江苏省苏州市姑苏区八年级上学期期末模拟数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市姑苏区八年级上学期期末模拟数学试题
一、选择题
1.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )
A .31y x =-+
B .32y x =-+
C .31y x =--
D .32y x =-- 2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为
( )
A .80︒
B .100︒
C .105︒
D .120︒ 3.关于x 的分式方程
7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-3
4.满足下列条件的△ABC ,不是直角三角形的是( )
A .a :b :3c =:4:5
B .A ∠:B ∠:9
C ∠=:12:15 C .C A B ∠=∠-∠
D .222b a c -= 5.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则
△DNB 的周长为( )
A .12
B .13
C .14
D .15
6.+1x x 的取值范围是( ).
A .x >﹣1
B .x ≥0
C .x ≥﹣1
D .任意实数
7.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )
A .x >2
B .x <2
C .x >﹣1
D .x <﹣1 8.如图,若BD 是等边△ABC 的一条中线,延长BC 至点
E ,使CE=CD=x ,连接DE ,则DE
的长为( )
A .32x
B .23x
C .33x
D .3x
9.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )
A .2.8
B .22
C .2.4
D .3.5
10.下列二次根式中属于最简二次根式的是( )
A .32
B .24x y
C .y x
D .24+x y
二、填空题
11.如图,在ABC ∆中,AB AC =,点P 为边AC 上一动点,过点P 作PD BC ⊥,垂足为点D ,延长DP 交BA 的延长线于点E ,若10AC =,设CP 长为x ,BE 长为y ,则y 关于x 的函数关系式为__________.(不需写出x 的取值范围)
12.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
13.如图,已知等腰三角形ABC ,AB =AC ,若以点B 为圆心,BC 长为半径画弧,分别与腰AB ,AC 交于点D ,E .给出下列结论:正确的结论有:_____(把你认为正确的结论的序号都填上).①AE =BE ;②AD =DE ;③∠EBC =∠A ;④∠BED =∠C .
14.若关于x 的方程233
x m x +=-的解不小于1,则m 的取值范围是_______. 15.Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 在边AB 上,连接CD .有以下4种说法:
①当DC DB =时,BCD ∆一定为等边三角形
②当AD CD =时,BCD ∆一定为等边三角形
③当ACD ∆是等腰三角形时,BCD ∆一定为等边三角形
④当BCD ∆是等腰三角形时,ACD ∆一定为等腰三角形
其中错误的是__________.(填写序号即可)
16.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.
17.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12
y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.
18.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a
x y b -=⎧⎨+=⎩
的解是________.
19.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.
20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
若BD=3,DE=5,则线段EC 的长为______.
三、解答题
21.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x 之间的函数关系.请你根据图像进行探究:
(1)小丽的速度是______km/h ,小明的速度是_________km/h ;
(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若两人相距20km ,试求小丽的行驶时间?
22.一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -.
(1)求一次函数的表达式;
(2)若此一次函数的图像与x 轴交于点C ,求BOC ∆的面积.
23.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长x 与等边△ABC 的周长y 的关系.
(1)如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时x y
= ; (2)如图2,点M 、N 在边AB 、AC 上,且当DM≠DN 时,猜想( I )问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.
(3)如图3,当M 、N 分别在边AB 、CA 的延长线上时,探索BM 、NC 、MN 之间的数量关系如何?并给出证明.
24.(模型建立)
(1)如图1,等腰直角三角形ABC 中,90ACB ∠=,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ∆≅∆; (模型应用)
(2)已知直线1l :443
y x =+与坐标轴交于点A 、B ,将直线1l 绕点A 逆时针旋转45至直线2l ,如图2,求直线2l 的函数表达式;
(3)如图3,长方形ABCO ,O 为坐标原点,点B 的坐标为()8,6-,点A 、C 分别在坐标轴上,点P 是线段BC 上的动点,点D 是直线26y x =-+上的动点且在第四象限.若
APD
∆是以点D为直角顶点的等腰直角三角形,请直接
..写出点D的坐标.
25.(模型建立)
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.
求证:△CDA≌△BEC.
(模型运用)
(2)如图2,直线l1:y=4
3
x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至
直线l2,求直线l2的函数表达式.
(模型迁移)
如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x 轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.
四、压轴题
26.阅读并填空:
如图,ABC是等腰三角形,AB AC
=,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD BE
=,为什么?
解:过点E作EF AC交BC于F
所以ACB EFB
∠=∠(两直线平行,同位角相等)
D OEF
∠=∠(________)
在OCD与OFE
△中
()
________
COD FOE
OD OE
D OEF
⎧∠=∠
⎪
=
⎨
⎪∠=∠
⎩
所以OCD OFE
△≌△,(________
)
所以CD FE
=(________)
因为AB AC
=(已知)
所以ACB B
=
∠∠(________)
所以EFB B
∠=∠(等量代换)
所以BE FE
=(________)
所以CD BE
=
27.直角三角形ABC中,∠ACB=90°,直线l过点C.
(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:
△ACD≌△CBE.
(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.
①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)
②直接写出当△MDC与△CEN全等时t的值.
28.已知ABC和ADE都是等腰三角形,AB AC
=,AD AE
=,
DAE BAC
∠=∠.
(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则
DB__________EC.(填>、<或=)
(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.
(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.
(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.
(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,
90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.
29.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .
(1)若∠AED=20°,则∠DEC=度;
(2)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;
(3)如图2,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:
EH2+CH2=2AE2.
30.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点
E、F.
①求证:∠1=∠2;
②如图2,若BF=2AF,连接CF,求证:BF⊥CF;
(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,
求ABF
ACF
S
S的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据左加右减,上加下减的平移规律解题.
【详解】
解:把直线34
y x
=-+沿x轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4
y x
=-++,
整理得:32y x =--,
故选D.
【点睛】
本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.
2.B
解析:B
【解析】
【分析】
延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数.
【详解】
延长AO 交BC 于D .
∵点O 在AB 的垂直平分线上.
∴AO=BO .
同理:AO=CO .
∴∠OAB=∠OBA ,∠OAC=∠OCA .
∵∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA .
∴∠BOD=2∠OAB ,∠COD=2∠OAC .
∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC )=2∠BAC .
∵∠A=50°.
∴∠BOC=100°.
故选:B .
【点睛】
此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.
3.A
解析:A
【解析】
当x =1时,分母为零,没有意义,所以是增根.故选A .
4.B
解析:B
【解析】
分析:根据三角形的内角和定理及勾股定理的逆定理进行分析,进而得到答案.
详解:A.设三边分别为3k ,4k ,5k ,因为(3k)2+(4k )2=(5k )2,所以是直角三角形;
B.因为∠C=0015180909+12+15
⨯<,所以不是直角三角形; C. ∠C=∠A ﹣∠B ,即∠B+∠C=∠A ,故∠A=090,所以是直角三角形;
D.因为b 2﹣a 2=c 2,所以c 2+a 2= b 2,所以是直角三角形.
故答案为B.
点睛:此题考查勾股定理的逆定理的应用.判断三角形是不是直角三角形,已知三角形的三边的长,只要利用勾股定理的逆定理加以判断即可.
5.A
解析:A
【解析】
【分析】
根据中点的定义可得BD=3,由折叠的性质可知DN=AN ,即DN+BN=AB=9,可得△DNB 的周长.
【详解】
解:∵D 是BC 的中点,BC=6,
∴BD=3,
由折叠的性质可知DN=AN ,
∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.
故选A.
【点睛】
本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等
6.C
解析:C
【解析】
【分析】
根据二次根式的意义可得出x +1≥0,即可得到结果.
【详解】
解:由题意得:x +1≥0,
解得:x ≥﹣1,
故选:C .
【点睛】
本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.
7.D
解析:D
【解析】
因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.
8.D
解析:D
【解析】
【分析】
根据等腰三角形和三角形外角性质求出BD=DE ,求出BC ,在Rt △BDC 中,由勾股定理求出BD 即可.
【详解】
解:∵△ABC 为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC ,
∵BD 为中线,
1302
DBC ABC ︒∴∠=
∠= ∵CD=CE , ∴∠E=∠CDE ,
∵∠E+∠CDE=∠ACB ,
∴∠E=30°=∠DBC ,
∴BD=DE ,
∵BD 是AC 中线,CD=x ,
∴AD=DC=x ,
∵△ABC 是等边三角形,
∴BC=AC=2x ,BD ⊥AC ,
在Rt △BDC 中,由勾股定理得:BD ==
DE BD ∴==
故选:D .
【点睛】
本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD 和求出BD 的长.
9.B
解析:B
【解析】
【分析】
延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.
【详解】
解:如图,延长BG交CH于点E,
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=CD=10,
∵AG=8,BG=6,
∴AG2+BG2=AB2,
∴∠AGB=90°,
∴∠1+∠2=90°,
又∵∠2+∠3=90°,
∴∠1=∠3,
同理:∠4=∠6,
在△ABG和△CDH中,
AB=CD=10
AG=CH=8
BG=DH=6
∴△ABG≌△CDH(SSS),
∴∠1=∠5,∠2=∠6,
∴∠2=∠4,
在△ABG和△BCE中,
∵∠1=∠3,AB=BC,∠2=∠4,
∴△ABG≌△BCE(ASA),
∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,
∴GE=BE-BG=8-6=2,
同理可得HE=2,
在Rt△GHE中,
2222
=+=+=
GH GE HE
2222
故选:B.
【点睛】
本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.
10.D
解析:D
【解析】
【分析】
最简二次根式即被开方数不含分母且不含能开得尽方的因数或因式,由此判断即可.
【详解】
解:A
B 2
C
D
故选:D .
【点睛】
本题考查了最简二次根式,熟练掌握最简二次根式的概念是解题的关键.
二、填空题
11.【解析】
【分析】
根据等腰三角形的性质和直角三角形两锐角互余得到∠E=∠CPD ,再根据对顶角相等得到∠E=∠APE ,根据等角对等边得到AE=AP ,即可得到结论.
【详解】
∵AB=AC ,
∴∠B
解析:20y x =-
【解析】
【分析】
根据等腰三角形的性质和直角三角形两锐角互余得到∠E =∠CPD ,再根据对顶角相等得到∠E =∠APE ,根据等角对等边得到AE =AP ,即可得到结论.
【详解】
∵AB =AC ,
∴∠B =∠C .
∵PD ⊥BC ,
∴∠EDB =∠PDC =90°,
∴∠B +∠E =90°,∠C +∠CPD =90°,
∴∠E =∠CPD .
∵∠APE =∠CPD ,
∴∠E =∠APE ,
∴AE =AP .
∵AB =AC =10,PC =x ,
∴AP =AE =10-x .
∵BE=AB+AE,
∴y=10+10-x=20-x.
故答案为:y=20-x.
【点睛】
本题考查了等腰三角形的性质和判定以及直角三角形的性质.解题的关键是得到
∠E=∠CPD.
12.【解析】
【分析】
【详解】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
解析:【解析】
【分析】
【详解】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
∴斜边上的中线长=1
×10=5.
2
考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
13.③
【解析】
【分析】
利用等腰三角形的性质分别判断后即可确定正确的选项.
【详解】
解:∵AB=AC,
∴∠ABC=∠ACB,
∵以点B为圆心,BC长为半径画弧,交腰AC于点E,
∴BD=BE=B
解析:③
【解析】
【分析】
利用等腰三角形的性质分别判断后即可确定正确的选项.
【详解】
解:∵AB=AC,
∴∠ABC=∠ACB,
∵以点B为圆心,BC长为半径画弧,交腰AC于点E,
∴BD=BE=BC,
∴∠ACB=∠BEC,∠BDE=∠BED,
∴∠BEC=∠ABC=∠ACB,
∴∠EBC=∠A,
无法得到①AE=BE;②AD=DE;④∠BED=∠C.
故答案为:③.
【点睛】
本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
14.m≥-8 且m≠-6
【解析】
【分析】
首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】
解:解关于x的方程
得x=m+9
因为的方程的解不小于,且x≠3
所以m+
解析:m≥-8 且m≠-6
【解析】
【分析】
首先求出关于x的方程2
3
3
x m
x
+
=
-
的解,然后根据解不小于1列出不等式,即可求出.
【详解】
解:解关于x的方程2
3
3
x m
x
+
=
-
得x=m+9
因为x的方程2
3
3
x m
x
+
=
-
的解不小于1,且x≠3
所以m+9≥1 且m+9≠3
解得m≥-8 且m≠-6 .
故答案为:m≥-8 且m≠-6
【点睛】
此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.
15.③
【解析】
【分析】
根据题意,将不同情况下的示意图作出,逐一分析即可得解.
【详解】
如下图:
①∵,,∴,∵,∴为等边三角形
∴①正确;
②∵,,∴,∵,∴,,∴,∴为等边三角形
∴②正确;
解析:③
【解析】
【分析】
根据题意,将不同情况下的示意图作出,逐一分析即可得解.
【详解】
如下图:
①∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵DC DB =,∴BCD ∆为等边三角形 ∴①正确;
②∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵AD CD =,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形
∴②正确;
③当DA DC =时∵90ACB ∠=︒,30A ∠=︒,ACD ∆是等腰三角形,∴30ACD ∠=︒,903060DCB ∠=︒-︒=︒,∴60CDB ∠=︒,∴BCD ∆为等边三角形;
当AC AD =时,易得BCD ∆不为等边三角形
∴③错误;
④∵90ACB ∠=︒,30A ∠=︒,∴60B ∠=︒,∵BCD ∆是等腰三角形,∴BCD ∆是等边三角形,60DCB ∠=︒∴30ACD ∠=︒,∴ACD ∆为等腰三角形;
∴④正确;
故答案为:③.
【点睛】
本题主要考查了等边三角形,等腰三角形的判定及性质,熟练掌握等边三角形、等腰三角形的判定及性质的证明方法是解决本题的关键.
16.22
【解析】
【分析】
等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
【详解】
①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.
②当
解析:22
【解析】
【分析】
等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
【详解】
①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.
②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.
故答案为22.
【点睛】
考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键. 17.10或
【解析】
【分析】
先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;
解析:10或
227 【解析】
【分析】
先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;
【详解】
解:把()40A ,
代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,
∵P 为AB 的中点,()40A ,
,()0,4B ∴由中点坐标公式得:()2,2P ,
把()2,2P 代入到12y x n =
+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112
y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,
, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭
, ∴()1341322
MN t t t ⎛⎫=-+-+=
- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242
t t -=-, 分情况讨论得:
①当4t ≥时,去绝对值得:
()33=242
t t --, 解得:10t =;
②当24t ≤<时,去绝对值得:
()33=242
t t --, 解得:227
t =; ③当2t <时,去绝对值得:
()33=242
t t --, 解得:102t =>,故舍去;
综上所述:10t =或227
t =; 故答案为:10或227
. 【点睛】
本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.
18.【解析】
【分析】
根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.
【详解】
解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),
所以
解析:21x y =⎧⎨=⎩
【解析】
【分析】
根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.
【详解】
解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),
所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21
x y =⎧⎨=⎩ . 故答案为21
x y =⎧⎨=⎩. 【点睛】
本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
19.AB=BC
【解析】
【分析】
利用公共边BD 以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.
【详解】
如图,∵在△ABD 与△CBD 中,∠ABD=∠CBD
解析:AB=BC
【解析】
【分析】
利用公共边BD 以及∠ABD=∠CBD ,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.
【详解】
如图,∵在△ABD 与△CBD 中,∠ABD=∠CBD ,BD=BD ,
∴添加AB=CB 时,可以根据SAS 判定△ABD ≌△CBD ,
故答案为AB=CB .
【点睛】
本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的
一般方法有:SSS 、SAS 、ASA 、AAS 、HL .
20.2
【解析】
【分析】
根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F .求证∠DBF=∠FBC,∠ECF =∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF,∠CFE=∠BCF,即
解析:2
【解析】
【分析】
根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F .求证∠DBF =∠FBC ,∠ECF =
∠BCF ,再利用两直线平行内错角相等,求证出∠DFB =∠DBF ,∠CFE =∠BCF ,即BD =DF ,FE =CE ,然后利用等量代换即可求出线段CE 的长.
【详解】
∵∠ABC 和∠ACB 的平分线相交于点F ,
∴∠DBF =∠FBC ,∠ECF =∠BCF ,
∵DF ∥BC ,交AB 于点D ,交AC 于点E .
∴∠DFB =∠FBC ,∠EFC =∠BCF ,
∴∠DFB =∠DBF ,∠CFE =∠ECF ,
∴BD =DF =3,FE =CE ,
∴CE =DE−DF =5−3=2.
故选:C .
【点睛】
此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题难度不大,是一道基础题.
三、解答题
21.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)
13
小时或2小时 【解析】
【分析】
(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;
(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.
【详解】
(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,
则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,
∴10V =小丽千米/时,
∴20V =小明千米/时;
故答案为:10;20;
(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,
此时小丽和小明的距离是()1.513015-⨯=
∴C 点坐标是(1.5,15).
设BC 对应的函数表达式为y kx b =+,
则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩
, 解得:3030k b =⎧⎨=-⎩
, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤
(3)①当两人相遇前:1(3020)(2010)3-÷+=
(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发
13
小时或2小时时,两人相距20公里. 【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
22.(1)2y x =-;(2)2.
【解析】
【分析】
(1)根据待定系数法将A 、B 两点的坐标代入求出k 、b 的值即可解决;
(2)根据求出C 点坐标,由B 、C 两点的坐标即可求出△BOC 的面积.
【详解】
解:(1)将(3,1)A 和点(0,2)B -代入(0)y kx b k =+≠,得: 312k b b +=⎧⎨=-⎩
解得:21b k =-⎧⎨=⎩
故一次函数解析式为:2y x =-.
(2)令y=0得:0=x-2,x=2,
所以C 点坐标为(2,0),OC=2
所以三角形OBC 的面积=
22222OC OB ⋅⨯== 【点睛】
本题考查了待定系数法求函数解析式,利用点的坐标求三角形面积,解决本题的关键是熟
练掌握待定系数法.
23.(1)BM+NC=MN;
2
3
x
y
;(2)成立:BM+NC=MN;(3)BM+MN=NC.证明见解析.
【解析】
【分析】
(1)由DM=DN,∠MDN=60°,可证得△MDN是等边三角形,又由△ABC是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN
之间的数量关系 BM+NC=MN,此时
2 =
3
x
y
;
(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得
DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;
(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.
【详解】
解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.
此时
2 =
3 x
y
.
理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,
∵△ABC是等边三角形,
∴∠A=60°,
∵BD=CD,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠MBD=∠NCD=90°,
∵DM=DN,BD=CD,
∴Rt△BDM≌Rt△CDN,
∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,
∴MN=2BM=2CN=BM+CN;
∴AM=AN,
∴△AMN是等边三角形,
∵AB=AM+BM,
∴AM:AB=2:3,
∴
2 =
3
x
y
;
(2)猜想:结论仍然成立.
证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,
∴△DBM≌△DCM1,
∴DM=DM1,∠MBD=∠M1CD,M1C=BM,
∵∠MDN=60°,∠BDC=120°,
∴∠M1DN=∠MDN=60°,
∴△MDN≌△M1DN,
∴MN=M1N=M1C+NC=BM+NC,
∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,
∴
2 =
3
x
y
;
(3)证明:在CN上截取CM1=BM,连接DM1.
可证△DBM≌△DCM1,
∴DM=DM1,
可证∠M1DN=∠MDN=60°,
∴△MDN≌△M1DN,
∴MN=M1N,
∴NC-BM=MN.
【点睛】
此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.
24.(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(20
3
,
22
3
-).
【解析】
【分析】
(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定BEC CDA
∆≅∆;
(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD =AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.
【详解】
解:(1)证明:∵△ABC为等腰直角三角形,
∴CB=CA,∠ACD+∠BCE=90°,
又∵AD⊥ED,BE⊥ED,
∴∠D=∠E=90°,∠EBC+∠BCE=90°,
∴∠ACD=∠EBC,
在△ACD与△CBE中,
D E
ACD EBC
CA CB
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴BEC CDA
∆≅∆(AAS);
(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,
∵∠BAC=45°,
∴△ABC为等腰直角三角形,
由(1)可知:△CBD≌△BAO,
∴BD=AO,CD=OB,
∵直线l1:y=
4
3
x+4中,若y=0,则x=−3;若x=0,则y=4,
∴A(−3,0),B(0,4),
∴BD=AO=3,CD=OB=4,
∴OD=4+3=7,
∴C(−4,7),
设l2的解析式为y=kx+b,则
74
03
k b
k b
=-+
⎧
⎨
=-+
⎩
,
解得:
7
21
k
b
=-
⎧
⎨
=-
⎩
,
∴l2的解析式为:y=−7x−21;
(3)D(4,−2)或(20
3
,
22
3
-).
理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:
当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,
设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,
由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,
解得x=4,
∴−2x+6=−2,
∴D(4,−2),
此时,PF=ED=4,CP=6=CB,符合题意;
当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,
设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,
同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,
解得x=20
3
,
∴−2x+6=
22
3 -,
∴D(20
3
,
22
3
-),
此时,ED=PF=20
3
,AE=BF=
4
3
,BP=PF−BF=
16
3
<6,符合题意,
综上所述,D点坐标为:(4,−2)或(20
3
,
22
3
-)
【点睛】
本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.
25.(1)见解析;(2)
39
44
y x
=--;(3)点P坐标为(4,0)或(﹣4,0)
【解析】
【分析】
(1)由“AAS”可证△CDA≌△BEC;
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;
(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【详解】
(1)证明:∵AD⊥DE,BE⊥DE,
∴∠D=∠E=90°,
∴∠BCE+∠CBE=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∴∠ACD=∠CBE,
又CA=BC,∠D=∠E=90°
∴△CDA≌△BEC(AAS)
(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E
∵直线y=4
3
x+4与坐标轴交于点A、B,
∴A(﹣3,0),B(0,4),
∴OA=3,OB=4,
由(1)得△BOA≌△AED,
∴DE=OA=3,AE=OB=4,
∴OE=7,
∴D
(﹣7,3)
设l 2的解析式为y =kx +b ,
得3703k b k b =-+⎧⎨=-+⎩
解得3494k b ⎧=-⎪⎪⎨⎪=-⎪⎩
∴直线l 2的函数表达式为:3944
y x =-- (3)若点P 在x 轴正半轴,如图3,过点B 作BE ⊥OC ,
∵BE =2,∠BCO =30°,BE ⊥OC
∴BC =4,
∵将线段AP 绕点P
顺时针旋转30°得到BP ,
∴AP =BP ,∠APB =30°,
∵∠APC =∠AOC +∠OAP =∠APB +∠BPC ,
∴∠OAP =∠BPC ,且∠OAC =∠PCB =30°,AP =BP ,
∴△OAP ≌△CPB (AAS )
∴OP =BC =4,
∴点P (4,0)
若点P 在x 轴负半轴,如图4,过点B 作BE ⊥OC ,
∵BE =2,∠BCO =30°,BE ⊥OC
∴BC=4,
∵将线段AP绕点P顺时针旋转30°得到BP,
∴AP=BP,∠APB=30°,
∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,
∴∠APE=∠PBC,
∵∠AOE=∠BCO=30°,
∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB
∴△OAP≌△CPB(AAS)
∴OP=BC=4,
∴点P(﹣4,0)
综上所述:点P坐标为(4,0)或(﹣4,0)
【点睛】
本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.
四、压轴题
26.见解析
【解析】
【分析】
先根据平行线的性质,得到角的关系,然后证明OCD OFE
△≌△,写出证明过程和依据即可.
【详解】
解:过点E作//
EF AC交BC于F,
∴ACB EFB
∠=∠(两直线平行,同位角相等),
∴D OEF
∠=∠(两直线平行,内错角相等),
在OCD与OFE
△中
()
()
()
COD FOE
OD OE
D OEF
⎧∠=∠
⎪
=
⎨
⎪∠=∠
⎩
对顶角相等
已知
已证
,
∴OCD OFE
△≌△,(ASA)
∴CD FE
=(全等三角形对应边相等)
∵AB AC
=(已知)
∴ACB B =∠∠(等边对等角)
∴EFB B ∠=∠(等量代换)
∴BE FE =(等角对等边)
∴CD BE =;
【点睛】
本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.
27.(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.
【解析】
【分析】
(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;
(2)①由折叠的性质可得出答案;
②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.
【详解】
(1)∵AD ⊥直线l ,BE ⊥直线l ,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠ECB ,
在△ACD 和△CBE 中,
ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩
===,
∴△ACD ≌△CBE (AAS );
(2)①由题意得,AM=t ,FN=3t ,
则CM=8-t ,
由折叠的性质可知,CF=CB=6,
∴CN=6-3t ;
故答案为:8-t ;6-3t ;
②由折叠的性质可知,∠BCE=∠FCE ,
∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,
∴∠NCE=∠CMD ,
∴当CM=CN 时,△MDC 与△CEN 全等,
当点N 沿F→C 路径运动时,8-t=6-3t ,
解得,t=-1(不合题意),
当点N 沿C→B 路径运动时,CN=3t-6,
则8-t=3t-6,
解得,t=3.5,。