泰州市苏科版八年级数学上 第二次月考测试题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰州市苏科版八年级数学上 第二次月考测试题(Word 版 含答案)
一、选择题
1.下列四个图标中,是轴对称图形的是( )
A .
B .
C .
D .
2.下列实数中,无理数是( )
A .227
B .3π
C .4-
D .327
3.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )
A .A
B D
C = B .BE CE = C .AC DB =
D .A D ∠=∠
4.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )
A .0条
B .1条
C .2条
D .3条
5.下列条件中,不能判断△ABC 是直角三角形的是( )
A .a :b :c =3:4:5
B .∠A :∠B :∠
C =3:4:5
C .∠A +∠B =∠C
D .a :b :c =1:236.估计(130246的值应在( ) A .1和2之间
B .2和3之间
C .3和4之间
D .4和5之间 7.若分式
12x x -+的值为0,则x 的值为( ) A .1
B .2-
C .1-
D .2 8.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )
A .AC =2CD
B .AD =2CD
C .A
D =3BD D .AB =2BC 9.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数( )
A .1个
B .2个
C .3个
D .4个 10.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( )
A .(﹣2,﹣3)
B .(2,﹣3)
C .(﹣4,3)
D .(3,﹣4) 二、填空题
11.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )
12.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中 2 出现的频数为____.
13.在
311,2π,122-,0,0.454454445…,319
中,无理数有______个. 14.点(2,1)P 关于x 轴对称的点P'的坐标是__________. 15.等边三角形有_____条对称轴.
16.4的算术平方根是 .
17.计算:16=_______.
18.已知直角三角形的两边长分别为3、4.则第三边长为________.
19.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),
则关于x 、y 的二元一次方程组2x y a x y b -=⎧⎨+=⎩
的解是________. 20.若直角三角形斜边上的中线是6cm ,则它的斜边是 ___ cm .
三、解答题
21.(1)计算:04(51)+-
(2)解方程:23(1)120x --= 22.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =.CF 平分
DCE ∠.求证:(1)ACD BEC ≅;
(2)CF DE ⊥ .
23.如图,一次函数的图像经过点P (1,3),Q (0,4).
(1)求该函数的表达式;
(2)该图像怎样平移后经过原点?
24.一次函数()0y kx b k =+≠的图像为直线l .
(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达
式;
(2)若直线l过点(3,0),且与两坐标轴围成的三角形面积等于3,求b的值.25.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?
(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?
四、压轴题
26.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,
过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板
的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为
(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与
x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
27.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.
(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC
=;
(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);
(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你
写出∠BQC与∠A的数量关系,并说明理由;
(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的
平分线交于点P,则∠BPC= ゜,延长BC至点E,∠ECQ的平分线与BP的延长线相
交于点R,则∠R= ゜.
28.(1)问题发现.
如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .
①求证:ADC BEC ∆∆≌.
②求AEB ∠的度数.
③线段AD 、BE 之间的数量关系为__________.
(2)拓展探究.
如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .
①请判断AEB ∠的度数为____________.
②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)
29.阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”
小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”
(1)求∠DFC的度数;
(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;
(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.
30.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.
(1)求∠AFE的度数;
(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;
(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=2
9
CP,求
PF
AF
的值.
(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
直接根据轴对称图形的概念分别解答得出答案.
【详解】
A、不是轴对称图形,不合题意;
B、是轴对称图形,符合题意;
C、不是轴对称图形,不符合题意;
D、不是轴对称图形,不合题意.
故选:B.
【点睛】
本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.B
解析:B
【解析】
【分析】
分别根据无理数、有理数的定义即可判定选择项.
【详解】
A.22
7
是有理数,不符合题意;
B.3π是无理数,符合题意;
C.=-2,是有理数,不符合题意;
是有理数,不符合题意.
故选:B.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为
无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.
3.C
解析:C
【解析】
【分析】
全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.
【详解】
A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,
∴∠DBC=∠ACB.
∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;
C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出
△ABC≌△DCB,故本选项正确;
D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.
故选:C.
【点睛】
本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.
4.B
解析:B
【解析】
【分析】
先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.
【详解】
已知如图,所做三角形是钝角三角形,作AD⊥BC,
根据勾股定理可得:AC2-CD2=AB2-BD2
所以设CD=x,则BD=7-x
所以52-x2=(32)2-(7-x)2
解得x=4
所以CD=4,BD=3,
所以,在直角三角形ADC中
AD=2222
-=-=
AC CD
543
所以AD=BD=3
所以三角形ABD是帅气等腰三角形
假如从点C或B作直线,不能作出含有边长为3的等腰三角形
故符合条件的直线只有直线AD
故选:B
【点睛】
本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.
5.B
【解析】
【分析】
A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;
B、根据角的比值求出各角的度数,便可判断出三角形的形状;
C、根据三角形的内角和为180度,即可计算出∠C的值;
D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.
【详解】
A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;
B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故
3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;
C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;
D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,
故选B.
【点睛】
本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.
6.B
解析:B
【解析】
【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.
【详解】(
=
=2,
而
,
-<3,
所以2<2
所以估计(2和3之间,
故选B.
【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.
解析:A
【解析】
【分析】
根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.
【详解】
根据题意得,1-x=0且x+2≠0,
解得x=1且x≠-2,
所以x=1.
故选:A.
【点睛】
本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
8.B
解析:B
【解析】
【分析】
在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.
【详解】
解:∵△ABC中,∠ACB=90°,∠A=30°,
∴AB=2BC;
∵CD⊥AB,
∴AC=2CD,
∴∠B=60°,又CD⊥AB,
∴∠BCD=30°,
在Rt△BCD中,∠BCD=30°,CD3,
在Rt△ABC中,∠A=30°,AD3=3BD,
故选:B.
【点睛】
此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.
9.C
【解析】
【分析】
直接利用轴对称图形的性质分别分析得出答案.
【详解】
解:①线段,是轴对称图形;
②角,是轴对称图形;
③等腰三角形,是轴对称图形;
④有一个角是30°的直角三角形,不是轴对称图形.
故选:C.
【点睛】
本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.
10.B
解析:B
【解析】
【分析】
首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.
【详解】
A、(﹣2,﹣3)在第三象限,故此选项不合题意;
B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;
C、(﹣4,3)在第二象限,故此选项不合题意;
D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;
故选:B.
【点睛】
此题主要考查根据象限判定坐标,熟练掌握,即可解题.
二、填空题
11.4×103.
【解析】
【分析】
先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.
【详解】
6371 km =6.371×103 km≈6.4×103 km(精确到100km).
故答
解析:4×103.
【解析】
【分析】
先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.
【详解】
6371 km =6.371×103 km≈6.4×103 km(精确到100km).
故答案为:6.4×103
【点睛】
本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.
12.3
【解析】
【分析】
直接利用频数的定义得出答案.
【详解】
10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,
所以2出现的频数为:3.
故答案为:3.
【点睛】
此题主要考查
解析:3
【解析】
【分析】
直接利用频数的定义得出答案.
【详解】
10个数据:0,1,2,6,2,1,2,3,0,3,其中2出现3次,
所以2出现的频数为:3.
故答案为:3.
【点睛】
此题主要考查了频数,正确把握频数的定义是解题关键.
13.3
【解析】
【分析】
根据无理数的定义进行判断.
【详解】
解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.
故答案为:3.
【点睛】
本题考查了无理数.解题的关键是掌握无
解析:3
【解析】
【分析】
根据无理数的定义进行判断.
【详解】
解:根据无理数的定义可知,2 ,0.4544544453个.
故答案为:3.
【点睛】
本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
14.(2,-1)
【解析】
【分析】
关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)
【详解】
点关于轴对称的点的坐标是(2,-1)
故答案为:(2,-1)
【点睛】
考核知识点:用坐标表示轴对称.
解析:(2,-1)
【解析】
【分析】
关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)
【详解】
P关于x轴对称的点P'的坐标是(2,-1)
点(2,1)
故答案为:(2,-1)
【点睛】
考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
15.3
【解析】
试题解析:等边三角形有3条对称轴.
考点:轴对称图形.
解析:3
【解析】
试题解析:等边三角形有3条对称轴.
考点:轴对称图形.
16.【解析】
试题分析:∵,∴4算术平方根为2.故答案为2.
考点:算术平方根.
解析:【解析】
试题分析:∵224
,∴4算术平方根为2.故答案为2.
考点:算术平方根.
17.4
【解析】
【分析】
根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
【详解】
解:原式==4.
故答案为4.
【点睛】
此题主
解析:4
【解析】
【分析】
根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
【详解】
解:原式.
故答案为4.
【点睛】
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.
18.5或
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;
②长为3、4的边都是直角边时:第三边的
解析:5
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为4=
②长为3、45;
∴或5.
考点:1.勾股定理;2.分类思想的应用. 19.【解析】
【分析】
根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.
【详解】
解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),
所以
解析:21x y =⎧⎨=⎩
【解析】
【分析】
根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.
【详解】
解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),
所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩
. 故答案为21x y =⎧⎨=⎩
. 【点睛】
本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
20.12
【解析】
【分析】
根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.
【详解】
解:∵直角三角形斜边上的中线是6cm ,
∴则它的斜边是:cm ;
故答案为:12.
【点睛】
本题考查了直
解析:12
【解析】
【分析】
根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.
【详解】
解:∵直角三角形斜边上的中线是6cm ,
∴则它的斜边是:2612⨯=cm ;
故答案为:12.
【点睛】
本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.
三、解答题
21.(1)3;(2)3x =或1x =-.
【解析】
【分析】
(1)根据实数的运算法则将每一项进行化简然后计算求解即可.
(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.
【详解】
解:(1)01)
原式21=+
3=
(2)解方程:23(1)120x --=
2(1)4x -=
12x -=±
3x =或1x =-
【点睛】
本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.
22.(1)见解析;(2)见解析
【解析】
试题分析:(1)根据平行线性质求出∠A=∠B ,根据SAS 推出即可.
(2)根据全等三角形性质推出CD=CE ,根据等腰三角形性质求出即可.
试题解析:
()1∵//AD BE ,
∴A B ∠=∠,
在ACD 和BEC 中
AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩
∴()ACD BEC SAS ≅,
()2∵ACD BEC ≅,
∴CD CE =,
又∵CF 平分DCE ∠,
∴CF DE ⊥.
23.(1)y =-x +4;(2)向下平移4个单位长度(或向上平移-4个单位长度);向左平移4个单位长度;或先向左平移1个单位长度,再向下平移3个单位长度;或先向下平移3个单位长度,再向左平移1个单位长度(此问答案不唯一).
【解析】
【分析】
(1)设y =kx +b (k ≠0),直接将P (1,3),Q (0,4)代入,即可用待定系数法求得函数解析式;
(2)平移后经过原点,则平移之后解析式为y=-x ,根据函数y =-x +4变形为y=-x 的过程,结合函数的平移符合“左加右减,上加下减”即可得出平移方式(答案不唯一).
【详解】
(1)设y =kx +b (k ≠0),
所以43b k b =⎧⎨=+⎩
, 解得14k b =-⎧⎨=⎩
所以函数表达式为y =-x +4.
(2)若平移后经过原点,则平移后函数的解析式为y=-x.
∵y =-x +4-4=-x ,∴可向下平移4个单位长度(或向上平移-4个单位长度); ∵y=-( x+4)+4=- x,∴可向左平移4个单位长度;
∵y =-(x+1)+4-3,∴可先向左平移1个单位长度,再向下平移3个单位长度或先向下平移3个单位长度,再向左平移1个单位长度.
【点睛】
本题考查用待定系数法求一次函数解析式,一次函数的平移问题.(1)熟练掌握用待定系数法求一次函数解析式是解题关键;(2)中函数的平移满足“左加右减,上加下减”.
24.(1)y=2x-2;(2)b=2或-2.
【解析】
【分析】
(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;
(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.
【详解】
解:(1)∵直线l 与直线2y x =平行,
∴k=2,
∴直线l 即为y=2x+b .
∵直线l 过点(0,−2),
∴-2=2×0+b ,
∴b=-2.
∴直线l 的解析式为y=2x-2.
(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),
∴直线l 与两坐标轴围成的三角形面积=132
b ⨯⋅. ∴
132
b ⨯⋅=3, 解得b=2或-2.
【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标. 25.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.
【解析】
【分析】
(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;
(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.
【详解】
(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得: 312042009x x
=-, 解得:x =35,
经检验,x =35是原方程的解,
∴x ﹣9=26.
答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.
(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:
26a+35(200﹣a)=6280,
解得:a=80.
答:购买了80条A型芯片.
【点睛】
本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.
四、压轴题
26.(1)见解析(2)(4,2)(3)(6,0)
【解析】
【分析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;
(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;
(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.
【详解】
证明:∵∠ACB=90°,AD⊥l
∴∠ACB=∠ADC
∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE
∴∠CAD=∠BCE,
∵∠ADC=∠CEB=90°,AC=BC
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,
由已知得OM=ON,且∠OMN=90°
∴由(1)得MF=NG,OF=MG,
∵M(1,3)
∴MF=1,OF=3
∴MG=3,NG=1
∴FG=MF+MG=1+3=4,
∴OF﹣NG=3﹣1=2,
∴点N 的坐标为(4,2),
(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,
对于直线y =﹣3x+3,由x =0得y =3
∴P (0,3),
∴OP =3
由y =0得x =1,
∴Q (1,0),OQ =1,
∵∠QPR =45°
∴∠PSQ =45°=∠QPS
∴PQ =SQ
∴由(1)得SH =OQ ,QH =OP
∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1
∴S (4,1),
设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3
⎧=-⎪⎨⎪=⎩ ∴直线PR 为y =﹣
12x+3 由y =0得,x =6
∴R (6,0).
【点睛】
本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
27.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】
【分析】
(1)根据三角形的内角和角平分线的定义;
(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;
(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;
(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.
【详解】 解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,
12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠
11180()22ABC ACB =︒-∠+∠, 1180()2
ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902
A =-︒+︒∠, 9032122,
故答案为:122︒;
(2)如图2示,
CE 和BE 分别是ACB ∠和ABD ∠的角平分线,
112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,
ABD A ACB ∴∠=∠+∠, 112()122
A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,
112111222
BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2
QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,
11180()()22
A AC
B A AB
C =︒-∠+∠-∠+∠, 11180()22
A A ABC AC
B =︒-∠-∠+∠+∠,
结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQC
A , 再根据(1),可得180()BPC
PBC PCB 11180
22QBC QCB 1180
902Q 118090582
119;
由(2)可得:11582922R Q ;
故答案为:119,29.
【点睛】
本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
28.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+
【解析】
【分析】
(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;
(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.
【详解】
解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,
∴AC CB =,CD CE =,
又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,
∴ACD ECB ∠=∠,
∴()ADC BEC SAS ∆∆≌.
②∵CDE ∆为等边三角形,
∴60CDE ∠=︒.
∵点A 、D 、E 在同一直线上,
∴180120ADC CDE ∠=︒-∠=︒,
又∵ADC BEC ∆∆≌,
∴120ADC BEC ∠=∠=︒,
∴1206060AEB ∠=︒-︒=︒.
③AD BE =
ADC BEC ∆∆≌,
∴AD BE =.
故填:AD BE =;
(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,
∴AC CB =,CD CE =,
又∵90ACB DCE ∠=∠=︒,
∴ACD DCB ECB DCB ∠+∠=∠+∠,
∴ACD ECB ∠=∠,
在ACD ∆和BCE ∆中,
AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩
,
∴E ACD BC ∆∆≌,
∴
ADC BEC ∠∠=.
∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,
∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.
②∵CDA CEB ∆∆≌,
∴BE AD =.
∵CD CE =,CM DE ⊥,
∴DM ME =.
又∵90DCE ∠=︒,
∴2DE CM =,
∴2AE AD DE BE CM =+=+.
故填:①90°;②2AE BE CM =+.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.
29.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.
【解析】
【分析】
(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α
+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;
(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;
(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.
【详解】
解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,
又△ABE为等边三角形,
∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,
在△ACE中,2α+60°+2β=180°,
∴α+β=60°,
∴∠DFC=α+β=60°;
(2)EF=AF+FC,证明如下:
∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,
∵∠CFD=60°,则∠DCF=30°,
∴CF=2DF,
在EC上截取EG=CF,连接AG,
又AE=AC,
∴∠AEG=∠ACF,
∴△AEG≌△ACF(SAS),
∴∠EAG=∠CAF,AG=AF,
又∠CAF=∠BAD,
∴∠EAG=∠BAD,
∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,
∴△AFG为等边三角形,
∴EF=EG+GF=AF+FC,
即EF=AF+FC;
(3)补全图形如图所示,
结论:AF=EF+2DF .证明如下:
同(1)可设∠BAD =∠CAD =α,∠ACE =∠AEC =β,
∴∠CAE =180°-2β,
∴∠BAE =2α+180°-2β=60°,∴β-α=60°,
∴∠AFC=β-α=60°,
又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,
∴由8字图可得:∠BAD =∠BEF ,
在AF 上截取AG =EF ,连接BG ,BF ,
又AB=BE ,
∴△ABG ≌△EBF (SAS ),
∴BG =BF ,
又AF 垂直平分BC ,
∴BF=CF ,
∴∠BFA=∠AFC=60°,
∴△BFG 为等边三角形,
∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,
∴AF =AG +GF =BF +EF =2DF +EF .
【点睛】
本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.
30.(1)∠AFE =60°;(2)见解析;(3)
75
【解析】
【分析】
(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;
(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;
(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)
【详解】
(1)解:如图1中.
∵ABC 为等边三角形,
∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,
60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩
,
∴ BCE CAD ≌(SAS ),
∴∠BCE =∠DAC ,
∵∠BCE +∠ACE =60°,
∴∠DAC +∠ACE =60°,
∴∠AFE =60°.
(2)证明:如图1中,∵AH ⊥EC ,
∴∠AHF =90°,
在Rt △AFH 中,∵∠AFH =60°,
∴∠FAH =30°,
∴AF =2FH ,
∵ EBC DCA ≌,
∴EC =AD ,
∵AD =AF +DF =2FH +DF ,
∴2FH +DF =EC .
(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、
BK ,
∵∠AFK =60°,AF =KF ,
∴△AFK 为等边三角形,
∴∠KAF =60°,
∴∠KAB =∠FAC ,
在ABK 和ACF 中,
AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩
,
∴ ABK ACF ≌(SAS ),BK CF =
∴∠AKB =∠AFC =120°,
∴∠BKE =120°﹣60°=60°,
∵∠BPC =30°,
∴∠PBK =30°, ∴29BK CF PK CP ===
, ∴79
PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-
= ∴77955
9
CP PF AF CP == . 【点睛】
掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.。