南丹县第二中学2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南丹县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )
A .7
B .6
C .5
D .4
2. “3<-b a ”是“圆05622
2
=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.
3. 已知集合{
}
{
2
|5,x |y ,A y y x B A B ==-+===( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.
4. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。

A3 B4 C5 D6
5. 若变量x ,y 满足:
,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t <﹣
B .﹣2<t ≤﹣
C .﹣2≤t ≤﹣
D .﹣2≤t <﹣
6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )
A .p q ∧
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .()p q ⌝∧ 7. 下列命题正确的是( )
A .已知实数,a b ,则“a b >”是“22
a b >”的必要不充分条件
B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有2
10x ->”
C .函数13
1()()2
x
f x x =-的零点在区间11(,)32

D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥
8. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( ) A .3 B .6
C .9
D .12
9. 复数i i
i
z (21+=
是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.
10.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于
π,则()f x 的一条对称轴是( )
A .12x π=-
B .12x π=
C .6x π=-
D .6
x π
=
11.下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
12.已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )
A .π
B .
C .
D .
二、填空题
13.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .
14.已知集合,若3∈M ,5∉M ,则实数a 的取值范围是 .
14.在复平面内,复数
与对应的点关于虚轴对称,且
,则
____.
15.已知函数()ln a f x x x =+
,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12
k ≤恒 成立,则实数的取值范围是 .
16.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.
17.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π
=,则函数()f x 的最大值为___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
三、解答题
18.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.
19.如图,在四棱锥P ﹣ABCD 中,平面PAB ⊥平面ABCD ,AB ∥CD ,AB ⊥AD ,CD=2AB ,E 为PA 的中点,M 在PD 上.
(I )求证:AD ⊥PB ;
(Ⅱ)若
,则当λ为何值时,平面BEM ⊥平面PAB ?
(Ⅲ)在(II )的条件下,求证:PC ∥平面BEM .
20.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且
)3(s i n
))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;
(Ⅱ) 若2a =,ABC ∆,求c b ,.
21.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
22.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点
(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式
(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数
y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.
23.
南丹县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】D
【解析】解:由题意,S k+2﹣S k =

即3×2k =48,2k
=16,
∴k=4. 故选:D .
【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.
2. 【答案】A 【解析

3. 【答案】D
【解析】
{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A
B ∴=,故选D.
4. 【答案】B
【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.因此集合M 共有4个元素,故选B 5. 【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由(t+1)x+(t+2)y+t=0得t (x+y+1)+x+2y=0,

,得
,即(t+1)x+(t+2)y+t=0过定点M (﹣2,1),
则由图象知A ,B 两点在直线两侧和在直线上即可, 即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0, 即(3t+4)(2t+4)≤0,
解得﹣2≤t ≤﹣,
即实数t 的取值范围为是[﹣2,﹣], 故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
6. 【答案】D 【




点:命题的真假. 7. 【答案】C 【解析】

点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.
【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 8. 【答案】A
【解析】解:复数z===.
由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,
解得a=3. 故选:A .
【点评】本题考查复数的代数形式的混合运算,考查计算能力.
9. 【答案】A
【解析】()12(i)
122(i)
i i z i i i +-+===--,所以虚部为-1,故选A. 10.【答案】D 【解析】
试题分析:由已知()2sin()6
f x x π
ω=+
,T π=,所以22π
ωπ=
=,则()2sin(2)6
f x x π
=+,令
2,62x k k Z ππ
π+
=+
∈,得,26
k x k Z ππ
=
+∈,可知D 正确.故选D .
考点:三角函数()sin()f x A x ωϕ=+的对称性. 11.【答案】B 【解析】

点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 12.【答案】D
【解析】解:由函数f (x )=sin 2
(ωx )﹣=﹣cos2ωx (ω>0)的周期为
=π,可得ω=1,
故f (x )=﹣cos2x .
若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;
再根据所得图象关于原点对称,可得2a=k π+
,a=
+
,k ∈Z .
则实数a 的最小值为.
故选:D
【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.
二、填空题
13.【答案】 6 .
【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2
, f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4,
令f ′(x )>0⇒x <或x >2,f ′(x )<0⇒<x <2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
14.【答案】-2
【解析】【知识点】复数乘除和乘方 【试题解析】由题知:
所以
故答案为:-2 15.【答案】2
1≥a 【解析】
试题分析:'
21()a f x x x =
-,因为(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率1
2
k ≤恒成立,2112a x x ∴-≤,(0,3]x ∈,x x a +-≥∴221
,(0,3]x ∈恒成立,由2111,222
x x a -+≤∴≥.1
考点:导数的几何意义;不等式恒成立问题.
【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件. 16.【答案】
【解析】
试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA⊥底面ABC,且ABC
∆为直角三角形,且
5,,6
AB VA h AC
===,所以三棱锥的体积为
11
56520
32
V h h
=⨯⨯⨯==,解得4
h=.
考点:几何体的三视图与体积.
17.【答案】1
【解析】
三、解答题
18.【答案】
【解析】解:根据题意画出图形,如图所示:
当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,
由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,
∵与y轴截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圆心C1(2,2),
在直角三角形ABC
中,根据勾股定理得:AC1=2,
1
则圆C1方程为:(x﹣2)2+(y﹣2)2=8;
当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,
由C2在直线y=x上,得到C2B=C2D,则四边形OB′C2D′为正方形,∵与y轴截取的弦OA′=4,∴OB′=C2D′,=OD′=C2B′=2,即圆心C2(﹣2,﹣2),
在直角三角形A′B′C
中,根据勾股定理得:A′C2=2,
2
则圆C1方程为:(x+2)2+(y+2)2=8,
∴圆C的方程为:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.
【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.
19.【答案】
【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,
∴AD⊥平面PAB.又PB⊂平面PAB,
∴AD⊥PB.
(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,
当M为PD的中点时,EM∥AD,
∴EM⊥平面PAB,∵EM⊂平面BEM,
∴平面BEM⊥平面PAB.
此时,.
(III)设CD的中点为F,连接BF,FM
由(II)可知,M为PD的中点.
∴FM∥PC.
∵AB∥FD,FD=AB,
∴ABFD为平行四边形.
∴AD∥BF,又∵EM∥AD,
∴EM∥BF.
∴B,E,M,F四点共面.
∴FM⊂平面BEM,又PC⊄平面BEM,
∴PC∥平面BEM.
【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.
20.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=
-+. 3分
由余弦定理得:2
3
2cos 222=
-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分
(Ⅱ) ABC ∆3sin 2
1
=∴A bc ,34=∴bc ①, 8分
又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分
由 ①②解得32,2==c b 或2,32==c b . 12分 21.【答案】
【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =cos t
y =1+sin t
(t 为参数)得
x 2+(y -1)2=1, 即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程, 由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程. (2)由题意得A ,B 的极坐标分别为 A (2sin α,α),B (-23cos α,α). ∴|AB |=|2sin α+23cos α| =4|sin (α+π
3)|,α∈[0,π),
由|AB |=2得|sin (α+π3)|=1
2,
∴α=π2或α=5π
6
.
当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6,
此时l 的方程为y =x ·tan 5π6
(x <0),
即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0), ∴C 2到l 的距离d =|3×(-3)|(3)2+32=3
2

∴△ABC 2的面积为S =1
2
|AB |·d
=12×2×32=32
. 即△ABC 2的面积为3
2.
22.【答案】
【解析】解:(1)因为点P ,Q 关于直线y=x ﹣1对称,所以

解得.又n=e m ﹣1
,所以x=1﹣e (y+1)﹣1,即y=ln (x ﹣1).
(2)ω(s ,t )=|s ﹣e x ﹣1
﹣1|+|t ﹣ln (t ﹣1)﹣1|
=

令u (s )
=.
则u (s ),v (t )分别表示函数y=e x ﹣1
,y=ln (t ﹣1)图象上点到直线
x ﹣y ﹣1=0的距离.
由(1)知,u min (s )=v min (t ).
而f ′(x )=e x ﹣1
,令f ′(s )=1得s=1,所以u min (s )=



【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义将问题转化为点到直线的距离,然后再利用函数的思想求解.体现了解析几何与函数思想的结合.
23.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】概率与统计.
【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20
根据平均数值公式求解即可.
(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,
求解数学期望即可.
【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1
解得a=0.03;
又由最高矩形中点的横坐标为20,
可估计盒子中小球重量的众数约为20,
而50个样本小球重量的平均值为:
=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)
故估计盒子中小球重量的平均值约为24.6克.
(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;
则X~B(3,),
X=0,1,2,3;
P(X=0)=×()3=;
P(X=1)=×()2×=;
P(X=2)=×()×()2=;
P(X=3)=×()3=,
∴X的分布列为:
即E(X)=0×=.
【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力。

相关文档
最新文档