四川大堰劳动教养管理所实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大堰劳动教养管理所实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列计算正确的是()
A. B.
C. D.
【答案】C
【考点】算术平方根,立方根及开立方
【解析】【解答】解:A、,故A不符合题意;
B、,故B不符合题意;
C、,故C符合题意;
D、+≠,故D不符合题意;
故答案为:C
【分析】根据算术平方根及立方根的意义,即可求解。
2、(2分)-2a与-5a的大小关系()
A.-2a<-5a
B.2a>5a
C.-2a=-5b
D.不能确定
【答案】D
【考点】实数大小的比较
【解析】【解答】解:当a>0时,-2a<-5a;当a<0时,-2a>-5a;当a=0时,-2a=-3a;所以,在没有确定a 的值时,-2a与-5a的大小关系不能确定.故答案为:D.
【分析】由题意分三种情况:当a>0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。
当a=0时,根据0乘任何数都得0作出判断即可。
当a<0时,根据两数相乘同号得正,异号得负,再利用两个负数绝对值大的反而小,进行比较,然后作出判断。
3、(2分)利用数轴确定不等式组的解集,正确的是()
A.
B.
C.
D.
【答案】A
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集
的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.
故答案为:A.
【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、(2分)不等式组的解集在数轴上表示为()
A.
B.
C.
D.
【答案】C
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:不等式组可得,AC项,x≤2,不符合题意;D项,x﹣1,x≤2,不符合题意。
故答案为:C
【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
5、(2分)如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()
A. 25°
B. 30°
C. 45°
D. 60°
【答案】B
【考点】角的运算,对顶角、邻补角
【解析】【解答】∵∠EOD=90°,∴∠COE=90°,∵∠AOE=2∠AOC,∴∠AOC=30°,∴∠AOE=2∠AOC=30°,故答案为:B.
【分析】根据图形和已知得到∠EOD、∠COE是直角,由∠AOE=2∠AOC,对顶角相等,求出∠DOB的度数.
6、(2分)如图为雷锋中学八年级(2)班就上学方式作出调查后绘制的条形图,那么该班步行上学的同学比骑车上学的同学()
A. 少8人
B. 多8人
C. 少16人
D. 多16人
【答案】A
【考点】条形统计图
【解析】【解答】解:该班步行上学的同学比骑车上学的同学少16﹣8=8(人),
故答案为:A
【分析】根据统计图得出步行上学的人数和骑车上学的人数,两个数的差即可确定结论.
7、(2分)一个数若有两个不同的平方根,则这两个平方根的和为()
A.大于0
B.等于0
C.小于0
D.不能确定
【答案】B
【考点】平方根
【解析】【解答】解:∵正数的平方根有两个,一正一负,互为相反数,
∴这两个平方根的和为0。
故答案为:B.
【分析】根据正数平方根的性质,结合题意即可判断。
8、(2分)当0<x<1时,、x、的大小顺序是()
A.
B.
C.
D.
【答案】A
【考点】实数大小的比较,不等式及其性质
【解析】【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<<x,在不等式0<x<
1的两边都除以x,可得0<1<,
又∵x<1,∴、x、的大小顺序是:,
故答案为:A.
【分析】先在不等式根据不等式的性质②先把不等式0<x<1 两边同时乘以x,再把不等式0<x<1 两边同时除以x,最后把所得的结果进行比较即可作出判断。
9、(2分)如图,下列结论中,正确的是()
A. ∠1和∠2是同位角
B. ∠2和∠3是内错角
C. ∠2和∠4是同旁内角
D. ∠1和∠4是内错角
【答案】C
【考点】同位角、内错角、同旁内角
【解析】【解答】解:A、由同位角的概念可知,∠1与∠2不符合同位角,故答案为:项错误;
B、由内错角的概念可知,∠2与∠3不符合内错角,故答案为:项错误;
C、由同位角同旁内角的概念可知,∠BDE与∠C是同旁内角,故答案为:项正确;
D、由内错角的概念可知,∠1与∠4不符合内错角,故答案为:项错误.故答案为:C.
本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完
全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
【分析】∠2和∠4是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的同旁,在第三条直线的内部,是同旁内角。
10、(2分)下列方程中,是二元一次方程的是()
A.3x﹣2y=4z
B.6xy+9=0
C.
D.
【答案】D
【考点】二元一次方程的定义
【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D
【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。
11、(2分)下列四幅图中,∠1和∠2是同位角的是()
A. (1)、(2)
B. (3)、(4)
C. (1)、(2)、(3)
D. (2)、(3)、(4)
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故答案为:A.【分析】根据同位角的定义,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,观察图形即可得出答案。
12、(2分)如图,直线a∥b,c⊥a,则c与b相交所形成的∠2度数为()
A. 45°
B. 60°
C. 90°
D. 120°
【答案】C
【考点】垂线,平行线的性质
【解析】【解答】解:∵c⊥a,
∴∠1=90°,
∵a∥b,
∴∠2=∠1=90°.
故答案为:C.
【分析】根据垂直的定义求出∠1度数,再根据平行线的性质,得出∠2=∠1,即可得出答案。
二、填空题
13、(1分)某校为了举办庆祝中国共产党成立96周年的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有________
人.
【答案】100
【考点】扇形统计图,条形统计图
【解析】【解答】解:由图表可得:总人数为:180÷45%=400(人),故这所学校赞成举办演讲比赛的学生有:
400×(1﹣45%﹣30%)=100(人).
故答案为:100
【分析】根据A在两个统计图中的数据先计算总人数,然后根据扇形统计图计算赞成举报演讲比赛的学生的比例,最后乘以400可得对应的人数.
14、(1分)图,∠1=∠2=40°,MN平分∠EMB,则∠3=________
【答案】110
【考点】平行线的判定与性质
【解析】【解答】解:∵∠2=∠MEN,∠1=∠2=40°,
∴∠1=∠MEN,
∴AB∥CD,
∴∠3+∠BMN=180°,
∵MN平分∠EMB,
∴∠BMN= ,
∴∠3=180°﹣70°=110°.
故答案为:110
【分析】对顶角相等转化为同位角相等,两直线平行;从而得到∠BME=,又因为MN平分∠BME,所以∠BMN=,因为两直线平行,同旁内角互补,所以可知∠3的度数.
15、(1分)如图1是运动员的领奖台,最高处的高为1m,底边宽为2m,为了美观要在上面铺上红地毯(如图1中的阴影处),则至少需要红地毯________ m.
【答案】4
【考点】平移的性质
【解析】【解答】解:如图2所示,
通过平移后,原来地毯的AB,CD的长之和就是ST的长;原来BC,DE,FG的长之和就是PQ的长;原来EF,GH的长之和就是XY的长,所以要在领奖台上铺上的红地毯的长就是ST,PQ和XY这三段的长之和.根据题意,领奖台的高为1m,底边宽为2m,那么ST与XY的长都是1m,PQ的长是2m,因此至少需要红地毯(1+1+2)m,即为4m.
故答案为:4
【分析】通过平移可将BC、FG两线段向上平移到与DE在同一直线的位置,将线段DC、EF向两边平移至与AB、GH在同一直线的位置,这样领奖台就变成了矩形,再求出两宽加一长的长度,最后乘以台阶宽度即可.
16、(1分)如图,数学课代表用折线统计图呈现了A、B两名同学最近5次的数学成绩,由统计图可知,________同学的进步大.
【答案】A
【考点】折线统计图
【解析】【解答】解:由图可知,A、B两名同学第一次成绩都是70分,折线从左往右逐渐上升,即5次成绩是逐渐提高,到第5时A同学成绩在90分以上,B同学只达到85分,所以A同学的进步
大故答案为A.
【分析】进步的大小,在相同的条件下,取决于最后一次的成绩与第一次的成绩差,两位同学都是五次成绩并且都是逐次上升的条件下,A同学最后一次的成绩与第一次的成绩差是90-70=20 B同学最后一次的成绩与
第一次的成绩差是85-70=15 故A同学进步大。
17、(1分)的立方根是________.
【答案】
【考点】立方根及开立方
【解析】【解答】∵,∴的立方根是.故答案为:【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。
根据立方根的意义可求解。
18、(1分)如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有________个.
【答案】6
【考点】解一元一次不等式组,一元一次不等式组的特殊解
【解析】【解答】解:原不等式组可变形为
所以≤x≤,
因为不等式组仅有1,2两个整数解,
所以0< ≤1,2≤<3,
从而解得0<a≤3,4≤b<6,
所以a可取1,2,3,b可取4,5,
所以这样的有序数对有6个【分析】先求出不等式组的解集,再根据不等式组的整数解仅有1、2确定a、b的取值范围,就可确定a、b的整数值,即可求解。
三、解答题
19、(5分)
【答案】解:,
(1)+(2)得:
4x+8z=12 (4),
(2)×2+(3)得:
8x+9z=17 (5),
(4)×2-(5)得:
7z=7,
∴z=1,
将z=1代入(4)得:
x=1,
将x=1,z=1代入(1)得:
y=2.
∴原方程组的解为:.
【考点】三元一次方程组解法及应用
【解析】【分析】(1)+(2)得4x+8z=12 (4),(2)×2+(3)得8x+9z=17 (5),从而将三元转化成了二元;(4)×2-(5)可解得z的值,将z值代入(4)可得x值,再将x、z的值代入(1)可得y的值,从而可得原方程组的解.
20、(5分)解方程组
【答案】解:有①得x+2(2x+3y-4z)=12④
将③整体代入④得x=2
将x=2代入②、③得
得13y=-13故y=-1
将y=-1代入⑤得z=-1
所以原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】整体代入法是代入法的一种,它类似于换元法.实质上,为了解一次方程组,用代人消元法和加减消元法是完全可以胜任的.如本例我们不用整体代人,而直接用①-③×2,同样可得到x=2.
21、(5分)
【答案】解:,
(1)-(2)得:
4y-4z=2a-2b(4),
(1)×3+(3)得:
4y-8z=6a+2c(5),
(4)-(5)得:
z=-,
∴y=-,x=-.
∴原方程组的解为:.
【考点】三元一次方程组解法及应用
【解析】【分析】(1)-(2)可得4y-4z=2a-2b(4),(1)×3+(3)可得4y-8z=6a+2c(5),将(4)-(5)可求得z值,将z值分别代入(4)、(1)可求得x、y的值,从而得出原方程组的解.
22、(5分)计算:﹣3tan30°﹣﹣2.
【答案】解:原式=3 ﹣3×﹣4=2﹣4
【考点】实数的运算
【解析】【分析】先求出特殊角的三角函数值,再根据实数的运算法则计算即可.
23、(5分)有一潜望镜模型,如图,AB,CD是两面平行放置的镜子,现有入射光线l1经AB,CD反射后成为
反射光线l2,已知∠1=∠2,∠3=∠4,你能说明l1与l2平行吗?
【答案】解:如图,因为AB∥CD,
所以∠2=∠3(两直线平行,内错角相等).
又因为∠1=∠2,∠3=∠4,
所以∠1=∠2=∠3=∠4.
又因为∠5=180°-(∠1+∠2),∠6=180°-(∠3+∠4),
所以∠5=∠6,
所以l1∥l2(内错角相等,两直线平行)
【考点】平行线的判定与性质
【解析】【分析】根据平行线的性质,可证得∠2=∠3,再根据已知证明∠1=∠2=∠3=∠4,然后证明∠5=∠6,根据平行线的判定即可得证。
24、(5分)初中一年级就“喜欢的球类运动”曾进行过问卷调查,每人只能报一项,结果300人回答的情况如下表,请用扇形统计图表示出来,根据图示的信息再制成条形统计图。
排球25
篮球50
乒乓球75
足球100
其他50
【答案】解:如图:
【考点】扇形统计图,条形统计图
【解析】【分析】由统计表可知,喜欢排球、篮球、乒乓球、足球、其他的人数分别为25、50、75、100、
50,据此可画出条形统计图;同时可得喜欢排球、篮球、乒乓球、足球、其他的所占比,从而可算出各扇形圆心角的度数,据此画出扇形统计图。
25、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。
26、(10分)已知一件文化衫价格为18元,一个书包的价格比一件文化衫价格的2倍还少6元.
(1)求一个书包的价格是多少元?
(2)某公司出资1 800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?
【答案】(1)解:18×2﹣6=30(元),所以一个书包的价格是30元
(2)解:设还能为x名学生每人购买一个书包和一件文化衫,根据题意得:
350≤1 800-(18+30)x≤400.
解得:.
∵x为正整数,∴x=30.
答:剩余经费还能为30名学生每人购买一个书包和一件文化衫.
【考点】一元一次不等式的特殊解,一元一次不等式组的应用
【解析】【分析】(1)由一件文化衫价格为18元,一个书包的价格比一件文化衫价格的2倍还少6元,列出算式根据有理数的混合运算算出答案即可;
(2)设还能为x名学生每人购买一个书包和一件文化衫,则买书包和文化衫的总费用为(18+30)x 元,买完书包和文化衫后还剩余的钱为[ 1 800-(18+30)x]元,这些钱将用来奖给山区小学的优秀学生,根据奖给优秀学生的总费用不少于350元但不超过400元,即可列出不等式组,求解并取出整数解即可。