晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.
(1)下面是小东证明该猜想的部分思路,请补充完整;
①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;
②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;
(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.
【答案】(1)△BMF;SAS;60
(2)证明:由①知,∠BFE=60°,
∴∠CFD=∠BFE=60°
∵△BEF≌△BMF,
∴∠BFE=∠BFM=60°,
∴∠CFM=∠BFC-∠BFM=120°-60°=60°,
∴∠CFM=∠CFD=60°,
∵CE是∠ACB的平分线,
∴∠FCM=∠FCD,
在△FCM和△FCD中,,
∴△FCM≌△FCD(ASA),
∴CM=CD,
∴BC=CM+BM=CD+BE,
∴BE+CD=BC.
【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:
∵BD、CE是△ABC的两条角平分线,
∴∠FBE=∠FBM= ∠ABC,
在△BEF和△BMF中,,
∴△BEF≌△BMF(SAS),
故答案为:△BMF,SAS;
②∵BD、CE是△ABC的两条角平分线,
∴∠FBC+FCB= (∠ABC+∠ACB),
在△ABC中,∠A+∠ABC+∠ACB=180°,
∵∠A=60°,
∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,
∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,
∴∠EFB=60°,
故答案为:60;
【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.
13.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,
(1)分别计算:当∠A分别为700、800时,求∠A1的度数.
(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.
(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.
(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.
其中有且只有一个是正确,请写出正确结论,并求出其值.
【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线
∴∠A1BC= ∠ABC,∠A1CD= ∠ACD
由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:
∠A1= (∠ACD-∠ABC)= ∠A;
当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°
(2)∠A=2∠A1
(3)∠A5= ∠A
(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),
化简得:∠A1+∠Q=180°
故①的结论是正确,且这个定值为180°
【解析】【解答】解:(2)由(1)可知∠A1== ∠A
即∠A=2∠A1(3)同(1)可求得:
∠A2= ∠A1= ∠A,
∠A3= ∠A2= ∠A,
…
依此类推,∠A n= ∠A;
当n=5时,∠A5= ∠A= ∠A
【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-
∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=
∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
14.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E.∠ADC=70°.
(1)求∠EDC 的度数;
(2)若∠ABC=30°,求∠BED 的度数;
(3)将线段 BC沿 DC方向移动,使得点 B在点 A的右侧,其他条件不变,若∠ABC=n°,请直接写出∠BED 的度数(用含 n的代数式表示).
【答案】(1)∵平分,
∴;
(2)过点作,如图:
∵平分,;平分,
∴,
∵,
∴
∴,
∴;
(3)过点E作,如图:
∵DE平分,;BE平分,
∴,
∵,
∴
∴,
∴.
【解析】【分析】(1)根据角平分线定义即可得到答案;(2)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解;(3)过点作,然后根据角平分线的定义、平行线的判定和性质以及角的和差进行推导即可得解.
15.如(图1),在平面直角坐标系中,,,,且满足
,线段交轴于点.
(1)填空: ________, ________;
(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;
(3)求点的坐标;
(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.
【答案】(1)-3;3
(2)解:∵AB∥DE,∴∠ODE+∠DFB=180°,∵,∴∠DFB=∠AFO=180°-140°=40°,∴∠FAO=50°,∵分别平分,∴∠OAN=
∠FAO=25°,∠NDM=∠ODE=70°,∴∠DNM=∠ANO=90°-25°=65°,∴∠AMD=180°−∠DNM-∠NDM=45°
(3)解:连结OB,如图,设F(0,t),∵△AOF的面积+△BOF的面积=△AOB的面积,∴ ×3×t+ ×t×3= ×3×3,解得t=,∴F点坐标为(0,);
(4)解:存在,∵,∴△的面积= ,设Q(0,y),
∵△ABQ的三角形=△AQF的面积+△BQF的面积,∴•|y− |•3+•|y− |•3=,解得y=5或y=−2,∴此时Q点坐标为(0,5)或(0,−2);
【解析】【解答】解:(1)∵(a+b)2+|b-a-6|=0,
∴a+b=0,b-a-6=0,
∴a=−3,b=3,
故答案为:-3,3;
【分析】(1)根据非负数的性质得a+b=0,b-a-6=0,然后解方程组求出a和b即可得到点A和B的坐标;(2)由AB∥DE可知∠ODE+∠DFB=180°,得到∠DFB=∠AFO=
180°-140°=40°,所以∠FAO=50°,再根据角平分线定义得∠OAN=∠FAO=25°,∠NDM=
∠ODE=70°,得到∠DNM=∠ANO=90°-25°=65°,然后根据三角形内角和定理得∠AMD=180°−∠DNM-∠NDM=45°;(3)①连结OB,如图3,设F(0,t),根据△AOF
的面积+△BOF的面积=△AOB的面积得到 ×3×t+ ×t×3= ×3×3,解得t=,则可得
到F点坐标为(0,);(4)先计算△ABC的面积=,利用△ABQ的三角形=△AQF
的面积+△BQF的面积得到•|y− |•3+•|y− |•3=,解出y即可.。