中级微观经济学作业及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中级微观经济学第一次作业答案
1、假设政府对一个每月收入400美元的贫困家庭进行补贴。
有三种方案:第一,允许该家庭购买400美元的食品券,单位美元食品券的价格为0.5;第二,政府直接发给该家庭200美元的食品券补贴;第三,政府直接发给该家庭200美元的货币补贴。
画出三种方案下该家庭的预算线,解释该家庭的最优选择,并分析三种方案的优劣。
解:
如上图所示,横轴表示花费在食品上的货币数量,纵轴表示花费在其他商品上的货币量,初始预算线为CD。
第一种补贴方案下,该家庭可以用200美元购买400美元的食品券,因此预算线变为折线CE1B,最优选择为E1点,效用水平为U1;
第二种补贴方案下,政府直接发放给该家庭200美元食品券补贴,因此预算线变为CE2B,最优选择为E2点,效用水平为U2;
第三种补贴方案下,政府直接发放给该家庭200美元的货币补贴,因此预算线直接平移到AB,最优选择为E3点,效用水平为U3。
综上所述,因为U3>U2>U1,所以对于该家庭而言,第三种方案最好,第二种方案次之,第一种方案最差。
2、请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线。
(1)消费者A喜欢喝咖啡,对喝热茶无所谓;
(2)消费者B喜欢1杯热茶和1杯咖啡一起喝;
(3)消费者C认为,在任何情况下,1杯热茶和2杯咖啡是无差异的;
(4)消费者D喜欢喝咖啡,讨厌喝热茶。
3、写出下列情形的效用函数,画出无差异曲线,并在给定价格(p1,p2)和收入(m )的情形下求最优解。
(1)x1=一元纸币,x2=五元纸币。
(2)x1=一杯咖啡,x2=一勺糖, 消费者喜欢在每杯咖啡加两勺糖。
()12121,min ,2u x x x x ⎧⎫=⎨⎬⎩⎭,
1122m x p p =
+,21222m x p
p =+ 解:(1)当
p1/p2>0.2时,x1=0, x2=m/p2;
当p1/p2=0.2时,
当p1/p2<0.2时,x1=m/p1, x2=0
(2)
解得:
,
4、假设某消费者的效用函数为:
试问:给定商品1和商品 2 的价格为和,如果该消费者的收入足够高,则收入的变化是否会导致该消费者对商品1的消费,并解释原因。
解:该消费者追求效用最大化,则有:
s.t.
则拉格朗日辅助函数为:
效用最大化的一阶条件为:
解上述方程可得:
所以,如果消费者的收入足够高,则收入的变化不会导致该消费者对商品1消费的变化。
5、一个消费者被观察到当他面临的价格为时,购买量为;另一次,当他面临的价格为时,他的购买量为。
请问他的行为符合显示性偏好弱公理吗?请解释原因。
解:他的行为符合显示性偏好弱公理。
显示偏好弱公理指的是如果(x1,x2)被直接显示偏好于(y1,y2),且(x1,x2)和(y1,y2)不相同,那么,(y1,y2)就不可能被直接显示偏好于(x1,x2)。
换句话说,假定一个消费束(x1,x2)是按价格(p1,p2)购买的,另一个消费束是按价格(q1,q2)购买的,只要有p1x1+p2x2>=p1y1+p2y2,就不可能再有q1x1+q2x2>=q1y1+q2y2。
在本题中,当价格(2,6)时,20*2+10*6>18*2+4*6说明消费者有能力购买(18,4)这个消费束,却选择了(20,10)这个消费束。
这表明,在价格为(2,6)时,(20,10)比(18,4)更受该消费者偏好;当价格为(3,5)时,他选择了消费束(18,4),并且3*18+5*4<3*20+5*10,说明在价格为(3,5)时,消费者(20,10)是该消费者支付不起的。
所以他的行为符合显示偏好弱公理。
6、我们用
和表示消费者对商品和的消费数量。
现在给定消费者的效用函数为
,两种商品的价分别为和,消费者的收入为。
(1)求该消费者将收入的多大比例分别用于消费和; (2)求消费者对和的需求函数;
(3)当消费者均衡时,两种商品的需求价格弹性是多少? 解:(1)消费者追求效用最大化,则有:
s.t.
效用最大化时,边际效用之比等于价格之比,则有:
解得: , ,
则收入用于商品1的比例为: 收入用于商品2的比例为:
(2)由(1)可知两种商品各自的需求函数为:
,
(3)商品1的需求价格弹性为:
同理,商品2的需求价格弹性为:
7、在下列效用函数形式里,哪些是效用函数的单调变换?
(1)132-=v u ;(2)2/1v u -=;(3)2
/1v u =;(4)v u ln =
(5)v
e u --=;(6)2
v u =;(7)2
v u =,对于0>v ;(8)2
v u =,对于0<v 解:(1)、(4)、(5)、(7)
8、某人的效用函数为,购买和两种商品,月收入为120元,。
(1)为获得最大的效用,应如何选择商品和的组合; (2)货币的边际效用和总效用各是多少;
(3)的价格提高30%,的价格不变,他必须增加多少收入才能保持原有效用不变。
解:(1)由效用最大化原则有:
s.t.
拉格朗日函数为:
效用最大化的一阶条件为:
解得:x=30,y=20 (2)总效用为:
货币的边际效用为:
(3)若的价格提高30%,则。
在新的价格之下,效用最大化的一阶条件为:
再加上方程:,可解得
则收入应增加:
9、假设某个学生的月收入为元,他对面包的需求函数为,面包的价格为。
(1)当面包的价格从上升到时,为使该学生仍然买得起原来的面包消费量,他的收入应该增加多少;
(2)请计算面包价格上升的斯勒茨基(Slutsky)替代效应;
(3)请计算收入效应。
解:(1)该学生对面包的需求函数为,当时,该学生
对面包的需求量为:。
当价格从p=4上升到p’=5时,让使得该学生仍然买得起原来的面包消费量x=6,他的收入应该增加。
(2)为了使得该学生买得起原来的面包消费量,该学生所需的收入水平为:。
将新的价格和新的收入水平带入到需求函数,可得:。
所以可得slutsky替代效应为:
(3)收入效应反映的是因收入变化所导致的需求量的变化。
所以当价格为,收入代入需求方程,可得,所以,收入效应为:
10、Dudley的效用函数是,其中R是他每天拥有的闲暇时间。
他每天有16小时可用在工作和闲暇上,每天有20美元的非劳动收入。
消费品的价格是每单位1美元。
(a) 如果Dudley每天愿意工作多少个小时都可以,并且工资是每小时10美元,他将会选择多少小时的闲暇?选择工作多少小时呢?
(b) 如果Dudley的非劳动收入降到每天5美元,而他的工资还是每小时10美元,他将会选择工作多少小时?
(c) 假设Dudley必须对他所有的收入支付20%的收入税,并假设他的税前工资还是10美元一小时,税前非劳动收入还是每天20美元。
他将会选择工作多少小时?
解:(1)由消费等于收入恒等式,有:
其中,C表示消费,m表示非劳动收入,L表示劳动时间,W表示工资水平。
又由题意可得:
将C和R代入到效用方程中可得:
精品文档当m=20,W=10时,
解得:L=9
(2)如果m=5,W=10,
解得:L=9
(3)如果征收20%的收入税,则
,
解得:L=8。