黑龙江省哈师大附中高二数学上学期期中考试(文)新人教版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈师大附中高二学年上学期期中考试 数学试卷(文科)
一、选择题
1.双曲线22
1916
y x -=的渐近线方程是( ) A. 34y x =± B. 43y x =± C. 53y x =± D. 35
y x =± 2.椭圆的短轴长为2, 长轴长是短轴长的2倍, 则椭圆的中心到其准线的距离为( )
A. 5
B. 5
C. 3
D. 3
. 3.若方程22
133
x y k k -=-+表示双曲线,则k 的取值范围是的 ( ) A. 3
k >
B. 3k <-
C. 3k >或3k <- D . 33k -<< 4.若抛物线2y mx =与椭圆22
195
x y +=有一个共同的焦点,则m 的值为 ( ) A. 8 B. 8- C. 8± D. 4±
5.已知定点A 、B ,且4AB =,若动点P 满足3PA PB -=,则PA 的最小值为( ) A. 12 B. 32 C. 72
D. 5 6.过点(1,2)A 的直线与抛物线22y px =恒有公共点, 则实数p 的取值范围是( )
A. [)2,+∞
B. ()2,+∞
C. (]0,2
D. ()0,2
7.若双曲线22
21613x y p
-=的左焦点在抛物线22y px =的准线上,则p 的值为 ( ) A. 2 B. 3 C. 4
D.
8.已知抛物线24x y =的焦点F 和定点(1,8)A -,P 为抛物线上的动点,则PA PF +的最小值为( )
A.16
B.6
C. 12
D. 9
9.以双曲线22
221(0,0)x y a b a b
-=>>的右焦点为圆心,且与此双曲线的渐近线相切的圆的半径为( )
A. a
B. b
C.
D.
10.如图所示,双曲线以正六边形ABCDEF 的顶点F 、C 为焦点,
且经过A 、E 、D 、B ,则此双曲线的离心率为( )
F E D
C B
A
A. 1
B. 1
C. 1
D. 1
11.已知1F 、2F 是椭圆22
221x y a b
+=(0a b >>)的两个焦点, P 是椭圆上任意一点,从任一焦点引12F PF ∠的外角平分线的垂线,垂足为Q , 则点Q 的轨迹为( )
A. 圆
B. 椭圆
C. 双曲线
D. 抛物线
12.已知定点(0,)Q a (0)a >,点P 为抛物线2y x =上的动点, 若PQ 的最小值为a ,则实数a 的取值范围是( )
A. 1(0,2⎤⎥⎦
B. (]0,1
C. 1
(,)2+∞ D. (1,)+∞ 二、填空题 13.椭圆2
2
12y x +=的离心率为 ___________. 14.若椭圆:C 2
221(0)x y a a
+=>的两个焦点为1(,0)F c -、2(,0)F c (0)c >, 若椭圆C 上存在点P , 使得1290F PF ∠=,则实数a 的取值范围是___________.
15.与双曲线22
193
x y -=有共同渐近线,并且经过点4)-的双曲线方程为___________. 16.AB 为过抛物线24x y =焦点F 的一条弦,设1122(,),(,)A x y B x y ,以下结论正确的是___________.(填写所有正确结论的序号)
①124,x x =-且121y y =; ②AB 的最小值为4;
③以AF 为直径的圆与x 轴相切; ④若直线AB 的倾斜角为α,则22cos AB α
=
; ⑤存在直线AB ,使得OA OB ⊥.
三、解答题 17.(本小题满分10分)已知定点A(4,0)和椭圆2
214
x y +=上的动点B ,P 为线段AB 的中点,求点P 的轨迹方程.
18.(本小题满分12分)椭圆:C 22
221x y a b
+=(0a b >>)的两个焦点为1F 、2F , 点P 在椭圆C 上,且11212414,,33PF F F PF PF ⊥=
=. (1) 求椭圆的方程;
(2) 若直线l 经过圆22420x y x y ++-=的圆心M , 交椭圆C 于A 、B 两点, 且A 、B 关于点M 对称, 求直线l 的方程.
19.(本小题满分12分)已知:C 双曲线221x y -=与直线:1l y kx =-交于A 、B 两点.
(1) 求实数k 的取值范围;
(2) O 为坐标原点,若AOB
求实数k 的值.
20.(本小题满分12分)抛物线22(0)y px p =>的焦点为F ,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且//BC x 轴,证明:直线AC 经过原点O
21.(本小题满分12分)已知椭圆的中心在原点,左焦点为(F ,右顶点为(2,0)D . 定点1(1,)2
A .
(1) 求椭圆的标准方程;
(2) 过原点O 的直线交椭圆于B 、C 两点, 求ABC 面积的最大值.
22.(本小题满分12分)已知椭圆长轴的一个端点是抛物线2y=的焦点,离心率为
3 C-的动直线交椭圆于A、B两点.
过点(1,0)
(1)求椭圆的标准方程;
⋅为常数? 若存在, 求出点M的坐标; 若不存在,说(2)在x轴上是否存在点M, 使MA MB
明理由.
哈师大附中高二学年上学期期中考试数学答案(文科)
1.A
2.D
3.C
4.C
5.C
6.A
7.C
8.D
9.B
10.D
11.A
12.A
13.2
14.2
2
11545y x -=
15.)+∞
16.①②③
17.2241(2)x y +=-
18.(1)22194y x +=
(2)点差法:202089
k b
x y a =-=,直线l 的方程:89250x y -+= 19.(1)联立方程2211
y kx y x ⎧-=⎪⎨=-⎪⎩得22(1)220kx k x -+-= 2100
k ⎧-≠⎨∆>⎩
得(1)(1,1)(1,2)k ∈-- (2)0
k =或k = 20.略
21.(1)2214
x y += (
2)ABC
22.(1)椭圆的标准方程:
2
2
1
5
5
3
y
x+=
(2)存在M
7
(,0)
3
-,使
4
9
MA MB=.。