初三数学下册知识点总结

合集下载

九年级下数学所有知识点

九年级下数学所有知识点

九年级下数学所有知识点一、代数与函数1. 整式与分式整式的定义与性质分式的定义与性质2. 一次函数与二次函数一次函数的概念及性质二次函数的概念及性质一次函数与二次函数的图像特征3. 指数与对数指数的概念与性质对数的概念与性质指数函数与对数函数的关系4. 平面直角坐标系与直线平面直角坐标系的引入直线的斜率与方程二、几何1. 四边形与圆四边形的性质与分类圆的概念与性质2. 相似与全等三角形相似三角形的定义与性质全等三角形的定义与性质3. 空间几何体立体几何体的概念与性质立体几何体的计算4. 平行线与比例平行线的性质与判定比例的概念与性质三、概率与统计1. 事件与概率事件的基本概念概率的计算与性质2. 数据的收集与整理数据的统计方式与方法数据的分析与解读3. 统计的图表与分布条形图、折线图、饼图的绘制与解读频率分布表的制作与分析4. 抽样与推断随机抽样的概念与方法样本与总体的关系与推断四、数与量1. 数集与数的性质数集的分类与表示奇偶性、整除与因数2. 分数与小数分数的四则运算与性质小数的运算与应用3. 数量关系与变化比例与比例关系速度与密度的计算4. 三角函数与图形正弦、余弦、正切的概念与性质图形的平移、旋转、翻折与对称以上是九年级下数学的所有知识点的简要概述,涵盖了代数与函数、几何、概率与统计以及数与量等方面的内容。

通过学习这些知识,同学们将能够熟练掌握数学中的基本概念、性质和应用技巧,为进一步的学习做好铺垫,并培养良好的数学思维能力和解决问题的能力。

希望同学们在学习过程中勤加练习,加强对知识的理解与应用,做到理论联系实际,努力提高数学水平。

初三下册数学知识点

初三下册数学知识点

初三下册数学知识点初三下册数学知识点1一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x, =│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的平方根( [a与平方根的区别]);⑵算术平方根与绝对值① 联系:都是非负数,=│a│②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数⑴ ( 幂,乘方运算)① a0时,②a0时, 0(n是偶数), 0(n是奇数)⑵零指数: =1(a0)负整指数: =1/ (a0,p是正整数)初三下册数学知识点2圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

九年级数学每章知识点总结

九年级数学每章知识点总结

九年级数学每章知识点总结数学是一门重要的学科,它对于培养逻辑思维、解决问题的能力非常关键。

九年级是数学学习的关键时期,掌握好每章的知识点对于学生的学习成绩至关重要。

本文将为你详细总结九年级数学每章的知识点。

第一章:函数1. 函数的概念:自变量与因变量的关系。

2. 线性函数:y = kx + b。

3. 一次函数:y = ax + b。

4. 反比例函数:y = k/x。

5. 幂函数:y = x^a。

6. 复合函数:f(g(x))。

7. 函数的图像与性质。

第二章:方程与不等式1. 一元一次方程:ax + b = 0。

2. 一元二次方程:ax^2 + bx + c = 0。

3. 方程的解与性质。

4. 不等式的概念与性质。

5. 一元一次不等式的解法。

6. 一元二次不等式的解法。

第三章:图形的性质及应用1. 二维图形的基本概念:点、线、线段、射线、角、多边形等。

2. 二维图形的相似性与全等性。

3. 三角形的性质与分类。

4. 三角形的面积与周长计算。

5. 四边形的性质与分类。

6. 圆的性质与计算。

第四章:几何变换1. 平移:图形在平面上沿着平行方向移动。

2. 旋转:图形围绕某个点旋转一定角度。

3. 对称:图形以某条线为对称轴对称。

4. 直线的平移与旋转性质。

5. 平移、旋转对图形的影响。

第五章:统计与概率1. 数据的收集与整理。

2. 统计量的计算与应用。

3. 概率的概念与计算。

4. 实际问题中的统计与概率应用。

第六章:三角函数1. 三角函数的定义与性质:正弦函数、余弦函数、正切函数等。

2. 三角函数的图像与周期性。

3. 角度制与弧度制的转换。

4. 三角函数的运算与应用。

第七章:数列与数学归纳法1. 数列的概念与性质。

2. 等差数列与等比数列的计算与应用。

3. 数学归纳法的基本原理与应用。

第八章:立体几何1. 空间图形的基本概念与性质。

2. 空间图形的体积与表面积计算。

3. 空间几何相关问题的解决方法。

每章的知识点都是数学学习的基础,掌握好这些知识对于九年级的学生来说非常重要。

初三数学下册知识点总结

初三数学下册知识点总结

初三数学下册知识点总结一、平面图形的认识1. 点、线、面的基本概念2. 角的概念及角的分类3. 直线的分类及直线的性质4. 平行线的判定方法及平行线的性质5. 三角形的分类及三角形的性质6. 等腰三角形、等边三角形的性质7. 直角三角形、等腰直角三角形的性质8. 平行四边形、菱形、矩形、正方形的性质二、数据处理1. 平均数的概念及计算2. 中位数的概念及计算3. 众数的概念及计算4. 极差的概念及计算5. 百分数及其应用6. 棒形图、折线图、饼图的绘制及解读7. 统计调查设计三、方程式与不等式1. 一元一次方程的解法及应用2. 一元一次方程的解集及解集图的绘制3. 度量图形的方程式4. 解一元一次方程的应用题5. 一元一次不等式的认识及解法6. 一元一次不等式的应用题7. 二元一次方程组的解法及应用四、几何变换与成分比例1. 平移的性质及计算2. 旋转的性质及计算3. 对称的性质及计算4. 两个全等图形之间的性质及计算5. 两个相似三角形之间的性质及计算6. 成分比例的概念及计算7. 成分比例在几何形体中的应用五、平面向量1. 向量的概念及表示法2. 平面向量的加减法及性质3. 向量的数量积与性质4. 平面向量的数量积的性质及应用5. 平面向量的夹角和垂直的判定与计算6. 向量、点及直线的共线关系及应用7. 用平面向量解决平面几何问题六、三角函数1. 角度制与弧度制的相互转换2. 弧度的概念及性质3. 任意角与标准角的关系4. 正弦定理及应用5. 余弦定理及应用6. 正切定理及应用7. 三角函数基本关系式及应用8. 三角函数在直角三角形中的定值七、概率与统计1. 随机事件、样本空间及基本事件的认识2. 频率、概率的概念及计算3. 事件的复合及事件的计算4. 独立事件及概率的计算5. 试验次数的期望及概率模型6. 渐近性及概率的计算7. 初步了解贝叶斯公式及应用以上是初三数学下册的知识点总结,每个知识点都应掌握其概念、性质、计算方法及应用。

九年级数学下册知识点总结(最新最全)

九年级数学下册知识点总结(最新最全)

九年级数学下册知识点总结(最新最全)九年级下册知识点第一章直角三角形边的关系1、正切:定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/∠A的邻边。

①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。

(P1-6,11、P3-6、P4-12)2、正弦:定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边;3、余弦:定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的邻边/斜边;4、余切:定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即cotA=∠A的邻边/∠A的对边;5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。

(通常我们称正弦、余弦互为余函数。

同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则①sinA=cos(90°?∠A)等等。

6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。

(P4-13、P5-15,16、P10-11、P12-3)7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。

0≤sinα≤1,0≤cosα≤1。

同角的三角函数间的关系:tαnα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=18、在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有:(1)三边之间的关系:a2+b2=c2;(2)两锐角的关系:∠A+∠B=90°;(3)边与角之间的关系:sinα等;(4)面积公式;(5)直角三角形△ABC内接圆⊙O的半径为(a+b-c)/2;(6)直角三角形△ABC外接圆⊙O的半径为c/2。

人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结

人教版九年级下册数学知识点总结一、反比例函数的概念反比例函数是指函数y=k/x(k≠0)的形式,其中自变量x 的指数为-1.在解决有关自变量指数问题时,应特别注意系数这一限制条件。

另外,反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。

反比例函数的自变量不能为0,故函数图像与x轴、y轴无交点。

二、反比例函数的图像画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。

由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。

在作反比例函数的图像时,应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

三、反比例函数及其图像的性质1.函数解析式:y=k/x(k≠0)2.自变量的取值范围:x≠03.图像:1)图像的形状:双曲线,曲度越大。

2)图像的位置和性质:当k>0时,图像的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图像的两支分别位于二、四象限;在每个象限内,y随x的增大而增大。

3)对称性:图像关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。

图像关于直线y=x和y=-x对称。

4.k的几何意义如图1,设点P(a,b)是双曲线y=k/x的一点,在双曲线的另一支上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是1/2|k|)。

如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则有三角形PQC的面积为2|k|。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

华师大版九年级[下册]数学知识点总结

华师大版九年级[下册]数学知识点总结

华师大版九年级下册数学知识点总结第二十六章 二次函数一、二次函数概念:1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零。

二次函数的定义域是全体实数。

2、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2。

⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项。

二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质:3. ()2y a x h =-的性质:4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”。

概括成八个字“左加右减,上加下减”。

方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,。

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

九年级下册数学全部知识点

九年级下册数学全部知识点

九年级下册数学全部知识点一、有理数和小数1. 有理数的概念和分类2. 有理数的加法、减法、乘法和除法操作3. 小数的概念和表示方法4. 有限小数和循环小数的转换和运算5. 乘方和开方的计算二、代数式和方程式1. 代数式的概念和基本性质2. 一元一次方程的解法和实际应用3. 一元二次方程的解法和实际应用4. 不等式的解集和图像表示5. 平方差公式和完全平方公式的应用三、函数和图像1. 函数的定义和性质2. 一次函数的表达式、图像和性质3. 二次函数的表达式、图像和性质4. 绝对值函数的表达式、图像和性质5. 渐近线和奇偶性的判断四、几何图形与变换1. 平行线和垂直线的性质及判定2. 三角形的分类、性质和判定3. 四边形的分类、性质和判定4. 圆的性质和常见定理5. 平移、旋转、翻转和投影变换五、统计与概率1. 统计图表的制作和分析2. 中心、离散和形状的度量3. 概率的基本概念和计算方法4. 事件的独立性和互斥性以上列举了九年级下册数学的全部知识点,从有理数和小数的基础概念,到代数式和方程式的解法,再到函数和图像的性质和变换,以及几何图形和统计概率的应用,包含了数学学科的主要内容。

在学习这些知识点时,需要掌握基本的计算方法和推理能力,以及运用数学知识解决实际问题的能力。

数学作为一门学科,不仅有自己严谨的逻辑和推理规律,还有广泛的应用领域。

通过学习九年级下册数学知识,不仅可以提高我们的数学素养,还能培养我们的分析问题和解决问题的能力。

希望同学们能够认真学习,掌握这些知识,为将来更高层次的数学学习打下坚实的基础。

九年级下册数学知识点汇总(人教版)

九年级下册数学知识点汇总(人教版)

九年级下册(人教版数学)知识点汇总目录反比例函数 (1)26.1反比例函数 (1)● 反比例函数的定义 (1)● 反比例函数的图像 (1)● 反比例函数图像的对称性 (1)● 反比例函数的性质 (2)● 反比例函数系数k的几何意义 (2)● 反比例函数图像上点的坐标特征 (2)● 待定系数法求反比例函数解析式 (2)● 反比例函数与一次函数的交点问题 (3)26.2实际问题与反比例函数 (3)● 根据实际问题列反比例函数关系式 (3)● 反比例函数的应用 (4)相似 (5)27.1图形的相似 (5)● 相似图形 (5)27.2相似三角形 (5)● 相似三角形的判定 (5)● 相似三角形的应用 (5)● 相似多边形的性质 (5)● 相似三角形的性质 (6)● 相似三角形的判定与性质 (6)● 作图--相似变换 (6)● 射影定理 (6)27.3位似 (7)● 位似变换 (7)● 作图-位似变换 (7)锐角三角函数 (8)28.1锐角三角函数 (8)● 锐角三角函数的定义 (8)● 锐角三角函数的增减性 (8)● 同角三角函数的关系 (8)● 互余两角三角函数的关系 (9)● 特殊角的三角函数值 (9)28.2解直角三角形及其应用 (9)● 解直角三角形 (9)● 解直角三角形的应用 (10)● 解直角三角形的应用--坡度坡角问题 (10)● 解直角三角形的应用--仰角俯角问题 (10)● 解直角三角形的应用--方向角问题 (10)投影与视图 (11)29.1投影 (11)● 平行投影 (11)● 中心投影 (11)● 视点、视角和盲区 (11)29.2三视图 (11)● 简单几何体的三视图 (11)● 简单组合体的三视图 (12)● 由三视图判定几何体 (12)● 作图--三视图 (12)29.3课题学习、制作立体模型 (12)● 课题学习制作立体模型 (12)反比例函数26.1反比例函数●反比例函数的定义【反比例函数的概念】形如的函数称为反比例函数.其中是自变量,是函数,自变量的取值范围是不等于的一切实数.【反比例函数的判断】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为或.●反比例函数的图像【反比例函数的图象】反比例函数的图象是由两条曲线组成的,这两条曲线通常称为双曲线当k>0时,两个分支分别位于第一、三象限内;当k<0时,两个分支分别位于第二、四象限①k>0②K<0●反比例函数图像的对称性【反比例函数图象的对称性】1、反比例函数图象本身既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=-x ;一、三象限的角平分线y=x ;对称中心是:坐标原点.2、若经过原点的直线与反比例函数交于两点,则这两点关于原点对称;3、反比例函数与的图象关于x轴,y轴对称.●反比例函数的性质●反比例函数系数k的几何意义【反比例系数的几何意义】1.在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.2.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.●反比例函数图像上点的坐标特征【反比例函数图象上的点的坐标特征】1. 若点在反比例函数图象上,则点的横纵坐标满足反比例函数解析式2. 若点在反比例函数图象上,则也一定在反比例函数图象上3. 若点A(x,y)在反比例函数的图像上,则xy=k●待定系数法求反比例函数解析式【待定系数求反比例函数解析式的一般步骤】(1)设出含有待定系数的反比例函数解析式;(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.●反比例函数与一次函数的交点问题【反比例函数与一次函数的交点】1.(1)求反比例函数与一次函数的交点坐标时,先把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,方程组无解,则两者无交点;(2)已知反比例函数与一次函数的交点坐标,把点的坐标带入函数解析式可求得函数关系式或系数间的等量关系.2.判断正比例函数和反比例函数在同一直角坐标系中的交点个数可总结为:(1)当k1与k2同号时,正比例函数和反比例函数在同一直角坐标系中有2个交点;(2)当k1与k2异号时,正比例函数和反比例函数在同一直角坐标系中有0个交点.26.2实际问题与反比例函数●根据实际问题列反比例函数关系式【列反比例函数关系式的一般解题思路】根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式,或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.【根据实际问题列反比例函数的步骤】步骤1:审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系。

九年级数学下册知识点总结

九年级数学下册知识点总结

图1九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

初三数学知识点总结

初三数学知识点总结

初三数学知识点总结初三数学知识点总结「篇一」一、代数式1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。

单独的一个数或字母也是代数式。

2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。

单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

初三数学知识点总结「篇二」有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

(完整版)新北师大九年级数学下册知识点总结

(完整版)新北师大九年级数学下册知识点总结

图1新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。

2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。

二.特殊角的三角函数值三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。

(2)0≤sin α≤1,0≤cos α≤1。

4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。

用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。

如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。

初三数学知识点归纳总结(通用5篇)

初三数学知识点归纳总结(通用5篇)

初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。

初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

初三数学主要知识点

初三数学主要知识点

初三数学主要知识点初三下册数学知识点总结一、锐角三角函数正弦等于对边比斜边余弦等于邻边比斜边正切等于对边比邻边余切等于邻边比对边正割等于斜边比邻边二、三角函数的计算幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...及a都是常数,这种级数称为幂级数.泰勒展开式(幂级数展开法)f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...三、解直角三角形1.直角三角形两个锐角互余。

2.直角三角形的三条高交点在一个顶点上。

3.勾股定理:两直角边平方和等于斜边平方四、利用三角函数测高1、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.初三数学复习资料轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

九年级下册数学相似-知识点总结

九年级下册数学相似-知识点总结

九年级下册数学相似-知识点总结数学是一门让人们头疼的学科,尤其是在九年级下册的数学中,相似这个概念可能是让学生犯迷糊的一个知识点。

相似是几何学中一个非常重要的概念,它在解决几何问题时经常被运用。

在本文中,我将对九年级下册数学中与相似有关的知识进行总结和归纳,希望能够为同学们带来一些帮助。

1. 相似的基本概念相似指的是两个或多个图形在形状上相同,但是大小不同的情况。

当两个图形相似时,它们的对应边长之比相等,而对应的角度也相等。

这就是相似的基本概念。

在解决相似问题时,我们通常会用到比例和比例的性质。

2. 相似三角形相似三角形是相似的一个重要例子。

在解决相似三角形的问题时,我们可以利用三角形内角、相似三角形边长的比例关系,运用相似三角形的性质解题。

此外,还可以运用相似三角形的性质证明一些结论,如直角三角形斜边上的中线等于斜边的一半。

3. 相似的判定条件在判断两个图形是否相似的情况下,我们有一些判定条件可以依据。

其中一个常见的判定条件是AA相似判定法,也就是两个图形的对应角相等。

另一个常见的判定条件是三边比例相等判定法,也就是两个图形的三条边对应的比值相等。

这些判定条件可以帮助我们在解决相似问题时迅速确定是否相似。

4. 相似比例的运用相似比例是解决相似问题的关键。

当我们确定了两个相似图形之间的比例关系后,我们可以利用相似比例计算未知边长或角度,并解决与相似有关的各种几何问题。

在运用相似比例时,我们需要注意单位的转换和计算的准确性。

5. 长方体与正方体的相似在相似的概念中,长方体与正方体的相似问题也是常见的。

当两个立体图形相似时,它们的对应面的积之比等于对应边长的比值的平方。

我们可以运用这一性质解决立体几何中的相似问题,例如求解一个长方体与正方体的边长比例。

总结起来,在九年级下册的数学学习中,相似是一个重要的几何概念,掌握相似的基本概念、判定条件和相似比例的运用是解决相似问题的关键。

要注意运用相似比例时的单位转换和计算准确性。

初三数学知识点归纳总结精华

初三数学知识点归纳总结精华

初三数学知识点归纳总结精华
以下是初三《数学》的知识点归纳总结精华:
1. 代数基础:学习代数中的基本概念,如代数式、方程、函数等;掌握代数运算的基本规则和性质。

2. 几何基础:学习几何中的基本概念和基本性质,如点、线、面、图形等;了解平面几何和立体几何的基本知识和计算方法。

3. 数与式:学习整数、有理数、小数、分数等数的性质和运算规则;掌握数与式的相互转化和应用。

4. 直线与线段:了解直线与线段的性质和关系,掌握直线的斜率、方程和图形的表示方法。

5. 平面图形:学习平面图形的性质和分类,如三角形、四边形、多边形等;掌握计算图形的面积和周长的方法。

6. 空间几何:了解空间图形的性质和分类,如球体、长方体、棱锥等;掌握计算空间图形的体积和表面积的方法。

7. 数据和统计:学习数据的收集、整理和分析方法;了解统计图表的制作和解读。

8. 函数与方程:学习函数的概念和性质,了解线性函数、二次函数等常见函数的特点;掌握解方程的基本方法和应用。

9. 概率与统计:了解概率的基本概念和计算方法,掌握统计的基本原理和数据的描述方式。

10. 数学建模:培养数学建模的思维和能力,运用数学知识解决实际问题。

以上是初三《数学》的一些知识点的归纳总结精华,涵盖了代数基础、几何基础、数与式、直线与线段、平面图形、空间几何、函数与方程、数据和统计、概率与统计、数学建模等方面的内容。

希望对你有帮助!。

九年级数学下册重要知识点总结

九年级数学下册重要知识点总结

初三数学下册重要知识点总结第 25章概率1、必然事件、不可能事件、随机事件的区别2、概率注意:( 1)概率是随机事件发生的可能性的大小的数量反映.( 2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.3、求概率的方法(1)用列举法求概率(列表法、画树形图法)(2)用频率估计概率:一方面,可用大量重复试验中事件发生频率来估计事件发生的概率. 另一方面 , 大量重复试验中事件发生的频率稳定在某个常数 ( 事件发生的概率 ) 附近,说明概率是个定值 , 而频率随不同试验次数而有所不同 , 是概率的近似值 , 二者不能简单地等同 .第 26 章二次函数1.二次函数的一般形式:y=ax2+bx+c.(a ≠ 0)4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c ,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c 的值 ,从而求出解析式 -------待定系数法.5.二次函数的顶点式:y=a(x-h)2+k(a≠ 0) ;由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k.6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设2解析式为y=a(x -h) + k ,再代入另一点的坐标求a,从而求出解析式.8.二次函数 y=ax 2+bx+c (a ≠ 0) 的图象及几个重要点的公式:9. 二次函数y=ax 2+bx+c (a ≠ 0) 中, a、b、 c 与的符号与图象的关系:(1)a> 0<=>抛物线开口向上; a < 0 <=>抛物线开口向下;(2)c> 0<=>抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c< 0<=>抛物线从原点下方通过;(3)a, b异号 <=> 对称轴在 y 轴的右侧; a, b 同号 <=> 对称轴在 y 轴的左侧;b=0 <=>对称轴是 y 轴;(4)b2- 4ac > 0<=> 抛物线与 x 轴有两个交点;b2- 4ac =0 <=>抛物线与x轴有一个交点(即相切); b 2-4ac < 0 <=>抛物线与 x 轴无交点 .10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.第 27章相似形1“平行出比例”定理及逆定理:几何表达式举例:( 1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段(1) ∵DE∥BC ∴ADAE成比例;DB EC AD E(2) ∵DE∥BC∴AD AEDE( 1)( 3)A(2)AC AB ∵ AD AEB C(3)∴DE∥BCB C DB EC2.比例的基本性质:a:b=c:d a c;ad=bcb d3.定理:“平行”出相似平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.4.定理:“ AA”出相似如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.5.定理:“ SAS”出相似如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似 .AE几何表达式举例:DADE∽ ABC∵ DE∥BC∴DAEB CCB A几何表达式举例:E∵∠ A=∠A又∵∠ AED=∠ACB∴Δ ADE∽ABCDB C几何表达式举例:AE∵AD AB又∵∠ A=∠ADAE AC∴Δ ADE∽ABCB C6.“双垂”出相似及射影定理:几何表达式举例:( 1)直角三角形被斜边上的高分成的两个直角三角A(1) ∵AC⊥CB形和原三角形相似;D又∵ CD⊥AB ∴ACD∽Δ CBD∽Δ ABC( 2)双垂图形中,两条直角边是它在斜边上的射影(2)2∵AC⊥CB CD⊥AB ∴ AC=AD· AB和斜边的比例中项,斜边上的高是它分斜边所成BBC2 =BD· BA DC2 =DA·DB 两条线段的比例中项 .C7.相似三角形性质:A( 1)相似三角形对应角相等,对应边成比例;E ( 2)相似三角形对应高的比,对应中线的比,对应角平分线、周长的比都等于相似比;( 3)相似三角形面积的比,等于相似比的平方.B DC FHG(1) ∵ ABC∽ΔEFG(2) ∵Δ ABC∽ EFG S∴AB BC AC又∵ AD、EH是对应中线(3) ∵Δ ABC∽ EFG ∴∠BAC=∠FEG S2ABCABEFGEFEF FG EG∴AD ABEH EF四、位似1、利用位似,可以将一个图形放大或缩小.作图时要注意: ①首先确定位似中心,位似中心的位置可随意选择; ②确定原图形的关键点, 如四边形有四个关键点, 即它的四个顶点;③确定位似比, 根据位似比的取值, 可以判断是将一个图形放大还是缩小; ④符合要求的图形不惟一, 因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形.第 28 章解三角形1. 三角函数的定义:在 Rt ABC 中 , 如∠ C=90°,那么sinA=对a;cosA=对 b; tanA=对a;cotA=邻b .斜c斜c邻b对aBac2.余角三角函数关系 ------“正余互化公式”如∠ A+∠ B=90° , 那么: sinA=cosB ; cosA=sinB;tanA=cotB;cotA=tanB.3. 同角三角函数关系:22;tanA ·co tA =1. tanA=sin Asin A+cos A =1 cos A4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余CbA切函数随角的增大,函数值反而减小.Ak, 它可以推出特殊5.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设角的直角三角函数值,要熟练记忆它们.60 °2KK∠ A30°45°60°30°sinA1 2 3 C3KB22 2AcosA3 2 12K22 2 KtanA3 1345 °3 CK BcotA31336. 解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边 .7.坡度: i = 1:m = h/l = tanα ; 坡角 : α .8. 方位角:h北偏西30i=1:m北a东 l南偏东709.仰角与俯角:铅垂线仰角俯角水平线。

初三年级下学期数学知识点归纳

初三年级下学期数学知识点归纳

初三年级下学期数学知识点归纳【导语】学习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,勤奋至关重要!只有勤奋学习,才能成就美好人生!勤奋出天才,这是一面永不褪色的旗帜,它永远激励我们不断追求、不断探索。

有书好好读,有书赶快读,读书的时间不多。

只要我们刻苦拼搏、一心向上,就一定能取得令人满意的成绩。

下面是无忧考网为您整理的《初三年级下学期数学知识点归纳》,仅供大家参考。

形如y=k/x(k为常数且k≠0,x≠0,y≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为�Ok�O。

当K>0时,反比例函数图像经过一,三象限,是减函数(即y随x的增大而减小)当K<0时,反比例函数图像经过二,四象限,是增函数(即y随x的增大而增大)由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/x(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)【篇二:二次函数】知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学下册重要知识点总结
第26章二次函数
1. 二次函数的一般形式:y=ax2+bx+c (a≠0)。

2.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式---待定系数法。

3.二次函数的顶点式:y=a(x-h)2+k (a≠0);由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h和函数的最值y最值= k。

4.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式。

5. 二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式:
6. 二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:
(1) a>0 <=> 抛物线开口向上;a<0 <=> 抛物线开口向下。

(2) c>0 <=> 抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;
c<0 <=> 抛物线从原点下方通过。

(3) a, b异号<=> 对称轴在y轴的右侧;
a, b同号<=> 对称轴在y轴的左侧;
b=0 <=> 对称轴是y轴。

(4) b2-4ac>0 <=> 抛物线与x轴有两个交点;
b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切);
b2-4ac<0 <=> 抛物线与x轴无交点。

7.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上。

初三数学下册重要知识点总结
第27章 相似形
2.比例的基本性质: a:b=c:d
d
c
b a = ad=b
c ;
A
B
C c
b
a 初三数学下册重要知识点总结
第28章 解三角形
1.三角函数的定义:在Rt ΔABC 中,如∠C=90°,那么
sinA=
c a =斜对; cosA=c b =斜对;tanA=b
a
=邻对; cotA=
a b =对邻. 2.余角三角函数关系 ------ “正余互化公式” 如∠A+∠B=90°, 那么:
sinA=cosB ; cosA=sinB ; tanA=cotB ;cotA=tanB. 3. 同角三角函数关系:
sin 2A+cos 2A =1; tanA·co tA =1. tanA=
A
cos A sin 4. 函数的增减性:在锐角的条件下,正弦,正切函数随角的增大,函数值增大;余弦,余切函
数随角的增大,函数值反而减小.
5
.特殊角的三角函数值:如图:这是两个特殊的直角三角形,通过设k, 它可以推出特殊角的直角三角函数值,要熟练记忆它们.
6.解直角三角形:对于直角三角形中的五个元素,可以“知二可求三”,但“知二”中至少应该有一个是边.
7.坡度: i = 1:m = h/l = tan α; 坡角: α.8. 方位角:
9.仰角与俯角:

东北偏西30
南偏东70
仰角俯角
水平线
铅垂线
l
h
a i=1:m
K
3 K
K
K
K
2 K
230°
45°
60°
A
B
C A
B
C。

相关文档
最新文档