2017九年级数学解一元二次方程公式法

合集下载

人教版初三数学公式法解一元二次方程

人教版初三数学公式法解一元二次方程
2
a 2, b 5, c 3
=49>0
注意符号
b 2 4ac 52 4 2 3
方程有两个不等的实数根 57 b b 2 4ac 5 49 x 2a 2 2 4
1 x1 , x 2 3 2
一 般 步 骤:
b b 2 4ac 即: x 2a
一元二次方程 a 0, b 4ac 0
2
ax2 bx c 0
的求根公式
b b 2 4ac 2a
x
a 0
用这种方法解一元二次方程的 方法叫做公式法.
三、用公式法解一元二次方程
例1、解方程
解:
2 x 5x 3 0
2 x b b 4ac a 4a 2 2
4a 2 0
b b 2 4ac 当b 4ac 0时, x 2a 4a 2
2
b b 2 4ac 即: x 2a 2a
b 2 4ac 2a
b b 2 4ac x 2a 2a
3、想一想:
ax 2 bx c 0 a 0 ,当 关于一元二次方程
a,b,c满足什么条件时,方程的两根互
为相反数?
一元二次方程 解:
x1 b
ax 2 bx c 0 a 0 的解为:
b 2 4ac b b 2 4ac , x2 2a 2a
二、公式的推导
ax 2 bx c 0
解: a 0
x2
a 0
b c x 0 a a
a
2
Байду номын сангаас
移项得: x 2 b x c

一元二次方程的解法

一元二次方程的解法

一元二次方程的解法一般解法1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0解:把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac<0时x无实数根(初中)2.当Δ=b^2-4ac=0时x有两个相同的实数根即x1=x23.当Δ=b^2-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。

如:解方程:x^2+2x+1=0解:利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

1、直接开平方法直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)^2;=n (n≥0)的方程,其解为x=±√n+m .例(3x+1)^2;=7 解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)例x^2-4x-12=0 (x-2)^2-4-12=0 (x-2)^2=16 x-2=±4 x=6或-2 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2;-4ac的值,当b^2;-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b^2;-4ac)]/(2a) , (b^2;-4ac≥0)就可得到方程的根。

《解一元二次方程—公式法》课件PPT

《解一元二次方程—公式法》课件PPT

方程没有实数解。
当堂检测—不做不讲
1.不解方程,判断下列一元二次 方程的根的情况(每小题5分)
(1)2x2-3x-1.5=0
(2)16x2-24x+9=0
(3)x2-4x+9=0 (4)3x2+10=2x2+8x
2.用公式法解下列方程:(1-4每小题10分 5,6每小题20分)。
(1)2x2-x-1=0
(3)4x-x2=x2+2
• 解:方程整理为:x2-2x+1=0 • a=1,b=-2,c=1 • ∵ ⊿=b2-4ac • =(-2)2-4 ×1 ×1 • =4-4=0 • ∴方程有两个相等的实数根。
利用判别式判断根的情况的 步骤
• 1、化成一般形式 ax2+bx+c=0(a≠0)
• 2、找准 a,b,c • 3、求出⊿=b2-4ac的值 • 4、判断根的情况
例2.用公式法解方程2x2+5x-3=0
解: a=2, b=5, c= -3,

∴ b2-4ac=52-4×2×(-3)=49>0 ②
∴x= 即
= x1= -3 , x2=

=

用公式法解一元二次方程的 一般步骤:
• 1、化成一般形式 ax2+bx+c=0(a≠0) • 2、找准 a,b,c • 3、求出⊿=b2-4ac的值 • 4、判断根的情况
人民教育出版社九年级数学上册
21.2 解一元二次方程 —公式法
学习目标:
1、理解一元二次方程求根公式的推导过 程
2 、会熟练应用公式法解一元二次方 程.
重点和难点
1重点:求根公式的推导和公式 法的应用.

九年级数学一元二次方程的解法

九年级数学一元二次方程的解法

【知识梳理】一元二次方程的解法1.配方法如果x 2+px +q =0且p 2-4q ≥0,则(x +2p )2=-q +(2p )2 解得x 1=-2p +)+(﹣2p q 2,x 2=-2p -)+(﹣2p q 2二次项系数不为1的,先在方程两边同除以二次项系数,把二次项系数化为1。

2.公式法 方程ax 2+bx +c =0(a ≠0)且b 2-4ac ≥0,则x =-b ±b 2-4ac2a3.因式分解法 一般步骤:(1)将方程的右边各项移到左边,使右边为0; (2)将方程左边分解为两个一次因式乘积的形式; (3)令每个因式为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解。

【典型例题】知识点一:一元二次方程的解法方法一:直接开平方法1、36的平方根是______,49的平方根是_________。

2、若24x =,则x =__________;若221x =,则x =_________。

3、解方程:(x +1)2﹣4=0。

点评:用直接开平方求解时,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数 4、求4x 2﹣25=0中x 的值。

点评:本题考查了解一元二次方程﹣直接开方法,法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”。

3、如果012=-+x x ,那么代数式7223-+x x 的值。

4、一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( ) A .12 B .9 C .13 D .12或9一.选择题1.方程(x ﹣2)2+4=0的解是( ) A .x 1=x 2=0 B .x 1=2,x 2=﹣2C .x 1=0,x 2=4D .没有实数根2.用配方法解方程2x 2﹣4x +1=0时,配方后所得的方程为( ) A .(x ﹣2)2=3 B .2(x ﹣2)2=3 C .2(x ﹣1)2=1 D .3.方程x (x ﹣5)=0的根是( )A .x =0B .x =5C .x 1=0,x 2=5D .x 1=0,x 2=﹣5 4.下列方程中,有实数解的是( ) A .x 2﹣x +1=0 B .=1﹣xC .=0D .=15.下列方程中,有两个相等的实数根的是( ) A .x 2﹣4x +4=0B .x 2﹣2x +5=0C .x 2﹣2x =0D .x 2﹣2x ﹣1=06.一元二次方程x 2﹣4x +6=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.已知关于x 的一元二次方程:(a ﹣1)x 2﹣ax +1=0有两个相等的实数根,则a 的值应为下列哪个值( ) A .2B .1C .2或1D .无法确定8.对于任意实数k 关于x 的方程x 2﹣2kx +k 2﹣1=0根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定1、方程x2+8x+9=0配方后,下列正确的是()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=72、一元二次方程x2﹣2x﹣1=0,其解的情况正确的是()A.有两个相等的实数解B.有两个不相等的实数解C.没有实数解D.不确定3、方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4、下列方程中有两个相等实数根的是()A.2x2+4x+35=0 B.x2+1=2x C.(x﹣1)2=﹣1 D.5x2+4x=15、一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或96、三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为()A.13 B.15 C.18 D.13或187、一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8、一元二次方程x2+x+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况9、方程(x﹣5)(x﹣6)=(x﹣5)的解是()A.x=5 B.x1=5,x2=6 C.x=7 D.x1=5,x2=710、一元二次方程﹣x2=3x的解是()A.3 B.﹣3 C.3,0 D.﹣3,011.方程(x﹣1)2=x﹣1的根是()A.x=0或x=1 B.x=1 C.x=2 D.x=1或x=212、解方程:(1)3x(x﹣1)=2x﹣2 (2)x2+3x+2=013、解方程:(1)3x2﹣7x=0 (2)(x﹣2)(2x﹣3)=2(x﹣2)14、用适当的方法解下列方程:(1)3x2+5x﹣2=0 (2)x(x﹣7)=8(7﹣x)15、已知实数x,y满足x2﹣10x++25=0,则(x+y)2015的值是多少?16、已知关于x的方程(m2﹣1)x2﹣3(3m﹣1)x+18=0有两个正整数根(m是正整数).△ABC的三边a、b、c满足,m2+a2m﹣8a=0,m2+b2m﹣8b=0。

九年级数学: 21.2.2解一元二次方程(公式法)教案

九年级数学: 21.2.2解一元二次方程(公式法)教案


必做:课本12页练习。
自主学习中的能力提升部分。
选做:自主学习中的拓展问题.
教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
三、【板书设计】
21.2.3解一元二次方程(公式法)教案
求根公式:
四、【教后反思】
教学
重点
推导求根公式的过程,理解根的判别式的作用.
教学
难点
熟练运用根的判别式解决根,字母系数的取值等相关问题.
二、【教学流程】
教学环节
教学问题设计
师生活动
二次备课




【问题1】
我们知道,任意一个一元二次方程都可以化为一般形式是:
ax2+bx+c=0(a≠0)
你能用配方法求得它的解吗?
通过问题,激发学生对旧知的回忆.即配方法的一般步骤.


1.通过本节课的学习你有什么收获?
2.你还有哪些疑惑?
学生独立思考,师生梳理本课的知识点及方法
1.求根公式的推导过程.
2.用公式法解一元二次方程的一般步骤:先确定a、b、c的值、再算出判别式的值、最后代入求根公式求解.
3.用判别式判定一元二次方程根的情况.及求相关字母的取值范围.
注意:字母系数。
21.2.2解一元二次方程(公式法)教案
一、【教材分析】


目标知识目标 Nhomakorabea1.会用公式法解一元二次方程,理解用根的判别式判别根的情况及求相关的字母的取值范围.
能力
目标
1.经历推导求根公式的过程,加强推理技技能训练,进一步发展逻辑思维能力.体验类比、转化、降次的数学思想方法.
情感
目标

九年级数学公式法解一元二次方程

九年级数学公式法解一元二次方程

结论:当 b2 4ac 0 时,一元二次方程有两个
相等的实数根.
例 用公式法解方程: x2 – x - =0
解:方程两边同乘以 3
得 2 x2 -3x-2=0
a=2,b= -3,c= -2.
∴b2-4ac=(-3) 2-4×2×(-2)=25.
∴x=
=
= 即 x1=2,
x2= -
例 用公式法解方程: x2 +3 = 2 x
心动 不如行动
小组合作
用配方法解一般形式的一元二次方程
ax2 bx c 0 (a≠0)
求根公式: x b b2 4ac 2a
温馨提示: (1)方程必需是一般形式 (2)b2-4ac≥0
学习是件很愉快的事
b b2 4ac x
2a
例 1 解方程: x2 7x 18 0
解:这里 a 1 b 7 c 18
求根公式 : X=
1、把方程化成一般形式, 并写出a,b,c的值。
2、求出b2-4ac的值。 3、代入求根公式 :
X=
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
独立
知识的升华
作业
祝你成功!
思考题:
1、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当 a,b,c 满足什么条件时,方程的两根为 互为相反数?
回顾与复习
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边;
系数化为1:将二次项系数化为1;
配方:方程两边都加上一次项系数一半的平方;
开方:根据平方根意义,方程两边开平方;
求解:解一元一次方程; 定解:写出原方程的解.
用直接开平方法和配方法解一元二次方程,计算 比较麻烦,能否研究出一种更好的方法,迅速求 得一元二次方程的实数根呢?

九年级数学 用公式法求解一元二次方程》(共21张PPT)

九年级数学 用公式法求解一元二次方程》(共21张PPT)

2、解下列方程: (1) x2-2x-8=0; (2) 9x2+6x=8; (3) (2x-1)(x-2) =-1;
1.x1 2; x2 4.
2.x1

2 3
;
x2


4 3
.
3.x1
1;
x2

3. 2
3、不解方程判断下列方程根的情况:
(1)2x2+5=7x
(2)4x(x-1)+3=0
次项系数绝对值一半的平方;
x
b
2
2a

b2 4ac 4a2 .
4.开方:根据平方根意 义,方程两边开平方
当b2 4ac 0时,
b
b2 4ac
x
.
2a
2a
x b b2 4ac . b2 4ac 0 . 2a
结论:
一般地,对于一元二次方程ax2+bx+c=0(a≠0), 当b2-4ac ≥0时,它的根是:ac<0时,原方程无解. 上面这个式子称为一元二次方程的求根公式, 用求根公式解一元二次方程的方法称为公式法.
【例1】解方程:x2-7x-18=0.
【解析】这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
x

7
121 21

7
11 2
,
即:x1=9, x2= -2.
【例2】解方程: 4x2 1 4x
【解析】化简为一般式得
4x2 4x 1 0
这里 a=4, b= -4 , c= 1.
∵b2 - 4ac=( )42 - 4×4×1=0,

人教版数学九年级上册《解一元二次方程》(公式法)

人教版数学九年级上册《解一元二次方程》(公式法)
公式法概念:
解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过 程而直接得出根,这种解一元二次方程的方法叫做公式法.
公式法解一元二次方程的步骤
①把方程化为一般形式,确定a、b、c的值(若系数是分数通常将其化为整数,方 便计算); ②求出b2-4ac的值,根据其值的情况确定一元二次方程是否有解; ③如果b2-4ac≥0, 将a、b、c的值代入求根公式:
x1 b
b2 2a
4ac
,
x2
b
b2 4ac ; 2a
探究
因为a≠0,4a2>0,式子b2-4ac的值不确定,需分情况讨论: (2)若b2﹣4ac=0
将①直接开平方,得
=0
此时,方程有两个相等的实数根
x1=x2=﹣
探究
因为a≠0,4a2>0,式子b2-4ac的值不确定,需分情况讨论: (3)若b2﹣4ac<0
探究
此时可以直接开平方吗?需要注意什么?
用配方法解一元二次方程: ax2+bx+c=0(a≠0) 解:移项,得
二次项系数化为1,得
配方,得
你还记得 配方法的步骤吗?
整理后,得
探究
因为a≠0,4a2>0,式子b2-4ac的值不确定,需分情况讨论: (1)若b2﹣4ac>0
将①直接开平方,得

方程有两个不相等的实数根
④最后求出x1,x2
公式法的应用
解:(1)a=1,b=-4,c=-7 Δ=b2-4ac=(-4)2-4×1×(-7)=44>0
方程有两个不等的实数根
注意a,b,c的符号
公式法的应用
方程有两个相等的实数根
注意a,b,等的实数根

一元二次方程的解法公式法

一元二次方程的解法公式法
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2 2
− b ± b − 4 ac − 1 ± 13 x= = 2a 2 − 1 + 13 − 1 − 13 ∴ x1 = , x2 = 2 2
2
辨 析
2、解方程:2 x + x − 2 = 0
2
2
当b − 4ac ≥ 0时,它有两个实数根:
+ bx + c = 0(a ≠ 0)
− b + b2 − 4ac − b − b2 − 4ac x1 = , x2 = 2a 2a
这就是一元二次方程 ax +bx+c = 0(a ≠ 0)
2
的求根公式.
在解一元二次方程时,只要把方程化为一般式
ax + bx + c = 0(a ≠ 0)
辨 析
小马虎在学完用公式法解一元二次方程 觉得非常简单,也非常高兴, 后,觉得非常简单,也非常高兴,很快就做好 了作业,可是他马虎的毛病到底改了没有呢? 了作业,可是他马虎的毛病到底改了没有呢? 1、解方程: x − x − 3 = 0
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2
b − 4ac = (−4) − 4 ×1× 4 = 0
2 2
− b ± b − 4ac 4 ± 0 x= = =2 2a 2 ∴x = 2
2
辨 析
2 4、解方程: x + x + 2 = 0
2
解:原方程中 a = 2, b = 1, c = 2 b − 4 ac = 1 − 4 × 2 × 2 = −15

九年级数学配方法解一元二次方程

九年级数学配方法解一元二次方程

这包比上次那包甜。”
? 阿嬷的俭约,有时近乎刻苦。每一回陪她买菜,我总要生闷气,她看我拿钱出手快,也不高兴。两个时代的价值观一旦面对面,就算亲若血缘也会争执不已,所有的家庭问题关键不就在这儿?阿嬷坚持买最便宜的菜,七口之家一日的菜钱只用七
十元,不能不算奇迹--半斤豆芽炒韭十元,一条苦瓜熬汤八元,一把菠菜清炒十元,两块豆腐红烧十元,一条吴郭鱼烧酱二十元,半斤鸡蛋煎菜辅菜十元。当我们各组逛完市场在候车亭相见,她见我手上提的是最贵的水果,加上一大捧鲜花时,庭训就要开始了:
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
? “莫
彩钱!哼(不屑的声调),买那个花干啥?看没三天就谢去,你拢免呷饭静静坐住看,就会饱啊?你买那把花的钱,我买一甲地的菠宁菜还有剩!” “看‘水’呀,瘄内插一盆花‘水’呀!” “‘水’去壁!人说‘猪仔牵去唐山还是猪’,你这已经讲不变了!”
?
阿嬷的老磨功,我是及不上的。她能够把市场的每一条曲巷壁缝都探摸得如视掌纹,找出卖价最便宜的摊贩,使自己永远不在钱字上吃闷亏,这些技巧很顶有心理学修养的,她说:
阿嬷还是每日梳一个紧紧的髻。 我问阿嬷:“你几岁的时头壳上有白头毛?” 她说:“谁会记住这,大概是嫁给你阿公以后,抑是你阿公死了后?做啥?” 我说:“我有白头毛了。” 尚未发生 ? 四月当然不是残酷的季节。孩童在草地上踢足球,球追孩子,孩子追球。

九年级数学上册教学课件《公式法》

九年级数学上册教学课件《公式法》
=24-4×(﹣1)×(-6)=0.
=16-4×1×(-2)=24>0.
该方程有两个相等的实数根.
该方程有两个不相等的实数根.
探究新知
(3)4x2+1=-3x;
21.2 解一元二次方程
(4)x²-2mx+4(m-1)=0.
解:移项,得4x2+3x+1=0, 解:a=1,b=-2m ,c=4(m-1),
2
2

由此可得
x
2
1
2.
2
x1
1

2
2, x2
1
2.
2
导入新知
21.2 解一元二次方程
用配方法解一元二次方程的步骤
化:把原方程化成 x2+px+q = 0 的形式.
移项:把常数项移到方程的右边,如x2+px =-q.
配方:方程两边都加上一次项系数一半的平方.
p 2
p 2
m为任意实数,试说明关于x的方程x2-(m-1)x-3
(m+3)=0恒有两个不相等的实数根.
b2 −4ac= − m−1 2 −4 −3 m+3
解:
=m2 +10m+37
=m2 +10m+52 −52 +37
= m+5 2 +12.
∵不论m取任何实数,总有(m+5)2≥0,
∴b2-4ac=(m+5)2+12≥12>0,
数学 九年级 上册
21.2 解一元二次方程
21.2.2 公式法
导入新知
21.2 解一元二次方程
7
x x 0.
4
利用配方法解一元二次方程

初三数学一元二次方程解法关于公式法

初三数学一元二次方程解法关于公式法

一元二次方程的解法2.2.2 公式法【知识与技术】1.经历推导求根公式的过程,增强推理技术的训练.2.会用公式法解简单系数的一元二次方程.【过程与方法】经过由配方法推导求根公式,培育学生推理能力和由特别到一般的数学思想.【感情态度】让学生体验到全部一元二次方程都能运用公式法去解,形成全面解决问题的踊跃感情,感觉公式的对称美、简短美,产生热爱数学的感情.【教课要点】求根公式的推导和公式法的应用.【教课难点】理解求根公式的推导过程.一、情形导入,初步认知1.用配方法解方程:(1)x2+3x+2=0;( 2) 2x2-3x+5=0.2.由用配方法解一元二次方程的基本步骤知:对于每个详细的一元二次方程,都使用了同样的一些计算步骤,这启迪我们思虑,能不可以对一般形式的一元二次方程 ax2+bx+c=0( a≠ 0)使用这些步骤,而后求出解x 的公式?【教课说明】这样做了此后,我们能够运用这个公式来求每一个详细的一元二次方程的解,获得一通百通的成效.二、思虑研究,获得新知1.用配方法解方程: ax2+bx+c=0( a≠ 0)剖析:前面详细数字已做了好多,我们此刻不如把a、b、c 也当作一个详细数字,依据上边的解题步骤就能够向来推下去.解:移项,得: ax2+bx=-c【概括结论】由上可知,一元二次方程 ax2+bx+c=0( a≠ 0)的根由方程的系数 a、b、c 而定,所以:(1)解一元二次方程时,能够先将方程化为一般形式 ax2+bx+c=0,当 b2-4ac≥ 0 时,将 a、 b、c 代入式子便可求出方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【重申】用公式法解一元二次方程时,一定注意两点:(1)将 a、b、c 的值代入公式时,必定要注意符号不可以犯错 .(2)式子 b2≥0是公式的一部分.-4ac【教课说明】让学生思虑对于一般形式的一元二次方程ax2≠能+bx+c=0(a 0)否用配方法求出它的解?经过解方程发现概括一元二次方程的求根公式.2.展现课本P36 例5(1),(2),按课本方式指引学生用公式法解一元二次方程,并提示学生在确立 a,b,c 的值时,先要将一元二次方程式化为一般形式,注意a,b,c 的符号 .3.指引学生达成 P37 例 6.4.你能总结出用公式法解一元二次方程的一般步骤吗?【概括结论】第一要把原方程化为一般形式,进而正确地确立 a,b,c 的值;其次要计算 b2-4ac 的值,当 b2-4ac≥ 0 时,再用求根公式求解 .三、运用新知,深入理解1.用公式法解以下方程.2x2 +3=7x剖析:用公式法解一元二次方程,需先确立a、b、c 的值、再算出b2-4ac的值、最后辈入求根公式求解.解: 2x2- 7x+3=0a=2,b=-7,c=3∵b2- 4ac=(- 7) 2- 4× 2× 3=25>02.某数学兴趣小组对对于x 的方程( m+1)xm2+1+(m-2)x-1=0 提出了以下问题.(1)若使方程为一元二次方程, m 能否存在?若存在,求出 m 并解此方程.(2)若使方程为一元一次方程m 能否存在?若存在,恳求出.你能解决这个问题吗?剖析:(1)要使它为一元二次方程,一定知足 m2 +1=2,同时还要知足(m+1)≠0.(2)要使它为一元一次方程,一定知足∶解:(1)存在.依据题意,得:m2+1=2m2=1m=± 1当m=1 时, m+1=1+1=2≠ 0当m=-1 时,m+1=-1+1=0(不合题意,舍去)∴当 m=1 时,方程为 2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×( -1)=1+8=92所以,该方程是一元二次方程时,m=1,两根 x1=1,x =-12.由于当 m=0 时,(m+1)+(m-2)=2m-1=-1≠ 0所以 m=0 知足题意.②当 m2+1=0,m 不存在.③当 m+1=0,即 m=-1 时, m-2=-3≠0所以 m=-1 也知足题意.当m=0 时,一元一次方程是 x-2x-1=0,解得: x=-1当m=-1 时,一元一次方程是 -3x-1=0解得 x=-1/3所以,当 m=0 或-1 时,该方程是一元一次方程,而且当 m=0 时,其根为 x=-1;当 m=-1 时,其一元一次方程的根为 x=-1/3.【教课说明】主体研究、研究利用公式法解一元二次方程的一般方法,进一步理解求根公式.四、师生互动、讲堂小结先小组内沟通收获和感想尔后以小组为单位派代表进行总结.教师作以增补 .部署作业:教材“习题”中第 4 题 .。

初三数学一元二次方程公式法

初三数学一元二次方程公式法

初三数学一元二次方程公式法【21.1一元二次方程】等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。

知识点二一元二次方程的一般形式一般形式:ax2+bx+c=0(a≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。

方程的解的定义是解方程过程中验根的依据。

21.2降次——解一元二次方程21.2.1配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。

一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a, x2= ?a.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。

(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。

(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。

知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。

配方法的一般步骤可以总结为:一移、二除、三配、四开。

(1)把常数项移到等号的右边;⑵方程两边都除以二次项系数;⑶方程两边都加上一次项系数一半的平方,把左边配成完全平方式;⑷若等号右边为非负数,直接开平方求出方程的解。

【21.2.2公式法】(1)一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。

解一元二次方程(公式法4种题型)-2023年新九年级数学核心知识点与常见题型(人教版)(解析版)

解一元二次方程(公式法4种题型)-2023年新九年级数学核心知识点与常见题型(人教版)(解析版)

解一元二次方程(公式法4种题型)【知识梳理】一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca −≥利用开平方法,得:2b x a += 即:x = ②当240b ac −<时,22404b aca −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根. 二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x 2x =20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠,当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.【考点剖析】题型1用公式法解一元二次方程例1.用公式法解下列方程: (1)2270x x −+=;(2)211042x x −=.【答案】(1)27,021==x x ;(2)2,021==x x .【解析】(1)0,7,2==−=c b a ,则4942=−ac b ,则477−±−=x ,∴27,021==x x ;(2)0,21,41=−==c b a ,则4142=ac b ,则212121±=x ,∴2,021==x x .【总结】本题主要考查一元二次方程求根公式x 的运用.例2.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x ==.【解析】(1)132a b c ===−,,,则1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴12x x ==.【总结】本题主要考查一元二次方程求根公式x 的运用.例3.用公式法解下列方程:(1)(24)58x x x −=−;(2)2(53)(1)(1)5x x x −+=++.【答案】(1)122222x x −+−==;(2)123322x x ==−,. 【解析】(1)方程可化为:05422=−+x x ,245a b c ===−,,,则5642=−ac b ,则41424±−=x ,∴122222x x −−==;(2)方程可化为:2490x −=,则123322x x ==−,.【总结】本题主要考查一元二次方程求根公式的运用,(2)也可以用直接开平方法求解. 例4.用公式法解下列方程:(1)20.2 2.5 1.30.1x x x +−=;(2)22(3)(31)(23)1552x x x x +−−+−=.【答案】(1)12x x ==;(2)12122x x ==−,. 【解析】(1)方程可化为2224130x x +−=,13,24,2−===c b a ,则68042=−ac b ,则4170224±−=x ,∴12x x =(2)两边同时乘以10,方程可化为02322=−−x x ,2,3,2−=−==c b a ,则2542=−ac b , 则453±=x ,∴12122x x ==−,.【总结】本题主要考查一元二次方程求根公式的运用,(2)也可以用因式分解法求解. 例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x =;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x =;(2)22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型2解系数中有字母的一元二次方程例6.用配方法解下列关于x 的方程:220ax x ++=(0a ≠).【解析】220ax x ++=(0a ≠),则22−=+x ax ,整理得:a x a x 212−=+,配方可得:22248141221a a a a a x −=+−=⎪⎭⎫ ⎝⎛+, 当81≤a 时,a a x 21811−−=,a a x 21812−−−=,当81>a 时,方程无实数根.【总结】注意配方时方程两边同加一次项系数一半的平方,另此题系数中含有字母,要注意分类讨论. 例7.用公式法解下列关于x 的方程:(1)20x bx c −−=;(2)2100.1ax a −−=. 【解析】(1)∵c b 42+=∆,∴当042≥+c b 时,2421c b b x ++=,2422c b b x +−=;当042<+c b 时,原方程无实数根;原方程可化为:22100x a −=,∵2222400a b a ∆=+≥,∴原方程的解为:12x +=,22x a=.【总结】本题主要考查利用公式法求解一元二次方程的根,注意分类讨论.题型3根的判别式例8.选择:(1) 下列关于的一元二次方程中,有两个不.相等的实数根的方程是( )(A )(B ) (C )(D )(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4)一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根; B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ; (2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例9.不解方程,判别下列方程的根的情况: (1)24530x x −−=;(2)22430x x ++=;x 012=+x 0122=++x x 0322=++x x0322=−+x x(3)223x +=; (4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根; (2)2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;(3)2a =,b =−,3c =,240b ac ∆=−=,方程有两相等实根; (4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.例10.关于x 的方程2(1)0x m x m +−−=(其中m 是实数)一定有实数根吗?为什么? 【答案】一定有.【解析】∵1a =,1b m =−,c m =−,∴()()()22241410b ac m m m ∆=−=−−⨯−=+≥恒成立,可知方程一定有实数根.【总结】考查一元二次方程根的判别式判定方程根的情况,对于含有字母系数的一元二次方程,只需要对最终的∆的值与0的大小关系,进而确定方程根的情况. 例11.已知关于x 的一元二次方程2(1)210m x mx −++=根的判别式的值为4,求m 的值. 【答案】0.【解析】∵1a m =−,2b m =,1c =,∴()()()2224241414b ac m m m m ∆=−=−⨯−=−+=,整理即得20m m −=,解得:11m =,20m =,同时方程是一元二次方程,知10a m =−≠,故1m ≠, 由此得0m =.【总结】考查一元二次方程根的判别式判定方程根的情况,对于含有字母系数的一元二次方程,尤其是二次项系数中含有字母的情况,一定要注意字母所隐含的取值范围,即二次项系数不能为0. 例12.已知方程组18ax y x by −=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,试判断关于x 的方程20x ax b ++=的根的情况.【答案】方程无实数根.【解析】方程组18ax y x by −=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,代入即得:231238a b −=⎧⎨+=⎩,可解得:22a b =⎧⎨=⎩,此时方程即为2220x x ++=,其中1a =,2b =,2c =,2480b ac ∆=−=−<,可知方程无实数根.【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,根据题目条件确定字母取值,再确定其∆值,判定方程解的情况.例13.当m 取何值时,关于x 的方程221(2)104x m x m +−+−=,(1)有两个不相等的实数根? (2)有两个相等的实数根?(3)没有实数根? 【答案】(1)2m <;(2)2m =;(3)2m >. 【解析】对此方程,1a =,2b m =−,2114c m =−,则()22214241484b ac m m m ⎛⎫∆=−=−−−=−+ ⎪⎝⎭,由此可知,(1)当480m ∆=−+>,即2m <时,方程有两个不相等的实数根; (2)当480m ∆=−+=,即2m =时,方程有两两个相等的实数根; (3)当480m ∆=−+<,即2m >时,方程无实数根.∆值,方程可由∆值判定其根的情况,同样地,可由方程根的情况确定其∆值与0的大小关系,可在此基础上进行分类讨论.例14.当k 为何值时,关于x 的方程224(21)0x kx k −+−=有实数根?并求出这时方程的根(用含k 的代数式表示).【答案】14k ≥时,方程有实数根;方程的根为2x k =± 【解析】对此方程,1a =,4b k =−,()221c k =−,则()()22244421164b ac k k k ∆=−=−−−=−,因为方程有实数根,则有1640k ∆=−≥,即14k ≥时,方程有实数根;根据一元二次方程求根公式,可知方程解为()4222k b x k a −−−===【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,先确定其∆值,方程可由∆值判定其根的情况,同样地,可由方程根的情况确定其∆值与0的大题型5根的判别式的应用例15.证明:方程()()212x x k −−=有两个不相等的实数根. 【解析】证明:对原方程进行整理,即为:22320x x k −+−= 其中1a =,3b =−,22c k =−,则()()22224342410b ac k k ∆=−=−−−=+>恒成立, 由此可证得方程有两个不相等的实数根.【总结】将方程整理成一元二次方程的一般形式,方程的根的情况,只需要根据方程的∆值即可以确定下来.例16.当k 为何值时,方程()()222210kx k x x k k −−=−−≠,(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根. 【答案】(1)54k <且1k ≠;(2)54k =;(3)54k >. 【解析】将方程整理成关于x 的一元二次方程的一般形式,即得:()()()212210k x k x k −−−++=,此时,1a k =−,()22b k =−−,1c k =+,由方程为一元二次方程,可知10a k =−≠,故1k ≠;()()()224424111620b ac k k k k ∆=−=−−−+=−+,由此可知,(1)当16200k ∆=−+>,即54k <且1k ≠时,方程有两不等实根; (2)当16200k ∆=−+=,即54k =时,方程有两相等实根;(3)当16200k ∆=−+<,即54k >时,方程无实根.【总结】考查一元二次方程根的判别式判定方程根的情况,首先将方程整理成一元二次方程的一般形式,然后确定二次项系数不能为0的情况,然后确定其∆值,可由方程根的情况确定其∆值与0的大小关系,可在此基础上进行分类讨论.例17.已知关于x 的一元二次方程()21230m x mx m +++−=有实数根,求m 的取值范围. 【答案】32m ≥−且1m ≠−.【解析】由原方程是一元二次方程,可知10m +≠,即1m ≠−;对此方程, 其中1a m =+,2b m =,3c m =−,方程有实根,则必有:()()()22424138120b ac m m m m ∆=−=−+−=+≥,可解得32m ≥−;即m 的取值范围为32m ≥−且1m ≠−.【总结】对于形如20ax bx c ++=的方程,首先要根据题意确定相关隐含条件,既要保证一元二次方程的二次项系数不能为0,然后在此基础上进行解题和计算.例18.如果m 是实数,且不等式(1)1m x m +>+的解集是1x <,那么关于x 的一元二次方程21(1)04mx m x m −++=的根的情况如何?【答案】方程无实根.【解析】由(1)1m x m +>+的解集是1x <,可知10m +<,即1m <−,对一元二次方程21(1)04mx m x m −++=而言,其中a m =,()1b m =−+,14c m =,则()221414214b ac m m m m ∆=−=+−⋅=+,1m <−时,0∆<恒成立, 由此可知方程无实数根.【总结】探求含有字母的一元二次方程根的情况,需要根据题目条件确定相关字母取值范围,再根据其∆值确定相关方程根的情况.例19.已知关于x 的方程()21230m x mx m +++−=总有实数根,求m 的取值范围. 【答案】32m ≥−. 【解析】(1)当10m +=,即1m =−时,方程为一元一次方程240x −−=,方程有实根; (2)当10m +≠,即1m ≠−时,方程为一元二次方程, 其中1a m =+,2b m =,3c m =−,方程有实根,则必有:()()()22424138120b ac m m m m ∆=−=−+−=+≥,可解得32m ≥−且1m ≠−;综上所述,m 的取值范围为32m ≥−.【总结】对于形如20ax bx c ++=的方程,首先要根据题意确定二次项系数能否为0,在此基础上进行相关分类讨论和计算.【过关检测】一、单选题【答案】B【分析】根据关于x 的一元二次方程20x x k −−=有实数根得到140k ∆=+≥,解不等式即可得到答案.【详解】解:∵关于x 的一元二次方程20x x k −−=有实数根,∴()()2141140k k ∆=−−⨯⨯−=+≥,解得14k ≥−,故选:B【点睛】此题考查了一元二次方程根的判别式,熟练掌握一元二次方程0∆≥时有实数根是解题的关键. 2.(2023春·广东潮州·九年级潮州市金山实验学校校考期末)如果关于x 的一元二次方程2(5)410a x x −−−=有两个不相等的实数根,则a 满足条件是( )A .5a ≠B .1a >且5a ≠C .1a ≥且5a ≠D .1a ≥【答案】B【分析】由二次项系数非零及根的判别式0∆>,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围.【详解】解:∵关于x 的一元二次方程2(5)410a x x −−−=有两个不相等的实数根,∴()()()25044510a a −≠⎧⎪⎨−−⨯−⨯−>⎪⎩,解得:1a >且5a ≠, 故选B .【点睛】本题考查了一元二次方程的定义以及根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.3.(2023·浙江温州·统考三模)若关于x 的一元二次方程2160x bx ++=,有两个相等的实数根,则正数b 的值是( ) A .8B .8−C .4D .4−【答案】A【分析】根据一元二次方程有两个相等的实数根,运用根的判别式进行解答即可.【详解】解:∵关于x 的一元二次方程2160x bx ++=,有两个相等的实数根,∴22441160b ac b ∆=−=−⨯⨯=,∴264b =,∴8b =±, ∵b 是正数, ∴8b =, 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟知关于x 的一元二次方程20(0)ax bx c a ++=≠,若240b ac ∆=−>,则原方程有两个不相等的实数根;若240b ac ∆=−=,则原方程有两个相等的实数根;若240b ac ∆=−<,则原方程没有实数根.【答案】C【分析】分别代入数值解方程,逐一判断即可解题.【详解】解:当12a =时,方程为28120x x −−=,解得4x =±A 选项不符合题意;当16a =时,方程为28160x x −−=,解得4x =±B 选项不符合题意;当20a =时,方程为28200x x −−=,解得10x =或2x =−是整数,故C 选项符合题意;当24a =时,方程为28240x x −−=,解得4x =±D 选项不符合题意;故选:C【点睛】本题考查一元二次方程的解法,掌握公式法解一元二次方程是解题的关键.5.(2023·安徽安庆·校考三模)如果关于x 的一元二次方程260x x a −+=无实数根,那么a 的值可以为( )A .10B .9C .8D .7【答案】A【分析】由一元二次方程根与系数的关键可得:Δ0<, 从而列不等式可得答案.【详解】解:∵一元二次方程260x x a −+=无实数根,∴()2246410b ac a ∆−−−⨯⨯==<,解得:>9a ,只有选项A 符合题意,故选:A .【点睛】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键. 6.(2023·河南商丘·统考三模)方程229x x −=的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有一个实数根 D .有两个不相等的实数根 【答案】D【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵229x x −=,即2290x x −−=,1,2,9a b c ==−=−,∴24436400b ac ∆=−=+=>,∴方程229x x −=有两个不相等的实数根,故选:D .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.7.(2022秋·江苏镇江·九年级校考阶段练习)已知关于x 的一元二次方程210x bx +−=的较大的一根小于1,则实数b 的取值范围是( ) A .一切实数 B .2b >C .1b >D .0b >【答案】D【分析】用公式法求出方程的解,根据题意得出关于b 的不等式,解不等式可得答案.【详解】解:解方程210x bx +−=得:x =,∵一元二次方程210x bx +−=的较大的一根小于1,∴1<,2b +,两边平方得:2244b b b +<+4+,∴0b >, 故选:D .【点睛】本题考查了公式法解一元二次方程,能够根据题意得出关于b 的不等式是解题的关键. 8.(2022·浙江·九年级自主招生)满足方程22419151x xy y −+=的整数对(),x y 有( ) A .0对 B .2对 C .4对 D .6对【答案】C【分析】利用一元二次方程有解判断出y 的范围,根据y 是整数求出y 的值,进而求出x 的值,利用x 也是整数判断即可得出结论. 【详解】解:原方程可化为()224191510x yx y −+−=,∵方程22419151x xy y −+=有实数根,∴()222164191516041510y y y ∆=−−=−+⨯≥,∴21511101515y ≤=,∵y 是整数,∴=3y −,2−,1−,0,1,2,3,当0y =时,原方程可化为2151x =,∴x =x 为整数,所以舍去),当1y =时,原方程可化为241320x x −−=,∴2x =±(由于x 为整数,所以舍去),当1y =−时,原方程可化为241320x x +−=,∴2x =−±x 为整数,所以舍去),当2y =时,原方程可化为28750x x −−=,∴4x =x 为整数,所以舍去),当=2y −时,原方程可化为28750x x +−=,∴4x =−x 为整数,所以舍去),当3y =时,原方程可化为212200x x −+=,∴2x =或10x =,当=3y −时,原方程可化为212200x x ++=,∴2x =−或10x =−,∴原方程的整数解为:23x y =⎧⎨=⎩或103x y =⎧⎨=⎩或23x y =−⎧⎨=−⎩或103x y =−⎧⎨=−⎩,即:方程22419151x xy y −+=的整数对(),x y 为()2,3、()10,3、()2,3−−,()10,3−−共四对,故选:C .【点睛】此题是非一次不定方程,主要考查了一元二次方程的有整数根问题.解题的关键是将原方程变形,利用判别式求解.二、填空题9.(2023·上海杨浦·统考三模)如果关于x 的方程220x x m −+=有两个相等的实数根,那么m 的值是________. 【答案】1【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程220x x m −+=有两个相等的实数根,∴()2240m ∆=−−=,解得1m = 故答案为:1.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·浙江嘉兴·统考二模)在()240x −+=的括号中添加一个关于x 的一次项,使方程有两个相等的实数根,这个一次项可以是______. 【答案】4x ±【分析】设方程为240x kx −+=,根据方程有两个相等的实数根可知0∆=,据此列式求解即可.【详解】设方程为240x kx −+=,由题意得2160k −=,∴4k =±, ∴一次项为4x ±. 故答案为4x ±.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式与根的关系式解答本题的关键.11.(2023·江苏苏州·苏州市第十六中学校考二模)关于x 的一元二次方程()21210m x x −−−=有两个实数根,则实数m 的取值范围是________. 【答案】0m ≥且1m ≠【分析】根据一元二次方程根的判别式0∆≥以及一元二次方程的定义得出10m −≠,即可求解. 【详解】解:依题意()244410b ac m ∆=−=+−≥,且10m −≠,解得:0m ≥且1m ≠, 故答案为:0m ≥且1m ≠.【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式的意义,熟练掌握一元二次方程根的判别式的定义是解题的关键.12.(2023·山东东营·校考二模)如果关于x 的一元二次方程234x x m ++=有两个不相等的实数根,那么m 的取值范围是________. 【答案】254m <【分析】先把这个一元二次方程变成一般式,再根据一元二次方程根的判别式计算即可.【详解】234x x m ++=,∴2340x x m ++−=.关于x 的一元二次方程234x x m ++=有两个不相等的实数根,∴()2243440b ac m ∆=−=−−>∴4250m −+> ∴254m <.故答案为:254m <.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握根的判别式性质,准确计算是解本题的关键.13.(2023·四川巴中·校考二模)已知关于x 的一元二次方程()222210x m x m +++−=.两实数根分别为12x x 、,且满足221258x x +=,则实数m 的值为_____________.【答案】2【分析】先由一元二次方程根的判别式得到关于m 的不等式,解不等式即可得到m 的取值范围,再根据根与系数的关系可得:()1222x x m +=−+,2121x x m =−,代入()2221212122x x x x x x +=+−得到关于m 的一元二次方程,解方程并根据(1)中的m 的取值范围即可得到答案.【详解】解:∵关于x 的一元二次方程()222210x m x m +++−=有实数根, ∴()()22242241b ac m m ⎡⎤∆=−=+−−⎣⎦16200m =+≥,解得:54m ≥−,即m 的取值范围是54m ≥−;∵由根与系数的关系可得:()21212221x x m x x m +=−+=−,,∴()2221212122x x x x x x +=+−()()222221m m ⎡⎤=−+−−⎣⎦221618m m =++,∵221258x x +=,∴22161858m m ++=,即28200m m +−=,∴()()2100m m −+=,解得110m =−或22m =,∵54m ≥−,∴2m =, 故答案为:2.【点睛】此题考查一元二次方程根的判别式和根与系数关系,准确计算是解题的关键.三、解答题【答案】1x =,2x =【分析】用公式法解此方程即可.250x −+=a ==5b −,c =()224=540b ac −−−>x此方程的解为:1x =,2x =【点睛】此题考查的是用公式法解一元二次方程,解题的关键是掌握公式法解方程的步骤. 15.(2022秋·青海西宁·九年级校考期中)解方程:27180x x −−=(公式法) 【答案】129,2x x ==−【分析】利用公式法解答,即可求解.【详解】解:27180x x −−=,∵1,7,18a b c ==−=−, ∴()()2741181210∆=−−⨯⨯−=>,∴7711212x ±==⨯,∴129,2x x ==−.【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,是解题的关键.16.(2023春·北京西城·九年级北师大实验中学校考阶段练习)已知关于x 的一元二次方程2(4)(21)0m x m x m ---+=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足要求的最小正整数时,求方程的解. 【答案】(1)112m >−且4m ≠(2)1x ,2x【分析】(1)根据方程有两个不相等的实数根,则根的判别式()()22421440b ac m m m ∆=−=−−−−>⎡⎤⎣⎦,且40m −≠,求出m(2)得到m 的最小整数,利用公式法解一元二次方程即可.【详解】(1)一元二次方程2(4)(21)0m x m x m ---+=有两个不相等的实数根,∴()()22421440b ac m m m ∆=−=−−−−=>⎡⎤⎣⎦,且40m −≠,即224414160m m m m +−−+>,且40m −≠,解得:112m >−且4m ≠;(2)m 满足条件的最小正整数是1m =,此时方程为2310x x −−+=,x ==解得:1x ,2x =【点睛】本题考查了一元二次方程根的判别式,公式法解一元二次方程,熟练掌握一元二次方程()200ax bx c a ++=≠的根与判别式24b ac ∆=−的关系是解答本题的关键.17.(2023·北京西城·校考模拟预测)关于x 的一元二次方程()2320x m x m −+++=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值. 【答案】(1)见解析 (2)1−【分析】(1)先求出一元二次方程根的判别式为()21m ∆=+,即可证明结论;(2)根据题意得到1212x x m ==+,是原方程的根,根据方程两个根均为正整数,可求m 的最小值. 【详解】(1)证明:由()2320x m x m −+++=得,()()()222342211m m m m m ∆=−+−+=++=+⎡⎤⎣⎦,∵()210m +≥,∴方程总有两个实数根; (2)∵()2320x m x m −+++=,∴()()120x x m −−+=⎡⎤⎣⎦,∴1212x x m ==+,,∵方程的两个实数根都是正整数, ∴21m +≥. ∴1m ≥−.∴m 的最小值为1−.【点睛】本题考查的是根的判别式及解一元二次方程,在解答(2)时得到方程的两个根是解题的关键. 18.(2018秋·广东清远·九年级统考期末)不解方程,判断方程22410x x −−=的根的情况. 【答案】有两个不相等的实数根【分析】先求一元二次方程的判别式,由∆与0的大小关系来判断方程根的情况. 【详解】解:∵2a =,4b =−,1c =− ∴()()2244421240b ac ∆=−=−−⨯⨯−=>∴原方程有两个不相等的实数根.【点睛】此题考查一元二次方程根的情况与判别式∆的关系:(1)0∆>,方程有两个不相等的实数根;(2)Δ0=方程有两个相等的实数根;(3)Δ0<方程没有实数根.19.(2023春·河南三门峡·九年级统考阶段练习)已知关于x 的方程2210x x a +−+=没有实数根,试判断关于y 的方程21y ay a ++=实数根的情况,并说明理由. 【答案】一定有两个不相等的实数根.理由见解析.【分析】根据关于x 的方程2210x x a +−+=没有实数根,求出a 的求值范围;再表示关于y 的方程21y ay a ++=,()()222412a a a ∆=−−=−,即可判断该方程根的情况.【详解】解:∵方程2210x x a +−+=没有实数根,()144140a a ∴∆=−−+=<,<0a ∴,对于关于y 的方程21y ay a ++=,()()222412a a a ∆=−−=−,0a <,()220a ∴−>,即20∆>,∴方程21y ay a ++=一定有两个不相等的实数根.【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式与根的情况之间的关系是解题关键.20.(2022秋·四川遂宁·九年级校考期中)对于任意一个三位数k ,如果k 满足各个数位上的数字都不为零,且十位上的数字的平方等于百位上的数字与个位上的数字之积的4倍,那么称这个数为“喜鹊数”.例如:k =169,因为62=4×1×9,所以169是“喜鹊数”.(1)已知一个“喜鹊数”k =100a +10b +c (1≤a 、b 、c ≤9,其中a ,b ,c 为正整数),请直接写出a ,b ,c 所满足的关系式 ;判断241 “喜鹊数”(填“是”或“不是”),并写出一个“喜鹊数” ;(2)利用(1)中“喜鹊数”k 中的a ,b ,c 构造两个一元二次方程ax 2+bx +c =0①与cx 2+bx +a =0②,若x =m是方程①的一个根,x=n是方程②的一个根,求m与n满足的关系式;(3)在(2)中条件下,且m+n=﹣2,请直接写出满足条件的所有k的值.【答案】(1)b2﹣4ac=0;不是;121(2)mn=1(3)121,242,363,484【分析】(1)根据喜鹊数的定义解答即可;(2)根据一元二次方程的定义和根的判别式解答即可;(3)求出m与n互为倒数,又m+n=﹣2,得出m=﹣1,n=﹣1,求出b=a+c,a=c,结合喜鹊数的定义即可得出答案.【详解】(1)∵k=100a+10b+c是喜鹊数,∴b2=4ac,即b2﹣4ac=0;∵42=16,4×2×1=8,16≠8,∴241不是喜鹊数;∵各个数位上的数字都不为零,百位上的数字与个位上的数字之积的4倍,∴十位上的数字的平方最小为4,∵22=4,4×1×1=4,∴最小的“喜鹊数”是121.故答案为:b2﹣4ac=0;不是;121.(2)∵x=m是一元二次方程ax2+bx+c=0的一个根,x=n是一元二次方程cx2+bx+a=0的一个根,∴am2+bm+c=0,cn2+bn+a=0,将cn2+bn+a=0两边同除以n2得:a(1n)2+b(1n)+c=0,∴将m、1n看成是方程ax2+bx+c的两个根,∵b2﹣4ac=0,∴方程ax2+bx+c有两个相等的实数根,∴m=1n,即mn=1;故答案为:mn=1.(3)∵m+n=﹣2,mn=1,∴m =﹣1,n =﹣1,∴a ﹣b+c =0,∴b =a+c ,∵b2=4ac ,∴(a+c )2=4ac ,解得:a =c ,∴满足条件的所有k 的值为121,242,363,484.故答案为:121,242,363,484.【点睛】此题考查了一元二次方程的应用,解题关键是弄清喜鹊数的定义.【答案】(1)m=0或m=1(2)m=0或m=1【分析】(1)把x=2代入方程22(23)320x m x m m −++++=得到关于m 的一元二次方程,然后解关于m 的方程即可;(2)先计算出判别式,再利用求根公式得到12x m =+,21x m =+,则AC=m+2,AB=m+1.因为△ABC 是直角三角形,所以当BC 或AC 为斜边时根据勾股定理分别解关于m 的一元二次方程即可.【详解】(1)解:∵x=2是方程的一个根,∴242(23)320m m m −++++=,∴m=0或m=1;(2)解:∵△=22[(23)]4(32)1m m m −+−++=, ∴x=2312m +±∴12x m =+,21x m =+,∴AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2>0,AB=m+1>0.∴m>-1.∵△ABC 是直角三角形,∴当BC 为斜边时,有222(2)(1)m m +++=,解这个方程,得13m =−(不符合题意,舍去),20m =;当AC 为斜边时,有222(1)(2)m m ++=+,解这个方程,得1m =.综上所述,当m=0或m=1时,△ABC 是直角三角形.【点睛】此题考查了解一元二次方程和直角三角形的判定,解题的关键是掌握公式法解一元二次方程,熟练运用勾股定理进行分类讨论.【答案】(1)241不是“快乐数”;最大的“快乐数”为999(2)333【分析】(1)根据“快乐数”的定义解答即可;(2)根据“快乐数”可得出2a cb +=,根据一元二次方程根的情况可得2b ac =,再结合710a b c ≤++≤及1a ≤、b 、9c ≤,a 、b 、c 为自然数可得出a 、b 、c 的值,最后结合“快乐数”的定义即可得出答案.【详解】(1)解:∵2142+≠,∴241不是“快乐数”,∵各个数位上的数字都不为零,且十位上的数字等于百位上的数字与个位上的数字的平均数,各个数位上的数字最大为9,又∵9992+=,∴最大的“快乐数”为999.(2)∵10010k a b c =++为“快乐数”, ∴2a cb +=,∵关于x 的一元二次方程220ax bx c ++=有两个相等的实数根,∴()2240b ac −=,即2b ac =, ∴2271019a c b b ac a b c a b c +⎧=⎪⎪⎪=⎨⎪≤++≤⎪≤≤⎪⎩、、,解得:3a =,3b =,3c =,∴1001010031033333k a b c =++=⨯+⨯+=,综上所述,满足条件的所有k 的值为333.∴满足条件的所有k 的值为333.“快乐数”的定义. )已知在ABC 中,问题探究:(2)如图,将正方形CDEF问题拓展:(3)将正方形CDEF 绕点C 旋转一周,当=45ADC ∠︒时,若3AC =,1CD =,请直接写出线段AH 的长.【答案】(1)BF AD =,BF AD ⊥,理由见解析;(2)见解析;(3)2或【分析】(1)根据正方形的性质和全等三角形的判定证明()SAS BCF ACD ≌△△,得出BF AD =,FBC DAC ∠=∠,再利用角的代换得到90AHF ∠=︒,即可得到结论;(2)先证明()SAS BCF ACD ≌△△,得出CBK CAH ∠=∠,进而证明()SAS BCK ACH ≌△△,得到CK CH =,BCK ACH ∠=∠,进一步即可证明KCH 是等腰直角三角形,于是可得HK =,然后利用线段间的代换即可证得结论;(3)分两种情况:①当A ,()H F ,D 三点共线时,=45ADC ∠︒;②当B ,()D H ,F 三点共线时,=45ADC ∠︒;设AH x =,在Rt ABH △中根据勾股定理列出关于x 的方程,解方程即可求出结果.【详解】解:(1)BF AD =,BF AD ⊥;理由如下:∵四边形CDEF 是正方形,∴CF CD =,90FCD ∠=︒,在BCF △和ACD 中,,90,,BC AC BCF ACD CF CD =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS BCF ACD ≌△△, ∴BF AD =,FBC DAC ∠=∠,∵90BFC FBC ∠+∠=︒,BFC AFH ∠=∠,∴90AFH DAC ∠+∠=︒,∴90AHF ∠=︒,∴BF AD ⊥;(2)证明:如图,在线段BF 上截取BK AH =,连接CK ,∵四边形CDEF 是正方形,∴CF CD =,90FCD ACB ∠=︒=∠,∴ACD BCF ∠=∠,∴()SAS BCF ACD ≌△△,∴CBK CAH ∠=∠,在BCK 和ACH 中,,,,BC AC CBK CAH BK AH =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCK ACH ≌△△, ∴CK CH =,BCK ACH ∠=∠,∴90KCH BCA ∠=∠=︒,∴KCH 是等腰直角三角形,∴HK ,∴BH AH BH BK KH −=−=;(3)分两种情况:①如图,当A ,()H F ,D 三点共线时,=45ADC ∠︒;同理可证明:BH AD =,BH AD ⊥,且1CD CF ==,FD =∵3BC =,∴AB =设AH x =,则BH AD x ==在Rt BAH 中,∵222BH AH AB +=,∴((222x x +=,解得x =或x =(舍去);②如图,当B ,()D H ,F 三点共线时,=45ADC ∠︒,设AH x =,∵BF AH =,∴BH AH HF x =−=在Rt ABH △中,∵222BH AH AB +=,∴((222x x +=,解得x =或x =(舍去);综上所述,线段AH 的长为2或.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理以及一元二次方程的求解等知识,属于常考题型,正确添加辅助线、证明三角形全等是解题的关键.。

初三数学一元二次方程的解法知识精讲

初三数学一元二次方程的解法知识精讲

初三数学一元二次方程的解法知识精讲一元二次方程的解法一元二次方程是中学代数的重要内容。

同学们可以在中学的学习过程中逐步体会到相当的数学问题转化为方程后是二次方程。

并且最后归结为一元二次方程解决问题,而且一元二次方程是进一步学习其他方程、不等式、函数等的基础。

本讲主要介绍一元二次方程的基本解法。

方程ax bx c a 200++=≠()称为一元二次方程。

一元二次方程的基本解法有直接开平方法、配方法、公式法和因式分解法。

直接开平方法:对于形如a x m n a ()()+=≠20的方程,可利用平方根的定义,直接开平方。

()x m n a+=2 如果n a≥0,则x m n a x m n a +=±∴=-±, 如果n a<0,则方程无解。

对一般的一元二次方程,若想应用直接开平方法,需首先配方。

配方法:用配方法解一般形式的一元二次方程。

ax bx c a 200++=≠()首先,把方程的两边都除以二次项的系数a ,使二次项系数化为1,得x b a x c a20++= 其次移项,把常数项移到方程另一边x b a x c a2+=- 然后配方,在方程的两边同时加上一次项系数b a ⎛⎝ ⎫⎭⎪的一半的平方,得 x b a x b a c a b a 22222++⎛⎝ ⎫⎭⎪=-+⎛⎝ ⎫⎭⎪ ∴+⎛⎝ ⎫⎭⎪=-x b a b ac a 244222 最后,当b ac 240-≥时,开平方,得x b a b ac a +=±-24422x b a b ac a x b b ac ab ac =-±-=-±--≥2424240222() 公式法:利用求根公式x b b ac ab ac =-±--≥224240()解一元二次方程的方法叫做公式法。

使用公式法,在确定a 、b 、c 的值时,一定要先将方程化为一般形式,并注意符号,另外只有在b ac 240-≥时方可使用公式。

人教版九年级数学《解一元二次方程之公式法》精品教学课件

人教版九年级数学《解一元二次方程之公式法》精品教学课件

因为 (a 0),所以 4a2>0 ,式子b2 4ac的值有几种情况?
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
一起探究
(x
b )2 2a
b2 4ac 4a2
因为 (a 0),所以 4a2>0 ,式子b2 4ac的值有几种情况?

b2 4ac 0
b2 4ac 0
4a2
方程有两个相等实数解
b x1 x2 2a
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
一起探究
(x
b )2 2a
b2 4ac 4a2
因为 (a 0),所以 4a2>0 ,式子b2 4ac的值有几种情况?

b2 4ac 0
b2 4ac 0 4a2
方程无实数解
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
配套人教版
21.2 解一元二次方程
2.2公式法
学习目标
(1)理解一元二次方程求根公式的推导过程; (2)会利用求根公式解简单系数的一元二次方程; (3)经历探索求根公式的过程,培养学生的逻辑推理和数学运算的核心素养, 并养成良好的运算习惯; (4)通过运用公式法解简单系数的一元二次方程,提高学生运算能力,并能 在学习活动中获得成功的体验,建立学好数学的自信心.
b2 4ac (2 2)2 4 2 1 0.
方程有两个相等的实数根:
b 2 2 2
x1
x2
2a
22
2
.
新课导入 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
用公式法解下列方程:
(1) x2 4x 7 0 (3) 5x2 3x x+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.2解一元二次方程(公式法)
教学内容
1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、复习引入
(学生活动)用配方法解下列方程
(1)6x2-7x+1=0 (2)4x2-3x=52
(老师点评)(1)移项,得:6x2-7x=-1
二次项系数化为1,得:x2-7
6
x=-
1
6
配方,得:x2-7
6
x+(
7
12
)2=-
1
6
+(
7
12
)2
(x-
7
12
)2=
25
144
x-
7
12

5
12
x1=
5
12
+
7
12
=
75
12
+
=1
x2=-
5
12
+
7
12
=
75
12
-
=
1
6
(2)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.
二、探索新知
如果这个一元二次方程是一般形式ax 2
+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax 2+bx+c=0(a ≠0)且b 2
-4ac ≥0,试推导它的两个根x 1=2b a -+,
x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax 2+bx=-c
二次项系数化为1,得x 2+b a x=-c a
配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a
)2=2244b ac a - ∵b 2-4ac ≥0且4a 2
>0 ∴2244b ac a
-≥0
直接开平方,得:x+2b a
=±2a

∴x 1x 2 由上可知,一元二次方程ax 2
+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,
•将a 、b 、c 代入式子 (2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x 2-4x-1=0 (2)5x+2=3x
2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 解:(1)a=2,b=-4,c=-1
b 2-4ac=(-4)2-4×2×(-1)=24>0
x=(4)422242
--±±±==⨯
∴x 1x 2 (2)将方程化为一般形式
3x 2-5x-2=0
a=3,b=-5,c=-2
b 2-4ac=(-5)2-4×3×(-2)=49>0
x=(5)57236
--±±=⨯ x 1=2,x 2=-13
(3)将方程化为一般形式
3x 2-11x+9=0
a=3,b=-11,c=9
b 2-4ac=(-11)2-4×3×9=13>0
∴x=(11)11236
--±=⨯
∴x 1=
116+x 2=116- (3)a=4,b=-3,c=1
b 2-4ac=(-3)2-4×4×1=-7<0
因为在实数范围内,负数不能开平方,所以方程无实数根.
三、巩固练习
教材P 42 练习1.(1)、(3)、(5)
四、应用拓展
例2.某数学兴趣小组对关于x 的方程(m+1)22m x
++(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020
m m ⎧+=⎨-≠⎩或③1020m m +=⎧⎨-≠⎩ 解:(1)存在.根据题意,得:m 2+1=2
m 2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x 2-1-x=0
a=2,b=-1,c=-1
b 2-4ac=(-1)2-4×2×(-1)=1+8=9
x=(1)13224
--±=⨯ x 1=,x 2=-12
因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-
12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m 2+1=0,m 不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-13
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-
13. 五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P 45 复习巩固4.
2.选用作业设计:
一、选择题
1.用公式法解方程4x 2-12x=3,得到( ).
A ..
C .
D .
2x 2的根是( ).
A .x 1,x 2
B .x 1=6,x 2
C .x 1,x 2
D .x 1=x 2
3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).
A .4
B .-2
C .4或-2
D .-4或2
二、填空题
1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x 2-8x+12的值是-4.
3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.
三、综合提高题
1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.
2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-
b a ,x 1·x 2=
c a ;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100
A 元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
根据上表数据,求电厂规定的A 值为多少?
答案:
一、1.D 2.D 3.C
二、1.x=2b a
-±,b 2-4ac ≥0 2.4 3.-3
三、1.=a ±│b │ 2.(1)∵x 1、x 2是ax 2
+bx+c=0(a ≠0)的两根,
∴x 1=2b a -,x 2=2b a
-
∴x 1+x 2=2b b a -+=-b a

x 1·x 2c a
(2)∵x 1,x 2是ax 2+bx+c=0的两根,∴ax 12+bx 1+c=0,ax 22+bx 2+c=0
原式=ax 13+bx 12+c 1x 1+ax 23+bx 22+cx 2
=x 1(ax 12+bx 1+c )+x 2(ax 22+bx 2+c )
=0
3.(1)超过部分电费=(90-A )·
100A =-1100A 2+910A (2)依题意,得:(80-A )·
100
A =15,A 1=30(舍去),A 2=50。

相关文档
最新文档