公主岭市第一中学2018-2019学年上学期期中高考数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公主岭市第一中学2018-2019学年上学期期中高考数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )
2. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,
则m n 的值是( )
A .10
B .11
C .12
D .13
【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力. 3. 已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( ) A .{x|﹣1≤x <2} B .{﹣1,0,1} C .{0,1,2} D .{﹣1,1}
4. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )
A .4
B .5
C .6
D .7
5. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大
值为O 的体积为( )
A .81π
B .128π
C .144π
D .288π
【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
6. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )
A .2
B .
C .
D .3
7. 自圆C :2
2
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )
A .86210x y --=
B .86210x y +-=
C .68210x y +-=
D .68210x y --=
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.
8. 设复数1i z =-(i 是虚数单位),则复数
2
2z z
+=( ) A.1i - B.1i + C. 2i + D. 2i -
【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 9. 一个几何体的三视图如图所示,则该几何体的体积是( )
A .64
B .72
C .80
D .112
【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.
10.487被7除的余数为a (0≤a <7),则展开式中x ﹣3
的系数为( )
A .4320
B .﹣4320
C .20
D .﹣20
11.已知函数1)1(')(2
++=x x f x f ,则=⎰dx x f 10
)(( )
A .67-
B .67
C .65
D .6
5- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.
12.已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( )
A.5
B.2 D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知,0()1,0
x e x f x x ì³ï=í<ïî,则不等式2
(2)()f x f x ->的解集为________.
【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 14.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
15.已知M N 、为抛物线2
4y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为_________.
16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下:
①若()()0f x f x '+>,且(0)1f =,则不等式()x
f x e -<的解集为(0,)+∞;
②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1
(2)4(2),n n f f n N +*<∈;
④若()
()0f x f x x
'+
>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()x
e x
f x f x x
'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.
其中所有正确结论的序号是 .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本小题满分12分)已知1
()2ln ()f x x a x a R x
=--∈.
(Ⅰ)当3a =时,求()f x 的单调区间;
(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值.
【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.
18.(本题满分14分)
在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,
,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;
(2)若2=+c a ,求b 的取值范围.
【命题意图】考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
19.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2
ABC π
∠=
,AD =33AB DC ==.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PD ==
PB PC =,求直线PA 与平面PBC 所成角的大小.
20.(本小题满分12分)
在ABC ∆中,角,,A B C 所对的边分别为,,a b c
,1)cos 2cos a B b A c -=, (Ⅰ)求
tan tan A
B
的值; A
B
C
D
P
(Ⅱ)若a =4
B π
=
,求ABC ∆的面积.
21.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,P 是椭圆上
1122|,||PF F F PF 成等差数列.
(1)求椭圆C 的标准方程;、
(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得7
16
QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.
公主岭市第一中学2018-2019学年上学期期中高考数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】
【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM
=2sin x
2,
PB =2OM =2OA ·cos ∠AOM =2cos x
2
,
∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π
4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,
故选B. 2. 【答案】C
【解析】由题意,得甲组中78888486929095
887
m +++++++=,解得3m =.乙组中888992<<,
所以9n =,所以12m n +=,故选C .
3. 【答案】B
解析:解:由A 中不等式解得:﹣1≤x ≤2,x ∈Z ,即A={﹣1,0,1,2}, ∵B={x|﹣2<x <2}, ∴A ∩B={﹣1,0,1},
4. 【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5
满足条件5≤k ,S=75,n=6 …
若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选:
5. 【答案】D
【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,
则由题意,得2
11
sin 6032
R R ⨯⨯︒⋅=6R =,所以球的体积为3
42883
R π=π,故选D . 6. 【答案】C
解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.
则体积为=,解得x=.
故选:C . 7. 【答案】D
【解析】由切线性质知PQ CQ ⊥,所以2
2
2
PQ PC QC =-,则由PQ PO =,得,
2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,
8. 【答案】A 【
解
析
】
9. 【答案】C.
10.【答案】B
解析:解:487=(49﹣1)7=﹣
+…+
﹣1,
∵487被7除的余数为a (0≤a <7), ∴a=6,
∴
展开式的通项为T r+1=
,
令6﹣3r=﹣3,可得r=3,
∴
展开式中x ﹣3
的系数为
=﹣4320,
故选:B .. 11.【答案】B
12.【答案】A. 【
解
析
】
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】(-
【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,
解得01x ?,综上所述,不等式2
(2)()f x f x ->的解集为(-.
14.【答案】±.
15.【答案】20x y --=
【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的
中点坐标为(4,2).由2114y x =,2
224y x =两式相减得121212()()4()y y y y x x +-=-,而
12
22
y y +=,∴12
12
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.
16.【答案】②④⑤
【解析】解析:构造函数()()x
g x e f x =,()[()()]0x
g x e f x f x ''=+>,()g x 在R 上递增,
∴()x
f x e
-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;
构造函数()()x f x g x e =,()()
()0x
f x f x
g x e
'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;
构造函数2()()g x x f x =,2
()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴
1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;
由()()0f x f x x '+>得()()
0xf x f x x '+>,即()()0xf x x
'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递
减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;
由()()x e xf x f x x '+=得2
()()x e xf x f x x
-'=,设()()x
g x e xf x =-,则()()()x
g x e f x xf x ''=--(1)x x x e e e x x x
=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当
0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】(Ⅰ))(x f 的定义域),0(+∞,
当3a =时,1()23ln f x x x x
=--,2'
22
13231()2x x f x x x x -+=+-= 令'()0f x >得,102
x <<或1x >;令'
()0f x <得,112x <<,
故()f x 的递增区间是1
(0,)2和(1,)+∞;
()f x 的递减区间是1
(,1)2
.
(Ⅱ)由已知得x a x
x x g ln 1
)(+-=,定义域为),0(+∞,
2
221
11)(x
ax x x a x x g ++=++=',令0)(='x g 得012=++ax x ,其两根为21,x x , 且21212
40010a x x a x x ⎧->⎪
+=->⎨⎪⋅=>⎩,
18.【答案】(1)3B π
=;(2)[1,2).
19.【答案】
【解析】解: (Ⅰ)当13
PE PB =时,//CE 平面PAD .
设F 为PA 上一点,且13PF PA =
,连结EF 、DF 、EC , 那么//EF AB ,13
EF AB =. ∵//DC AB ,13
DC AB =,∴//EF DC ,EF DC =,∴//EC FD . 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)
(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,
∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥.
又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)
建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B , (1,2,0)C -
.由(6)(2PO ==-=知(0,0,2)P . (9分) 设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r
则00
n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =. 设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|||||AP n AP n AP n θ⋅=<
>==⋅ ∴
π
θ=,∴直线PB 与平面PAD 所成角为
3
π. (13分) 20.【答案】
【解析】解: (Ⅰ)由1)cos 2cos a B b A c -=及正弦定理得
1)sin cos 2sin cos sin sin cos +cos sin A B B A C A B A B -==, (3分)
cos 3sin cos A B B A =,∴tan tan A B
=6分) A
(Ⅱ)tan A B ==3A π
=
,sin 42sin sin 3a B b A π
π===, (8分)
sin sin()4
C A B =+=
, (10分) ∴ABC ∆
的面积为111sin 2(32242ab C =⨯=(12分) 21.【答案】
【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.
下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;
当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,
由1x ty =+及2
212
x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22
t y y y y t t +=-=-++.
111x ty =+,221x ty =+, ∴112212125511(,)(,)()()4444
x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++= 22222211212217
(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++.
综上所述,在x 轴上存在点5
(,0)4Q 使得7
16QA QB ⋅=-恒成立.。