用牛顿法求一元一次方程的最优值 matlab
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿法是一种迭代算法,用于求解一元函数的最小值或最大值。
对于一元函数f(x),其导数为f'(x),牛顿法的迭代公式为:
x_{n+1} = x_n - f(x_n) / f'(x_n)
在求解一元一次方程的最优值时,我们可以将一元一次方程转化为f(x) = 0 的形式,然后使用牛顿法求解。
下面是一个使用MATLAB 实现牛顿法的示例代码:
0, tol, max_iter)
# f: 一元函数的值
# df: 一元函数的导数
# x0: 初始值
# tol: 精度要求
# max_iter: 最大迭代次数
x = x0;
for i = 1:max_iter
fx = f(x);
dfx = df(x);
if abs(fx) < tol
root = x;
return;
end
x = x - fx / dfx;
end
error('达到最大迭代次数,未找到解。
');
end
按照以下步骤进行:
1.定义一元一次方程的函数和导数;
2.设定初始值、精度要求和最大迭代次数;
3.调用newton 函数进行迭代求解。