聚合物结晶态和非晶态共34页
合集下载
聚合物晶态结构PPT课件
第10页/共124页
6-2-1 平面锯齿结构(plane zigzag)
• 没有取代基(PE)或取代基较小的(polyester,polyamide,POM,PVA等)的碳氢链中为了使分子 链取位能最低的构象,并有利于在晶体中作紧密而规整的堆砌,所以分子取全反式构象,即:取平面锯齿 形 构 象 ( P. Z ) 。
阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
第4页/共124页
6-1 基本概念
• 直线点阵——分布在同一直线上的点阵 • 平面点阵——分布在同一平面上的点阵
• 空间点阵——分布在三维空间的点阵
晶
胞
第5页/共124页
6-1 基本概念
例如:全同PP(H31), 聚邻甲基苯乙烯(H41 ) , 聚甲基丙烯酸甲酯PMMA(H52), 聚4-甲基戊烯- 1 (H72), 聚间甲基苯乙烯 ( H11 8 )等。
第17页/共124页
Hale Waihona Puke • 例如:聚丙稀,PP的C—C主链并不居于同一平面内,而是在三维空间形成螺旋 构象,即:它每三个链节构成一个基本螺圈,第四个链节又在空间重复,螺旋等 同周期l=6.50A。l相当于每圈含有三个链节(重复单元)的螺距。 用符号H31表示 H:Helix(螺旋) 3:3个重复单元 1:1圈
不同的 结 晶90条o 件可以得9到9.不2o同的晶形: α,β,γ,δ4种变态,性能各异 。
第22页/共124页
6-2-3大分子排列方式
• 不管是取平面锯齿形构象还是螺旋构象,它们在结晶中作规整密堆积时,都只能 采取使其主链的中心轴相互平行的方式排列。
• 与主链中心轴方向就是晶胞的主轴,通常约定为C方向。显然,在C方向上,原 子间以化学键键合,而在空间其它方向上,则只有分子间力,在分子间力的作用 下,分子链将相互靠近到链外原子或取代基之间接近范氏力所能吸引的距离。
6-2-1 平面锯齿结构(plane zigzag)
• 没有取代基(PE)或取代基较小的(polyester,polyamide,POM,PVA等)的碳氢链中为了使分子 链取位能最低的构象,并有利于在晶体中作紧密而规整的堆砌,所以分子取全反式构象,即:取平面锯齿 形 构 象 ( P. Z ) 。
阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
第4页/共124页
6-1 基本概念
• 直线点阵——分布在同一直线上的点阵 • 平面点阵——分布在同一平面上的点阵
• 空间点阵——分布在三维空间的点阵
晶
胞
第5页/共124页
6-1 基本概念
例如:全同PP(H31), 聚邻甲基苯乙烯(H41 ) , 聚甲基丙烯酸甲酯PMMA(H52), 聚4-甲基戊烯- 1 (H72), 聚间甲基苯乙烯 ( H11 8 )等。
第17页/共124页
Hale Waihona Puke • 例如:聚丙稀,PP的C—C主链并不居于同一平面内,而是在三维空间形成螺旋 构象,即:它每三个链节构成一个基本螺圈,第四个链节又在空间重复,螺旋等 同周期l=6.50A。l相当于每圈含有三个链节(重复单元)的螺距。 用符号H31表示 H:Helix(螺旋) 3:3个重复单元 1:1圈
不同的 结 晶90条o 件可以得9到9.不2o同的晶形: α,β,γ,δ4种变态,性能各异 。
第22页/共124页
6-2-3大分子排列方式
• 不管是取平面锯齿形构象还是螺旋构象,它们在结晶中作规整密堆积时,都只能 采取使其主链的中心轴相互平行的方式排列。
• 与主链中心轴方向就是晶胞的主轴,通常约定为C方向。显然,在C方向上,原 子间以化学键键合,而在空间其它方向上,则只有分子间力,在分子间力的作用 下,分子链将相互靠近到链外原子或取代基之间接近范氏力所能吸引的距离。
聚合物结晶态与非晶态
(1)中子散射技术观测拉伸聚合物相同伸长、 不 同松弛时间的结构变化。
(2)同步辐射SAXS /WAXS和介电谱技术可以用 来研究结晶高分子非晶区的结构及其动力学松弛行 为。
(3)结晶高分子中柔性非晶相和刚性非晶相的比 例可以根据示差扫描量热( DSC ) 结果进行估算。
完 毕! 谢 谢!
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
非晶 态
晶态
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
温度、时间
(1)缨束状模型
Hale Waihona Puke (2)折叠链模型实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中
聚合物
玻璃化转变温度85℃,
熔点285℃,长期使用
温度为200℃-220℃。
6. 结晶度与材料性能
提 非晶区高弹态 高 结 晶 度 非晶区玻璃态
弹性模量 硬度 拉伸强度 断裂伸长率 冲击强度
~ 弹性模量
变脆 拉伸强度 断裂伸长率 冲击强度
相同结晶度时,晶体尺寸越大,脆性越大,力学性能越差。
6. 结晶度与材料性能
6. 结晶度与材料性能
例如:聚醚醚酮(poly
ether ether ketone, PEEK)
Tm
树脂结晶度间于
结晶性聚 合物
15%~35%,玻璃化转变 温度143℃,熔点334℃, 可在250℃下长期使用;
Tg
聚苯硫醚 (polyphenylene sulfide,
聚合物的结构与性能 ppt课件
一级结构近程结构一级结构近程结构结构单元的化学组成连接顺序立体构型以及支化交联等结构单元的化学组成连接顺序立体构型以及支化交联等二级结构远程结构二级结构远程结构高分子链的形态构象以及高分子的大小分子量高分子链的形态构象以及高分子的大小分子量链结构链结构聚集态结构三级结构聚集态结构三级结构晶态非晶态取向态液晶态及织态等
分子量和分子量分布是影响材料性能的因素之一。
高分子链的内旋转现象
分子主链中单键的内旋转是导致高分子链呈卷曲构象的原
因,内旋转愈是自由,蜷曲的趋势就愈大。称这种不规则地蜷曲的 高分子链的构象为无规线团。 1. 高分子在ห้องสมุดไป่ตู้动时C—C单键可以绕轴旋转,称为内旋转。 2. 由于单键内旋转而产生的分子在空间的不同形态称为构象。 内旋转完全自由的碳—碳单键是不存在的,当碳键带有的原子或基 团充分接近时,外层电子云将产生排斥力,使之不能接近,使旋转 时消耗一定能量。 △E是顺式构象与反式构象间的位能差,称为位垒。顺式构象位能 最高,反式构象位能最低(最稳定),因为基团距离愈大,排斥作 用愈小,故反式位能最低,顺式最不稳定。
• “太阳当空照,花儿对我笑,小鸟说早早早……”
高聚物的特点(与小分子物质相比)
高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子
一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性
高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理
i+1 i
第四章 聚合物的结构与性能
高分子链的运动是以链段为单元的,是蠕动。 高分子链在分子内旋转作用下可采取各种可能的形态,如 取不同的构象,如伸直链、无规线团、折叠链、螺旋链等。
高分子链的构象
分子量和分子量分布是影响材料性能的因素之一。
高分子链的内旋转现象
分子主链中单键的内旋转是导致高分子链呈卷曲构象的原
因,内旋转愈是自由,蜷曲的趋势就愈大。称这种不规则地蜷曲的 高分子链的构象为无规线团。 1. 高分子在ห้องสมุดไป่ตู้动时C—C单键可以绕轴旋转,称为内旋转。 2. 由于单键内旋转而产生的分子在空间的不同形态称为构象。 内旋转完全自由的碳—碳单键是不存在的,当碳键带有的原子或基 团充分接近时,外层电子云将产生排斥力,使之不能接近,使旋转 时消耗一定能量。 △E是顺式构象与反式构象间的位能差,称为位垒。顺式构象位能 最高,反式构象位能最低(最稳定),因为基团距离愈大,排斥作 用愈小,故反式位能最低,顺式最不稳定。
• “太阳当空照,花儿对我笑,小鸟说早早早……”
高聚物的特点(与小分子物质相比)
高分子是由很大数目(103——105 数量级)的结构单 元组成的,每一个结构单元相当于一个小分子
一般高分子的主链都有一定的内旋转自由能,可 以使主链弯曲而具有柔性
高分子结构具有不均一性 各结构单元间的相互作用对其聚集态结构和物理
i+1 i
第四章 聚合物的结构与性能
高分子链的运动是以链段为单元的,是蠕动。 高分子链在分子内旋转作用下可采取各种可能的形态,如 取不同的构象,如伸直链、无规线团、折叠链、螺旋链等。
高分子链的构象
晶态和非晶态材料
几种液晶化合物的相转变温度
目前已知的液晶都是有机化合物,分子的形状有长棒形和圆盘形两种,长棒形液晶材料较早地被应用,均六苯酚的酯类化合物具有盘状液晶性质。
2.4.4 液晶显示技术 LCD 19世纪末,奥地利植物学家莱尼兹发现了液晶,并发现液态晶体分子排列有一定的顺序,这种顺序在电场的作用下会发生变化,从而影响它的光学性质,人们把这种现象称为电光效应; 20世纪60年代英国科学家制造出世界第一块液晶板; 1968年美国RCA公司推出第一台液晶显示器;
根据织构形态不同,热致性液晶可分为三种不同相:
向列相(Nematic)液晶:刚性中心分子,柔性尾链;分子大致以长轴方向平行排列;黏度小、应答速度快;液晶显示。
近晶相(Smectic)液晶:分子呈层状排列;分子长轴大致垂直于层面方向,层间顺向排列;黏度大,对电场应答速度慢;光记忆。
胆甾相(Cholestic)液晶:分子层状排列,长轴大致平行于层面方向;相邻两面内分子长轴差一定角度,呈螺旋型,可以看作是由多层向列型液晶堆积所成,称为旋光性向列相液晶。不同温度下产生不同波长的选择性反射,产生不同颜色变化;温度感测。
商品锂离子电池正极材料多用LiCoO2,但Co价格昂贵、有毒。 现在研制的低成本替代产品:层状结构的LiNiO2(合成条件苛刻,热稳定性差,不安全);尖晶石结构的LiMn2O4(充电过程中存在着严重的容量衰减现象)。 对这些电极材料的掺杂改性就是制成非整比化合物晶体:LiNixCo1-xO2;Li1+xMn2O4;LiScxMn2-xO4。
添加标题
第二代是扭曲向列(TN)液晶显示器;
添加标题
第三代超扭曲(STN)液晶显示器;
添加标题
第四代薄膜晶体管(TFT)液晶显示器。
2.2 晶态与非晶态材料
CCC强制认证(安全玻璃、陶瓷砖放射性) 产品自愿性认证(水泥、玻璃和陶瓷等50类建材产品) 体系认证(质量管理体系、环境管理体系、职业健康安全管理体系) 汽车玻璃零配安装服务认证
中国安全玻璃认证中心简介
中国安全玻璃认证中心: ※1989年11月就开始开展汽车安全玻璃安全认证工作。 ※ 2002年4月经国家认证认可监督管理委员会授权对汽 车、建筑和机车用安全玻璃实施CCC强制认证。 ※认证中心在汽车安全玻璃方面,拥有国内知名的技术 专家和众多技术人员,熟悉了解产品的生产工艺和检测 技术。 享受政府特贴专家2人、 博士7人、工程硕士33人、 管理学硕士5人、教授级 高工13人、高级工程师 及工程师84人等专业技 术人才,计100余人
水化硅酸钙(70%) 氢氧化钙 (20%) 水化铝酸钙 水化铁酸钙 水化硫铝酸钙
水化程度与水泥石组成
凝结与硬化
凝结: 水泥加水拌和形成具有一定流动 性和可塑性的浆体,经过自身的物理化 学变化逐渐变 稠失去可塑性的过程。 硬化: 失去可塑性的浆体随着时间的增 长产生明显的强度,并逐渐发展成为坚 硬的水泥石的过程。
2.2 晶态与非晶态材料
2.2.1晶态材料和非晶态材料的异同
本质区别: 晶态材料具有长程有序的点阵结构,其 组成原子或基元处于一定格式空间排列 的状态; 非晶态材料则象液体那样,只有在几个 原子间距量级的短程范围内具有原子有 序的状态。(短程有序)
含义
晶体广泛存在,并可以用各种偏离理想 晶体的缺陷使其具有一定的性质,晶体 材料是固体材料的核心。 非晶态材料指非结晶状态的材料,一般 指以非晶态半导体和非晶体金属为主的 普通低分子的非晶态固体材料,广义地, 还包括玻璃、陶瓷以及非晶态聚合物。
中国安全玻璃认证中心简介
中国安全玻璃认证中心: ※1989年11月就开始开展汽车安全玻璃安全认证工作。 ※ 2002年4月经国家认证认可监督管理委员会授权对汽 车、建筑和机车用安全玻璃实施CCC强制认证。 ※认证中心在汽车安全玻璃方面,拥有国内知名的技术 专家和众多技术人员,熟悉了解产品的生产工艺和检测 技术。 享受政府特贴专家2人、 博士7人、工程硕士33人、 管理学硕士5人、教授级 高工13人、高级工程师 及工程师84人等专业技 术人才,计100余人
水化硅酸钙(70%) 氢氧化钙 (20%) 水化铝酸钙 水化铁酸钙 水化硫铝酸钙
水化程度与水泥石组成
凝结与硬化
凝结: 水泥加水拌和形成具有一定流动 性和可塑性的浆体,经过自身的物理化 学变化逐渐变 稠失去可塑性的过程。 硬化: 失去可塑性的浆体随着时间的增 长产生明显的强度,并逐渐发展成为坚 硬的水泥石的过程。
2.2 晶态与非晶态材料
2.2.1晶态材料和非晶态材料的异同
本质区别: 晶态材料具有长程有序的点阵结构,其 组成原子或基元处于一定格式空间排列 的状态; 非晶态材料则象液体那样,只有在几个 原子间距量级的短程范围内具有原子有 序的状态。(短程有序)
含义
晶体广泛存在,并可以用各种偏离理想 晶体的缺陷使其具有一定的性质,晶体 材料是固体材料的核心。 非晶态材料指非结晶状态的材料,一般 指以非晶态半导体和非晶体金属为主的 普通低分子的非晶态固体材料,广义地, 还包括玻璃、陶瓷以及非晶态聚合物。
聚合物结晶态与非晶态教学内容
① 减小聚合物结晶度 牺牲热学和力学性能; ② 晶区密度与非晶区密度尽可能接近; ③ 减小晶体尺寸——加入成核剂。
6. 结晶度与材料性能
(4)结晶度其他意义 ① 结晶度提高耐溶剂性提高; ② 结晶度提高溶解性下降; ③ 结晶度提高对气体和液体的渗透性下降。
7. 尼龙66/CNTs
Adv. Mater. 2005, 17, 1198-1202; Polymer 50 (2009) 953–965
实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中 所可能存在的各种 形态。
2. 结晶过程
聚合物结晶过程是链结构单元从无序堆积到有序排布的相 转变过程,主要分为两步:
一. 结晶态
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
非晶 态
晶态
温度、时间
1.晶态高聚物结构模型
(1)缨束状模型
1.晶态高聚物结构模型
(2)折叠链模型
1.晶态高聚物结构模型
(3)隧道-折叠链模 型
6. 结晶度与材料性能
(1)结晶度与热力学 Tm
Tg
例如:聚醚醚酮 (poly ether ether ketone, PEEK)树脂 结晶度间于15%~35%, 玻璃化转变温度143℃, 熔点334℃,可在 250℃下长期使用;聚 苯硫醚 (polyphenylene sulfide,PPS)结晶度 55%-65%,玻璃化转
6. 结晶度与材料性能
(4)结晶度其他意义 ① 结晶度提高耐溶剂性提高; ② 结晶度提高溶解性下降; ③ 结晶度提高对气体和液体的渗透性下降。
7. 尼龙66/CNTs
Adv. Mater. 2005, 17, 1198-1202; Polymer 50 (2009) 953–965
实际高聚物结晶大 多 是晶相与非晶相 共存的, 而各种结 晶模型都有其片 面 性,R.Hosemann 综合了各种结晶模 型,提出了一种折 衷的模型,称为隧 道-折叠链模型。 这个模型综合了在 高聚物晶态结 构中 所可能存在的各种 形态。
2. 结晶过程
聚合物结晶过程是链结构单元从无序堆积到有序排布的相 转变过程,主要分为两步:
一. 结晶态
聚合物
非结晶性 聚合物
结晶性聚 合物
结条 晶件
结晶能力是内因,条件外 因。具有结晶能力的聚合 物,即可是晶形的,也可 是非晶形的。
分子链的对称 性与规整性
非晶 态
晶态
温度、时间
1.晶态高聚物结构模型
(1)缨束状模型
1.晶态高聚物结构模型
(2)折叠链模型
1.晶态高聚物结构模型
(3)隧道-折叠链模 型
6. 结晶度与材料性能
(1)结晶度与热力学 Tm
Tg
例如:聚醚醚酮 (poly ether ether ketone, PEEK)树脂 结晶度间于15%~35%, 玻璃化转变温度143℃, 熔点334℃,可在 250℃下长期使用;聚 苯硫醚 (polyphenylene sulfide,PPS)结晶度 55%-65%,玻璃化转
高分子物理课件:第7讲 聚合物的非晶态
东华大学
DONGHUA UNIVERSITY
大多数聚合物熔体和浓溶液,其黏度随剪切速率的 增加而减小,即所谓剪切变稀,属于非牛顿流体。 聚合物在流动过程中随剪切速率或剪切应力的增加, 由于分子的取向使黏度降低。
东华大学
DONGHUA UNIVERSITY
东华大学
DONGHUA UNIVERSITY
☆1957年,苏联
学派提出了链束学说,认
为大分子可有两种结构单元,一是链束,另一个
链球。
链束是由多个分子链大致 平行排列而成的。它可以 比原分子链长,并且可以 弯曲成有规则的形状。高 分子结晶时由链束作为结 晶的起点,链球则由单条 分子链卷曲而成。
东华大学
DONGHUA UNIVERSITY
☆1962年,Hosemann建议了包括所有规整程度 范围在内的部分结晶高聚物的模型。
3)温度再进一步升高,则形变量又逐渐加大,试样 最Leabharlann 完全变成黏性的流体。东华大学
DONGHUA UNIVERSITY
根据试样的力学性质随温度变化的特征,可以把 非晶态高聚物按温度区域的不同划为三种力学状 态——玻璃态、高弹态和黏流态。
玻璃态与高弹态之间的转变,称为玻璃化转变, 对应的转变温度即为玻璃化转变温度,简称为玻 璃化温度,通常用Tg表示。
交联的聚合物在玻璃化温度以上时呈橡胶状,例 如橡胶带和汽车轮胎橡胶。
聚合物也可能是部分结晶的,它的其余部分为非 晶态。这种材料在常温下,可能处于它的玻璃化 温度以上或以下。据此,又可以细分出四种材料, 见表1-7。
东华大学
DONGHUA UNIVERSITY
东华大学
DONGHUA UNIVERSITY
例如,聚乙烯和天然橡胶的Tg都低于室温; 天然橡胶是全部非晶态的,它柔软而富有弹性; 聚乙烯因为大部分是结晶的,只是含有小部分的非 晶区,即使是在非晶区的Tg以上,还是弹性很差, 而有一定的强度。
第五章高聚物的非晶态
dTg K f K dP a f a
Tg的压力依赖性(1大气压=101.325千帕斯卡)
聚合物 聚醋酸乙烯酯
dTg/dp(℃/ 大气压) 0.02
ΔK/Δa(℃/大 TVΔα/ΔCp(℃/
气压)
大气压)
0.05
0.025
聚苯乙烯
0.036
0.10
—
天然橡胶
0.024
0.024
0.020
聚甲基丙烯酸甲酯
5.3.l 玻璃化温度的测量
1、利用体积变化的方法
利用体积(或比容)的变化 — 膨胀计 法(经典法) 测量高聚物体积(或比容)随温度的 变化,两端直线外推的交点即为Tg.
聚苯乙烯的比容—温度曲线
1 dV
V dT P
非晶高聚物的体膨系数和温度的关系
2、利用热力学性质变化的方法
在玻璃化转变区高聚物的焓随温度的变化与体积(或比容)随温 度的变化相似,而热容(或比热)则与体膨系数相对应。这些性质 成了测量玻璃化温度的一类最方便的方法—差热分析(DTA)和示 差扫描量热计(DSC)的基础。
fg=0.025=2.5%; af=4.8×10-4/度
这结果说明,WLF自由体积定义认为发生玻璃化转变时,高聚物的 自由体积分数都等于2.5%。
D.Panke和W.Wunderlish用实验证实的WLF自由体积:
fWLF
am l am
Vam – 非晶高聚物的比容 Vl - 理想高聚物的比容
几种非晶聚合物Tg时的不同定义自由体积分数值
非晶态结构是一个比晶态更为普遍存在的聚集形态,不仅有大 量完全非晶态的聚合物,而且即使在晶态聚合物中也存在非晶区。
5.1 非晶态高聚物的结构模型
1.无规线团模型
第2讲 晶态与非晶态
如萤石的解理块为八面体,仅靠八面体 不能堆砌出完整的晶体。
萤石的八面体解理块
⑵许多晶体,如石英,不能破碎成几何 多面体。 ⑶最小的平行六面体并不是“分子”。
惠更斯:认为晶体中质点的有序排列导 致晶体具有一定的多面体外形。
布拉维(A.Bravais) 推导出32种对称型和14种空间格子,提 出晶体结构的空间格子理论。 劳埃(Max Von Laue),德国科学家。
⑹定熔性 指晶体具有固定熔点的性质。
熔 点 熔 点
t 非晶质体的加热曲线 非晶质体的加热曲线 晶体的加热曲线 晶体的加热曲线
t t
原子堆积与晶体中的缺陷 实际的晶体可以看作一些一定尺寸的硬球的堆积: 尺寸大的原子或离子尽量靠近,为了使自由能最小,它们作最紧 密堆积(ccp或hcp);在形成密堆积时,还有四面体空位和八面体 空位,小尺寸原子或离子就进入这些空位 金属结构大部分由等原子半径的金属元素面心密积或六方密堆积 化合物中通常由离子半径大的离子作密堆积,半径小的离子占空位
传导电子、空穴、极化子、陷阱 杂质、空位、位错
√
晶体的许多性质因缺陷改变,控制缺陷可以控制晶体的性能
点缺陷(零维缺陷):填隙原子、空位、杂质和空位对等
Frenkel
Schottky
纯度:99%, 99.9%, 99.99%, 99.999%, 99.9999% 铁 + 碳 ZnS + 10-4 钢 % (原子)AgCl 45号钢(0.45% C)
NaC1晶体的抗拉强度的异向性 (单位:g/mm2)
⑶均一性 同一晶体任何部位的物理性质和化学组 成均相同。 如何理解晶体异向性和均一性的统一?
⑷对称性 所有的晶体都是对称的。晶体的对称 不但表现在外形上,其内部构造和物 理性质也是对称的。 ⑸稳定性 在相同的热力学条件下,晶体与同种成 分的非晶质体、液体、气体相比,以晶 体最为稳定。
萤石的八面体解理块
⑵许多晶体,如石英,不能破碎成几何 多面体。 ⑶最小的平行六面体并不是“分子”。
惠更斯:认为晶体中质点的有序排列导 致晶体具有一定的多面体外形。
布拉维(A.Bravais) 推导出32种对称型和14种空间格子,提 出晶体结构的空间格子理论。 劳埃(Max Von Laue),德国科学家。
⑹定熔性 指晶体具有固定熔点的性质。
熔 点 熔 点
t 非晶质体的加热曲线 非晶质体的加热曲线 晶体的加热曲线 晶体的加热曲线
t t
原子堆积与晶体中的缺陷 实际的晶体可以看作一些一定尺寸的硬球的堆积: 尺寸大的原子或离子尽量靠近,为了使自由能最小,它们作最紧 密堆积(ccp或hcp);在形成密堆积时,还有四面体空位和八面体 空位,小尺寸原子或离子就进入这些空位 金属结构大部分由等原子半径的金属元素面心密积或六方密堆积 化合物中通常由离子半径大的离子作密堆积,半径小的离子占空位
传导电子、空穴、极化子、陷阱 杂质、空位、位错
√
晶体的许多性质因缺陷改变,控制缺陷可以控制晶体的性能
点缺陷(零维缺陷):填隙原子、空位、杂质和空位对等
Frenkel
Schottky
纯度:99%, 99.9%, 99.99%, 99.999%, 99.9999% 铁 + 碳 ZnS + 10-4 钢 % (原子)AgCl 45号钢(0.45% C)
NaC1晶体的抗拉强度的异向性 (单位:g/mm2)
⑶均一性 同一晶体任何部位的物理性质和化学组 成均相同。 如何理解晶体异向性和均一性的统一?
⑷对称性 所有的晶体都是对称的。晶体的对称 不但表现在外形上,其内部构造和物 理性质也是对称的。 ⑸稳定性 在相同的热力学条件下,晶体与同种成 分的非晶质体、液体、气体相比,以晶 体最为稳定。
高分子化学与物理-聚合物的非晶态
粒间相
粒界区
有序区
两相球粒模型可解释:
❖ 橡胶弹性的回缩力——无序粒间相为橡胶弹 性变形的回缩力提供必要的构象熵。
❖ 非高晶于高完聚全物无的序实模际 型密 的度 计( 算值ρa/(ρc=<0.08.56-50).96。)
❖ 聚合物结晶速度快——粒子中链段的有序堆 砌为其提供了条件。
❖ 某些非晶态聚合物缓慢冷却或热处理后密度 增大——粒子相有序程度增加和粒子相扩大。
始运动或冻结的温度。
链段运动示意图
Tg
Tf
Td
❖ 高弹态:Tg~Tf
* 模量小,105~7帕斯卡
* 应变大,可达1000%或更大
* 形变可逆、松弛时间较长
* 为橡胶状
分子运动机制:链段
Tg
4.粘流转变区
Tf
Td
(1)整链分子逐渐开始运动,
(2)应变加大,模量降低,宏观上表现为流动
(3)Tf
—高弹态和粘流态之间的转变温度,即整链开始 运动的温度。
无规线团模型的实验依据:
❖ 橡胶弹性模量—温度、应力—温度关系不随稀释剂 的加入而出现反常改变;
❖ 非晶高聚物在本体中的高能辐射交联的倾向并不比 在溶液中大;
❖ 聚苯乙烯在本体和溶液中的回转半径相近;
❖ 非晶高聚物在本体和溶液中的回转半径—分子量关 系一致。
2.非晶结构局部有序 Yeh等人认为:
Tg
Tf
❖ 玻璃态:T<Tg
* 模量大,1010~11帕斯卡
* 应变ε小,~1% 或更小
* 形变可逆且瞬时完成
* 为塑料性状,常温下的PS,PMMA,PVC等
分子运动机制:仅有支链、侧基、小链节等小单元能运动
分子链段和整个分子链处冻结状
第六章 聚合物非晶态
• 结晶高聚物的分子量通常要控制得低 一些,分子量只要能满足机械强度要 求即可 • 非晶态与晶态聚合物的温度-形变曲线 总结在下一张图上
②高度结晶
形变
③轻度结晶
M1 M 2
①非晶态
温度
Tg
T f Tm
T f
• 特例 ①有的结晶高聚物 T 和 T都低于 T 也就是说加热到 T 还不能流动。只 有加热到 T 才流动,但此时已超过 T 所以已经分解。 PTFE就是如此,所以不能注射成型, 只能用烧结法。
形变 ( T f Tm非晶)
M1
M2
( Tm T f 非晶)
( Tg 看不出) T f Tm T f
温度
• M 不太大时:则晶区熔融( Tm ),非晶区
的
T f ,所以试样成为粘流态。 Tm
•
M 足够大时:非晶区的
T f ,则晶区虽 Tm
Tm 熔融( ),但非晶区试样进入高弹态再 升温到以上才流动。 从加工角度看,这种情况是不希望的(在 高温下出现高弹态将给加工带来麻烦)
小尺寸运动单元
• 链段的运动:C—C的内旋转,使得高分子 链有可能在整个分子不动,即分子链质量 中心不变的情况下,一部分链段相对于另 一部分链段而运动。
小尺寸运动单元
• 链节的运动:比链段还小的运动单元 如杂链中的杂链节:线型(n>4 )
(曲柄运动对韧脆性有影响) • 侧基的运动:多种多样,如转动、内旋转、端基运 动等
•
A.马丁耐热温度
•
•
马丁耐热温度的测定是在马丁耐热烘箱内 进行的 定义:升温速度为50℃/h,标准试样 受弯曲应力50kg/cm2时,试样条弯曲, 指示器中读数下降6mm时所对应的温度 即为马丁耐热温度
聚合物结构层次
1.1 链结构
1.1.1 近程结构 近程结构(一级结构、一次结构)
研究单个分子链的结构,包括构造和构型。
构型—指高分子链中由化学键所固定的原子在 构型 空间的几何排列。 构型不能随意改变,分子链破坏并产生重排才 能使其变化。 近程结构是构成聚合物最原始的基础,直接影 响高聚物的物理化学性能和力学性能。
2.1 结构单元的化学组成
高分子链原子类型与排列主要有如下四种类型: (1)碳链高分子——主链全由碳原子以共价键相联 结的高分子,大多由加聚反应制得。如PS、PVC、PE、 PP等,这类高聚物不易水解。
(2)杂链高分子——主链由两种或两种以上的原子如 氧、氮、硫、碳等以共价键相联结的高分子。如聚酯、 酚醛树脂、聚酰胺等,这类聚合物由缩聚反应或开环 聚合而制得,易水解、醇解或酸解。
键接结构——指结构单元在高分子链中的联结方式 (键接顺序)。
(3)元素高分子——主链中含Si、P、Al、Ti、As等 元素的高分子。这类聚合物一般具有无机物的热稳定性 及有机物的弹性和塑性。 富高弹性和优异的 高低温使用性能
பைடு நூலகம்
(4)梯形和双螺旋形高分子——分子主链不是一条 单链,而是像“梯子”和“双股螺线”结构的高分子链。
聚丙烯腈 高温环化、 脱氢
2.2 键接结构
聚集态结构晶态结构非晶态结构取向态结构液晶态结构织态结构三级结构更高级的结构描述高分子聚集体中的分子之间的排列及堆砌13高分子结构层次高分子的结构层次是紧密相联而构成的有机整体
聚合物的结构层次及性质
刘亚娟
1 聚合物的结构
聚合物是由许多单个的高分子链聚集而成,因而其结 构有两方面的含义:(1)单个高分子链的结构; (2)许多高分子链聚在一起表现出来的聚集态结构。
高分子物理-聚合物的非晶态
• 一根分子链可以通过几个粒子和粒间相。
5.2 非晶态聚合物的力学状态和热转变
• 1.力学状态:根据试样的力学性质随温度变
化的特征,可以把非晶态高聚物按温度区 域不同划为三种力学状态。
• 玻璃态( Tg 以下) • 高弹态( Tg ~Tf ) • 粘流态( Tf以上)
• 2. 热转变:三种力学状态是内部分子处于不同运
动状态的宏观表现。
• 玻璃态:链段处于被冻结的状态,只有那些较小
的运动单元,如侧基、支链和小链节能运动,因 此高分子链不能实现从一种构象到另一种构象的 转变。受力时主链的键长和键角有微小改变,形 变是很小的,形变与受力的大小成正比,当外力 除去后形变能立刻回复。这种力学性质称虎克型 弹性,又称普弹性。 松弛时间几乎为无穷大
A exp( BVห้องสมุดไป่ตู้ /V f )
ln (T ) ln A BV0 (T ) /V f (T )
ln (Tg ) ln A BV0 (Tg ) /V f (Tg )
由上两式得
ln
(T ) (Tg )
B
V0 (T ) /V f
(T )
V0 (Tg
)
/Vf
(Tg
)
因为 所以
fT
V f (T ) V0 (T ) V f (T )
V f (T ) V0 (T )
ln (T ) (Tg )
B
1 fT
1 fg
B
fg fT fT fg
B f (T Tg ) B
• 2.两相球粒模型:
• 非晶态高聚物存在着一定程度的局部有序。
其中包含粒子相和粒间相两个部分,而粒子又 可分为有序区和粒界区两个部分。
5.2 非晶态聚合物的力学状态和热转变
• 1.力学状态:根据试样的力学性质随温度变
化的特征,可以把非晶态高聚物按温度区 域不同划为三种力学状态。
• 玻璃态( Tg 以下) • 高弹态( Tg ~Tf ) • 粘流态( Tf以上)
• 2. 热转变:三种力学状态是内部分子处于不同运
动状态的宏观表现。
• 玻璃态:链段处于被冻结的状态,只有那些较小
的运动单元,如侧基、支链和小链节能运动,因 此高分子链不能实现从一种构象到另一种构象的 转变。受力时主链的键长和键角有微小改变,形 变是很小的,形变与受力的大小成正比,当外力 除去后形变能立刻回复。这种力学性质称虎克型 弹性,又称普弹性。 松弛时间几乎为无穷大
A exp( BVห้องสมุดไป่ตู้ /V f )
ln (T ) ln A BV0 (T ) /V f (T )
ln (Tg ) ln A BV0 (Tg ) /V f (Tg )
由上两式得
ln
(T ) (Tg )
B
V0 (T ) /V f
(T )
V0 (Tg
)
/Vf
(Tg
)
因为 所以
fT
V f (T ) V0 (T ) V f (T )
V f (T ) V0 (T )
ln (T ) (Tg )
B
1 fT
1 fg
B
fg fT fT fg
B f (T Tg ) B
• 2.两相球粒模型:
• 非晶态高聚物存在着一定程度的局部有序。
其中包含粒子相和粒间相两个部分,而粒子又 可分为有序区和粒界区两个部分。
2-1 第二章 凝聚态-晶态、非晶态
第二章 高分子的凝聚态结构
1
• • • • •
2.1晶态聚合物的结构 2.2非晶态聚合物结构 2.3 高分子液晶 2.4 聚合物的取向结构 2.5 多组分聚合物
2
教学内容:聚合物的各种凝聚态结构(晶 态、非晶态、液晶态、取向和织态结构)
教学目的:通过本章的学习全面掌握高分子链之间的 各种排列方式及由此而产生的各种凝聚态结构,弄清 高分子链结构条件和外部条件与凝聚态结构之间的关 系,了解各种凝聚态结构的表征和应用,初步建立凝 聚态结构与性能之间关系。 重点和难点:各种凝聚态结构(晶态、非晶态、液晶 态、取相态、高分子合金的织态)的结构特点、形成 条件和性能差异。
24
空间格子(空间点阵)
• 把组成晶体的质点抽象成为几何点,由这些等同的几 何点的集合所形成的格子,称为空间格子,也称空间 点阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶 体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
晶体结构与点阵的关系
25
• 直线点阵——分布在同一直线上的点阵
a b c, a b g 90 0
a b c, a g 90 0 , b 90 0
a b c,a b g 90 0
28
晶面和晶面指数
晶格内所有格子点全部集中在相互平行的 等间距的平面群上,这些平面叫做晶面。 晶面与晶面之间的距离叫做晶面间距。
• 具有较大的侧基的高分子,为了减小空间阻碍, 降低位能,则必须采取旁式构象。 例如:全同PP, 聚邻甲基苯乙烯, 聚甲基丙烯酸甲酯PMMA, 聚4-甲基-1-戊烯 , 聚间甲基苯乙烯 等。
39
等规聚丙烯(IPP)
1.PP构象(螺旋构象H31) 2.晶系:单斜、六方、拟六方 3.晶胞俯视图(单斜)
1
• • • • •
2.1晶态聚合物的结构 2.2非晶态聚合物结构 2.3 高分子液晶 2.4 聚合物的取向结构 2.5 多组分聚合物
2
教学内容:聚合物的各种凝聚态结构(晶 态、非晶态、液晶态、取向和织态结构)
教学目的:通过本章的学习全面掌握高分子链之间的 各种排列方式及由此而产生的各种凝聚态结构,弄清 高分子链结构条件和外部条件与凝聚态结构之间的关 系,了解各种凝聚态结构的表征和应用,初步建立凝 聚态结构与性能之间关系。 重点和难点:各种凝聚态结构(晶态、非晶态、液晶 态、取相态、高分子合金的织态)的结构特点、形成 条件和性能差异。
24
空间格子(空间点阵)
• 把组成晶体的质点抽象成为几何点,由这些等同的几 何点的集合所形成的格子,称为空间格子,也称空间 点阵。 • 点阵结构中,每个几何点代表的是具体内容,称为晶 体的结构单元。 • 所以,晶体结构=空间点阵+结构单元
晶体结构与点阵的关系
25
• 直线点阵——分布在同一直线上的点阵
a b c, a b g 90 0
a b c, a g 90 0 , b 90 0
a b c,a b g 90 0
28
晶面和晶面指数
晶格内所有格子点全部集中在相互平行的 等间距的平面群上,这些平面叫做晶面。 晶面与晶面之间的距离叫做晶面间距。
• 具有较大的侧基的高分子,为了减小空间阻碍, 降低位能,则必须采取旁式构象。 例如:全同PP, 聚邻甲基苯乙烯, 聚甲基丙烯酸甲酯PMMA, 聚4-甲基-1-戊烯 , 聚间甲基苯乙烯 等。
39
等规聚丙烯(IPP)
1.PP构象(螺旋构象H31) 2.晶系:单斜、六方、拟六方 3.晶胞俯视图(单斜)
晶态和非晶态结构
极性分子之间。
三、 色散力
色散力:存在于一切分子中,是范德华力中最普遍的 一种,分子瞬时偶极之间的相互作用力
色散力作用能:
EL
3 2
I1I I1
2
I
2
1 R6
2
(0.8~8.4 KJ/mol)
I——分子的电离能力
在非极性分子中,分子间的作用力主要是色散力
静电力、诱导力和色散力统称为范德华力,没有方向性和
克服分子间 的相互作用
∆E= ∆Hv-RT ∆Hv--摩尔蒸发热
RT--转化为气体所做的膨胀功
内聚能密度CED (cohesive energy density): 单位体积的内聚能
CED= ∆E/Vm Vm--摩尔体积
CED越大,分子间作用力越大; CED越小,分子间作用力越小
当CED<290J/m3,非极性聚合物分子间主要是色散力, 较弱;再加上分子链的柔顺好,使这些材料易于变形实 于弹性--rubber
重 点
掌握内聚能密度的概念,内聚能密度大小与分子 间作用力之间的关系;结晶度的概念、测定方法 和计算方法;取向和解取向的概念、机理以及取 向对高聚物性能的影响。
难 点
正确理解和掌握聚合物的取向和解取向的概念、 聚合物的结晶态和取向态之间的区别。理解晶态、 非晶态和液晶态高聚物的结构。
物质的聚集态
当CED>420J/m3,分子链上含有强的极性基团或者形 成氢键,因此分子间作用力大,机械强度好,耐热性好, 再加上分子链结构规整,易于结晶取向--fiber
当CED在290~420J/m3,分子间作用力适中-- plastic
K——波尔兹曼常数
晶态和非晶态高聚物结构模型总结
5
Logo
❖5、对塑料来讲,当结晶度提高到40%以上后, 晶区相互连接,形成贯穿整个材料的连续相。 因此Tg以上也不软化,最高使用温度可提高到 结晶的熔点(而不是Tg )
❖可见结晶度升高,塑料耐热性升高。 ❖6、结晶中分子规整密堆积,能更好的阻挡溶
剂渗入,所以结晶度升高,耐溶剂性升高。
6
4
Logo
❖ 2)结晶高聚物也可以是透明的,因为: ❖ ①如果一种高聚物晶相密度与非晶密度非常接近,
这时光线在界面上几乎不发生折射和反射。 ❖ ②当晶区中晶粒尺寸小到比可见光的波长还要小,
这时也不发生折射和反射,仍然是透明的。 ❖ 如前面讲到的利用淬冷法获得有规PP的透明性问题,
就是使晶ቤተ መጻሕፍቲ ባይዱ很小而办到的,或者加入成核剂也可达 到此目的。
❖ 4、物质对光的折光率与物质本身密度有关,晶区和 非晶区密度不同,因而对光的折光率也不相同。
❖ 1)光线通过结晶高聚物时,在晶区与非晶区的界面 上不能直接通过,而发生折射或反射,所以两相并存 的结晶高聚物通常呈乳白色,不透明,如尼龙,聚乙 烯等。
❖ 结晶度减少时,透明度增加。完全非晶的高聚物如无 规PS、PMMA是透明的。
❖ 晶区:规整排列到晶格中的伸直链晶片或折迭链晶 片组成。
❖ 非晶区:未排列到晶格中的分子链和链段,折叠晶 片中的链弯曲部分,链末端,空洞等。
❖ 晶区与非晶区没有明显的分界线,每个高分子可以 同时贯穿几个晶区和非晶区,而在晶区和非晶区两 相间的交替部分有着局部有序的过渡状态。
3
Logo
❖ 3、高聚物的非晶态主要由完全无序的无规线团和局 部有序部分组成。
晶态和非晶态高聚物结构 模型总结
Logo
❖通过对上述晶态和非晶态高聚物结构模型 的讨论可得出如下结论:
Logo
❖5、对塑料来讲,当结晶度提高到40%以上后, 晶区相互连接,形成贯穿整个材料的连续相。 因此Tg以上也不软化,最高使用温度可提高到 结晶的熔点(而不是Tg )
❖可见结晶度升高,塑料耐热性升高。 ❖6、结晶中分子规整密堆积,能更好的阻挡溶
剂渗入,所以结晶度升高,耐溶剂性升高。
6
4
Logo
❖ 2)结晶高聚物也可以是透明的,因为: ❖ ①如果一种高聚物晶相密度与非晶密度非常接近,
这时光线在界面上几乎不发生折射和反射。 ❖ ②当晶区中晶粒尺寸小到比可见光的波长还要小,
这时也不发生折射和反射,仍然是透明的。 ❖ 如前面讲到的利用淬冷法获得有规PP的透明性问题,
就是使晶ቤተ መጻሕፍቲ ባይዱ很小而办到的,或者加入成核剂也可达 到此目的。
❖ 4、物质对光的折光率与物质本身密度有关,晶区和 非晶区密度不同,因而对光的折光率也不相同。
❖ 1)光线通过结晶高聚物时,在晶区与非晶区的界面 上不能直接通过,而发生折射或反射,所以两相并存 的结晶高聚物通常呈乳白色,不透明,如尼龙,聚乙 烯等。
❖ 结晶度减少时,透明度增加。完全非晶的高聚物如无 规PS、PMMA是透明的。
❖ 晶区:规整排列到晶格中的伸直链晶片或折迭链晶 片组成。
❖ 非晶区:未排列到晶格中的分子链和链段,折叠晶 片中的链弯曲部分,链末端,空洞等。
❖ 晶区与非晶区没有明显的分界线,每个高分子可以 同时贯穿几个晶区和非晶区,而在晶区和非晶区两 相间的交替部分有着局部有序的过渡状态。
3
Logo
❖ 3、高聚物的非晶态主要由完全无序的无规线团和局 部有序部分组成。
晶态和非晶态高聚物结构 模型总结
Logo
❖通过对上述晶态和非晶态高聚物结构模型 的讨论可得出如下结论: