最新高考物理生活中的圆周运动解题技巧分析及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高考物理生活中的圆周运动解题技巧分析及练习题(含答案)
一、高中物理精讲专题测试生活中的圆周运动
1.已知某半径与地球相等的星球的第一宇宙速度是地球的
1
2
倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:
(1)星球表面的重力加速度?
(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?
【答案】(1)01=4g g 星 (2)0
024
g s
v H L
=
-201[1]42()s T mg H L L =+
- 【解析】 【分析】 【详解】
(1)由万有引力等于向心力可知2
2Mm v G m R R =
2Mm
G
mg R
= 可得2
v g R
=
则014
g g 星=
(2)由平抛运动的规律:21
2
H L g t -=
星 0s v t =
解得0
024g s v H L
=
- (3)由牛顿定律,在最低点时:2
v T mg m L
-星=
解得:
2
0 1
1
42(
)
s
T mg
H L L
⎡⎤
=+
⎢⎥
-
⎣⎦
【点睛】
本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.
2.如图所示,BC为半径r
2
2
5
=m竖直放置的细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球过C点时速度大小不变,小球冲出C点后经过
9
8
s再次回到C点。

(g=10m/s2)求:
(1)小球从O点的正上方某处A点水平抛出的初速度v0为多大?
(2)小球第一次过C点时轨道对小球的支持力大小为多少?
(3)若将BC段换成光滑细圆管,其他不变,仍将小球从A点以v0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N的恒力,试判断小球在BC段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。

【答案】(1)2m/s(2)20.9N(3)2N
【解析】
【详解】
(1)小球从A运动到B为平抛运动,有:r sin45°=v0t
在B点有:tan45°
gt
v
=
解以上两式得:v0=2m/s
(2)由牛顿第二定律得:
小球沿斜面向上滑动的加速度:
a1
4545
mgsin mgcos
m
μ
︒+︒
==g sin45°+μg cos45°=22
小球沿斜面向下滑动的加速度:
a2
4545
mgsin mgcos
m
μ
︒-︒
==g sin45°﹣μg cos45°=2m/s2
设小球沿斜面向上和向下滑动的时间分别为t 1、t 2,
由位移关系得:12
a 1t 121
2=a 2t 22
又因为:t 1+t 29
8
=s
解得:t 138
=
s ,t 234=s
小球从C 点冲出的速度:v C =a 1t 1=m/s
在C 点由牛顿第二定律得:N ﹣mg =m 2
C
v r
解得:N =20.9N
(3)在B 点由运动的合成与分解有:v B 0
45v sin =
=︒
因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。

设细管对小球作用力大小为F
由牛顿第二定律得:F =m 2B
v r
解得:F =
由牛顿第三定律知小球对细管作用力大小为,
3.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;
(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.
【答案】(1)线断裂的瞬间,线的拉力为45N;
(2)线断裂时小球运动的线速度为5m/s;
(3)落地点离桌面边缘的水平距离2m.
【解析】
【分析】
【详解】
(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:
F N=F=mω2R,
设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2
ω=9:1,
又F1=F0+40N,
所以F0=5N,线断时有:F1=45N.
(2)设线断时小球的线速度大小为v,由F1=
2
v
m
R

代入数据得:v=5m/s.
(3)由平抛运动规律得小球在空中运动的时间为:t=220.8
10
h
s
g

==0.4s,
则落地点离桌面的水平距离为:x=vt=5×0.4=2m.
4.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知
,重力加速度g取若北小球运动的角速度
,求此时细线对小球的拉力大小。

【答案】
【解析】
【分析】
根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。

【详解】
若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:
此时小球做圆周运动的半径为:解得小球运动的角速度大小
为:代入数据得:
若小球运动的角速度为:
小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则
水平方向上有:
竖直方向上有:
联立方程求得:
【点睛】
解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。

5.如图甲所示,粗糙水平面与竖直的光滑半圆环在N点相切,M为圈环的最高点,圆环半径为R=0.1m,现有一质量m=1kg的物体以v0=4m/s的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g=10m/s2,求:
(1)物体能从M点飞出,落到水平面时落点到N点的距离的最小值X m
(2)设出发点到N点的距离为S,物体从M点飞出后,落到水平面时落点到N点的距离为X,作出X2随S变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ
(3)要使物体从某点出发后的运动过程中不会在N到M点的中间离开半固轨道,求出发
点到N 点的距离S 应满足的条件
【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】
(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;
(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;
(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】
(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2
M mv R
,所以,v M
1m /s ;
物体能从M 点飞出做平抛运动,故有:2R =
12
gt 2
,落到水平面时落点到N 点的距离x =v M t
2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;
(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =
12mv M 2−1
2
mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =
12
gt 2
,M y v t === 由图可得:y 2=0.48-0.16x ,所以,μ=0.16
0.8
=0.2; (3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R 或物体能通过M 点;
物体能到达的最大高度0<h≤R 时,由动能定理可得:−μmgx −mgh =0−
1
2
mv 02, 所以,22001
22mv mgh
v h x mg g μμμ
--==,
所以,3.5m≤x <4m ;
物体能通过M 点时,由(1)可知v M
1m /s , 由动能定理可得:−μmgx −2mgR =
12mv M 2−1
2
mv 02;
所以
22
22 0
11
24
22
2
M
M
mv mv mgR v v gR
x
mg g
μμ
----
=
=,
所以,0≤x≤2.75m;
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.
6.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB是一段光滑的半径为R的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L的粗糙水平直轨道BD,最后滑上半径为R圆心角0
60
θ=的光滑圆弧轨道DE.现将质量为m 的滑块从A点静止释放,通过安装在竖直圆轨道最高点C点处的传感器测出滑块对轨道压力为mg,求:
(1)竖直圆轨道的半径r.
(2)滑块在竖直光滑圆弧轨道最低点B时对轨道的压力.
(3)若要求滑块能滑上DE圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD的动摩擦因数μ需满足的条件.
【答案】(1)
3
R
(2)7mg(3)
2
R R
L L
μ
<≤
【解析】
(1) 对滑块,从A到C的过程,由机械能守恒可得:
2
1
(2)
2C
mg R r mv
-=
2
2C
v
mg m
r
=
解得:
3
R
r=;
(2) 对滑块,从A到B的过程,由机械能守恒可得:
2
1
2B
mgR mv
=
在B点,有:
2
B
v
N mg m
r
-=
可得:滑块在B 点受到的支持力 N=7mg ;
由牛顿第三定律可得,滑块在B 点对轨道的压力
7N N mg '==,方向竖直向下;
(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:
2
112
B mgL mv μ-=-
可得:1R L
μ=
若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:
2
21(1cos )2
B mgL mgR mv μθ---=-
可得:
22R L
μ=
若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:
2
31·22
B mg L mv μ-=-
综上所述,μ需满足的条件:
2R R L L
μ<<.
7.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面
AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑
块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,
求:
(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?
(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到
最短时的弹性势能为多大? (结果保留三位有效数字)
(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标
(),x y 应满足什么条件?
【答案】(1)0.1R m = (2) 2
4.0310J p E -=⨯ (3)3
8y x =,或38y x =,或83
x y = 【解析】 【详解】
(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:
2mv mg R
= 要使滑块恰好能到达B 点,即:
0B v =
从圆轨道最高点至B 点的过程:
21
sin 2cos 02
mgL mgR mgL mv θμθ-+-=-
代入数据可得
0.1R m =
(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :
t =
y gt =v
3sin y v v θ=
代入数据可得:
10
m/s 3
B v =
从弹射至点的过程:
2
1sin cos 02
B Ep mgL mgL mv θμθ--=
- 代入数据可得:
24.0310J Ep -=⨯
(3)同理根据平抛规律可知:
1
tan 372
y x =︒ 即
38
y x =
或38y x = 或83
x y =
8.如图所示,质量m =0.2kg 的金属小球从距水平面h =5.0 m 的光滑斜面上由静止开始释放,运动到A 点时无能量损耗,水平面AB 是粗糙平面,与半径为R =0.9m 的光滑的半圆形轨道BCD 相切于B 点,其中圆轨道在竖直平面内,D 为轨道的最高点,小球恰能通过最高点D ,求:(g =10 m/s 2)
(1)小球运动到A 点时的速度大小; (2)小球从A 运动到B 时摩擦阻力所做的功; 【答案】(1) 10m/s (2) -5.5 J 【解析】 【详解】
(1)小球运动到A 点时的速度为A v ,根据机械能守恒定律可得 212
A mgh mv =
解得 A v =10m/s.
(2)小球经过D 点时的速度为D v ,则
2D
v mg m R
=
解得 3/D v m s =
小球从A 点运动到D 点克服摩擦力做功为f W ,则 221122
f D A mgR W mv mv --=
- 解得 5.5f W J =-
9.(2011年南通一模)如图所示,BCDG 是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g.
(1)若滑块从水平轨道上距离B 点s =3R 的A 点由静止释放,滑块到达与圆心O 等高的C 点时速度为多大?
(2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小;
(3)改变s 的大小,使滑块恰好始终沿轨道滑行,且从G 点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小.
【答案】(1) (2) (3)
【解析】
①由动能定理有:
② 当时,最小
10.如图所示,一个可视为质点,质量2m kg =的木块从P 点以初速度05/v m s =向右运动,木块与水平面间的动摩擦因数为0.2,木块运动到M 点后水平抛出,恰好沿竖直的粗糙圆弧AB 的A 点的切线方向进入圆弧(不计空气阻力)。

已知圆弧的半径0.5R m =,半径OA 与竖直半径OB 间的夹角53θ︒=,木块到达A 点时的速度大小5/A v m s =。

已知
sin 530.8cos530.6︒︒==
,210/.g m s =求:
(1)P 到M 的距离L ;
(2)M 、A 间的距离s ;
(3)若木块到达圆弧底端B 点时速度大小5/B v m s =,求此时木块对轨道的压力。

【答案】(1)4m ;(2213;(3)120N 、方向竖直向下; 【解析】
【详解】 (1)平抛的初速度,即为木块在M 点的速度为:
v x =v A cosθ=5×0.6=3m/s
P 到M 由牛顿第二定律:
μmg=ma ,
a=μg =2m/s 2
由运动学公式知:
2203355m 4m 22
2x v v L a -⨯-⨯==-⨯-= (2)物体到达A 点时竖直方向上的速度为
v y =v •sinθ=5×0.8=4m/s
则下落时间为
40.4s 10
y v t g =
== 则水平位移为 x =v x t =3×0.4=1.2m
竖直方向上的距离为
244 0.8m 220
m y v y g ⨯=
== M 、A 间的距离 2213m 5
s x y +== (3)由牛顿第二定律: 2B v N mg m
R -=

2252102N=120N 0.5
B v N mg m R =+=⨯+⨯ 根据牛顿第三定律可知,此时木块对轨道的压力为120N 、方向竖直向下;。

相关文档
最新文档