海南省海口市秀英区枫叶国际学校高二物理上学期精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省海口市秀英区枫叶国际学校高二物理上学期精选试卷检测题
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图所示,空间有竖直方向的匀强电场,一带正电的小球质量为m ,在竖直平面内沿与水平方向成30º角的虚线以速度v 0斜向上做匀速运动.当小球经过O 点时突然将电场方向旋转一定的角度,电场强度大小不变,小球仍沿虚线方向做直线运动,选O 点电势为零,重力加速度为g ,则
A .原电场方向竖直向下
B .改变后的电场方向垂直于ON
C .电场方向改变后,小球的加速度大小为g
D .电场方向改变后,小球的最大电势能为2
04
mv
【答案】CD 【解析】 【分析】 【详解】
开始时,小球沿虚线做匀速运动,可知小球受向下的重力和向上的电场力平衡Eq=mg ,小球带正电,则电场竖直向上,选项A 错误;改变电场方向后,小球仍沿虚线做直线运动,可知电场力与重力的合力沿着NO 方向,因Eq=mg ,可知电场力与重力关于ON 对称,电场方向与NO 成600,选项B 错误;电场方向改变后,电场力与重力夹角为1200,故合力大小为mg ,小球的加速度大小为g ,选项C 正确;电场方向改变后,小球能沿ON 运动的距离为
202m v x g = ,则克服电场力做功为:22
0011cos 60224
m v W Eq x mg mv g ==⨯= ,故小球的
电势能最大值为
2
014
mv ,选项D 正确;故选CD.
2.如图所示,带电小球a 由绝缘细线PM 和PN 悬挂而处于静止状态,其中PM 水平,地面上固定一绝缘且内壁光滑的圆弧细管道GH ,圆心P 与a 球位置重合,管道底端H 与水平地面相切,一质量为m 可视为质点的带电小球b 从G 端口由静止释放,当小球b 运动到H 端时对管道壁恰好无弹力,重力加速度为g 。

在小球b 由G 滑到H 过程中,下列说法中正确的是( )
A .小球b 机械能保持不变
B .小球b 所受库仑力大小始终为2mg
C .细线PM 的拉力先增大后减小
D .小球b 加速度大小一直变大 【答案】ACD 【解析】 【详解】
A .小球b 所受库仑力和管道的弹力始终与速度垂直,即只有重力做功,所以小球b 机械能守恒,故A 正确;
B .小球b 机械能守恒,从G 滑到H 过程中,有:
212
mgR mv =
H 处有:
2
-库m F mg =R
v
则有:
F 库=3mg
故B 错误;
C .设PN 与竖直方向成α角,对球a 受力分析,将其分解: 竖直方向上有:
F PN cos α=mg +F 库sin θ
水平方向上有:
F 库cos θ+F PN sin α=F PM 。

解得:
(3)
PM mgcos F mgtan cos θααα
-=+
下滑时θ从0增大90°,细线PM 的拉力先增大后减小,故C 正确;
D .设b 与a 的连线与水平方向成θ角,则有:任意位置加速度为向心加速度和切向加速度合成,即为:
()22
2
221
2
()5322
v cos a a a gcos g R θθ-=+=+=
可知小球的加速度一直变大,故D 正确。

故选ACD 。

3.如图所示,在光滑水平面上相距x=6L的A、B两点分别固定有带正电的点电荷Q1、
Q2,与B点相距2L的C点为AB连线间电势的最低点.若在与B点相距L的D点以水平向左的初速度
v释放一个质量为m、带电荷量为+q的滑块(可视为质点),设滑块始终在A、B 两点间运动,则下列说法中正确的是()
A.滑块从D→C运动的过程中,动能一定越来越大
B.滑块从D点向A点运动的过程中,加速度先减小后增大
C.滑块将以C点为中心做往复运动
D.固定在A、B两点处的点电荷的电荷量之比为2
1
4:1
Q Q=

【答案】ABD
【解析】
【详解】
A.A和B两点分别固定正点电荷Q1与Q2,C点为连线上电势最低处;类比于等量同种点电荷的电场的特点可知,AC之间的电场强度的方向指向C,BC之间的电场强度指向C;滑块从D向C的运动过程中,电荷受到的电场力的方向指向C,所以电场力先做正功做加速运动,动能一定越来越大,故A正确;
B.由同种正电荷的电场分布可知C点的场强为零,从D到A的场强先减小后增大,由
qE
a
m
=可得加速度向减小后增大,B正确;
D.x=4L处场强为零,根据点电荷场强叠加原理有
22
(4)(2)
A B
Q Q
k k
L L
=,
解得
4
1
A
B
Q
Q
=,
故D正确.
C.由于两正电荷不等量,故滑块经过C点后向左减速到零的位移更大,往复运动的对称点在C点左侧,C错误。

故选ABD。

【点睛】
本题考查场强的叠加与库仑定律的运用,在解题时合适地选择类比法和对称性,运用牛顿第二定律分析即可求解。

4.在电场强度为E的匀强电场中固定放置两个小球1和2,它们的质量相等,电荷量分别为1q和2q(12
q q
≠).球1和球2的连线平行于电场线,如图所示.现同时放开球1和
球2,于是它们开始在电场力的作用下运动.如果球1
和球2之间的距离可以取任意有限值,则两球刚被放开时,它们的加速度可能是( ).
A .大小不等,方向相同
B .大小不等,方向相反
C .大小相等,方向相同
D .大小相等,方向相反
【答案】ABC 【解析】 【详解】
AC .当两球的电性相同时,假定都带正电,则两球的加速度分别为:
12121kq q Eq l a m +
=
12222kq q Eq l a m
-
=
由于l 可任意取值,故当1
2kq E l
>
时,加速度1a 、2a 方向都是向右,且1a 、2a 的大小可相等,也可不相等,故AC 正确;
B .再分析1a 和2a 的表达式可知,当12kq
E l
<时,1a 和2a 方向相反,大小则一定不相等,
故B 正确;
D .将小球1和小球2视作为一个整体,由于12q q ≠,可判断它们在匀强电场中受到的电场力必然是不为零的。

由牛顿第二定律可知,它们的合加速度也必然是不为零的,即不可能出现两者的加速度大小相等、方向相反的情况,故D 错误。

故选ABC .
5.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷量分别为q A 和q B ,用绝缘细线悬挂在天花板上。

平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。

两小球突然失去各自所带电荷后开始摆动,最大速度分别为v A 和v B ,最大动能分别为E k A 和E k B 。

则( )
A .m A 一定大于m
B B .q A 一定小于q B
C .v A 一定大于v B
D.E k A一定大于E k B
【答案】CD
【解析】
【详解】
A.对小球A受力分析,受重力、静电力、拉力,如图所示:
根据平衡条件,有:
1
tan
A
F
m g
θ=
故:
1
tan
A
F
m

=

同理,有:
2
tan
B
F
m

=

由于θ1>θ2,故m A<m B,故A错误;
B.两球间的库仑力是作用力与反作用力,一定相等,与两个球是否带电量相等无关,故B 错误;
C.设悬点到AB的竖直高度为h,则摆球A到最低点时下降的高度:
1
11
1
(1)
cos cos
h
h h h
θθ
∆=-=-
小球摆动过程机械能守恒,有
2
1
2
A A A A
m g h m v
∆=
解得:
2
A A
v g h
=⋅∆
由于θ1>θ2,A球摆到最低点过程,下降的高度△h A>△h B,故A球的速度较大,故C正确;
D.小球摆动过程机械能守恒,有
mg△h=E K

(1cos )(1cos )tan k FL
E mg h mgL θθθ
=∆=-=
- 其中L cos θ相同,根据数学中的半角公式,得到:
1cos (1cos )cos ()cos tan tan sin 2
k FL E FL FL θθ
θθθθθ-=
-==⋅ 其中FL cos θ相同,故θ越大,动能越大,故E kA 一定大于E kB ,故D 正确。

6.如图所示,在竖直放置的半径为R 的光滑半圆弧绝缘细管的圆心O 处固定一点电荷,将质量为m ,带电量为+q 的小球从圆弧管的水平直径端点A 由静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力,已知重力加速度为g ,则下列说法正确的是( )
A .小球在
B 2gR B .小球在B 2gR
C .固定于圆心处的点电荷在AB 弧中点处的电场强度大小为3mg/q
D .小球不能到达C 点(C 点和A 在一条水平线上) 【答案】AC 【解析】
试题分析:由A 到B ,由动能定理得:0
102
mgr mv =
-,解得2v gr A 正确,B 错误,在B 点,对小球由牛顿第二定律得:2
qE mg v m r
-=,将B 点的速度带入可得
3mg
E q
=
,C 正确,从A 到C 点过程中电场力做功为零,所以小球能到达C 点,D 错误, 考点:动能定理和牛顿定律综合的问题
点评:小球沿细管滑到最低点B 时,对管壁恰好无压力.并不是电场力等于重力,而是电场力与重力提供向心力去做圆周运动.当是点电荷的电场时,由于电场力与支持力均于速度方向垂直,所以只有重力做功.
7.如图所示,轻质弹簧一端系在墙上,另一端系在三根长度相同的轻绳上,轻绳的下端各系质量与电荷量均相同的带正电小球,且三个小球均处于静止状态,已知重力加速度为g 。

四种情形下每个小球受到的电场力大小与轻绳长度、小球质量、小球电荷量的关系如表所示,以下说法正确的是( )
情形 轻绳长度 小球质量 小球电荷量 小球受到的电场力大小
1
L
m

33mg 2 2L m ②
33
mg 3 L 2m ③ 23
3mg 4
L
m

3mg
A 2倍
B 2倍
C .④中电荷量为③中电荷量的
32
2
倍 D .情形④下弹簧的伸长量最大 【答案】C 【解析】 【分析】 【详解】
由于三个小球质量和电荷量均相等,由对称性可知,三个小球必构成等边三角形,且每个小球受到的电场力相等,设绳的拉力为T ,与竖直方向夹角为θ,两小球之间的距离为r 、一个小球受到另外两个小球的电场力的合力为F ,对其中一个小球受力分析可得
sin T mg θ=
2
2cos kq T θF r
==
解得
22tan kq mg
F r θ
==
由几何关系可知,
tan θ=
=整理得
22kq F r == A .对比①和②可知,并应用上式可得
21121kq F r ===
2
2222kq F r ===
解得
12
r L =
2r =
故电荷量之间的关系为
112212
q r q r == 故A 错误; B
.由③可知,
23323kq F r ===
解得
32
r L =

3222
q q == 故B 错误; C
.由④可知
24424kq F r ===
解得
432
r L =

443333222
q r q r ==
故C 正确;
D .以三个小球为整体可知,小球受到的弹力应该等于其重力,故小球质量越大,弹簧弹力越大,故情形③下弹簧的伸长量最大,故D 错误; 故选C 。

8.如右图,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,
.电荷量相等、符号相反的两个电荷分别置于M 、N 两点,这时O 点电场强
度的大小为E 1;若将N 点处的点电荷移至P 点,则O 点的场强大小变为E 2.E 1与E 2之比为( )
A .1:2
B .2:1
C .
D .
【答案】B 【解析】 【分析】 【详解】 试题分析:由
得:;若将N 点处的点电荷移至P 点,则O 点
的场强大小变为E 2,知两点电荷在O 点的场强夹角为1200,由矢量的合成知,
得:
,B 对
9.一个带电量为+Q 的点电荷固定在空间某一位置,有一个质量为m 的带电小球(重力不能忽略)在+Q 周围作匀速圆周运动,半径为R 3g
(g 为重力加速度)。

关于带电小球带电情况,下列说法正确的是:
A .小球带正电,电荷量大小为2
83mgR B 2
3mgR
C .小球带负电,电荷量大小为2
83mgR
D.小球带负电,电荷量大小为
2
3mgR
【答案】C
【解析】
【详解】
由题意可知小球做匀速圆周运动,合力提供向心力,因中心电荷为+Q,做出运动图像如图所示:
可知要让小球做匀速圆周运动,即小球所受库仑力和重力的合力提供向心力,所以小球带负电;
由向心力公式可知:
3
F ma
==

设小球与点电荷连线与竖直方向夹角为θ,则有:
3
3
3
tan=
3
F
mg mg
θ==

所以θ=30°,根据几何关系有:
cos30
mg
F
=

sin30
R
L
=
根据库仑定律有:
2
qQ
F k
L
=

联立可得:
2
83
3
mgR
q
kQ
=
故C正确,ABD错误。

10.如图所示,A、B、C、D是立方体的四个顶点,在A、B、D三个点各放一点电荷,使C
点处的电场强度为零。

已知A 点处放的是电荷量为Q 的正点电荷,则关于B 、D 两点处的点电荷,下列说法正确的是( )
A .
B 点处的点电荷带正电 B .D 点处的点电荷带正电
C .B 26
D .D 点处的点电荷的电荷量为13
Q
【答案】C 【解析】 【分析】 【详解】
A .A 点处放的是电荷量为Q 的正点电荷,若
B 点处的点电荷带正电,根据场强叠加可知,在D 点无论是放正电还是负电,
C 点的场强都不可能为零,选项A 错误; B .若
D 点处的点电荷带正电,则根据场强叠加可知,在B 点无论是放正电还是负电,C 点的场强都不可能为零,选项B 错误;
CD .设正方体边长为a ,BC 与AC 夹角为θ,由叠加原理可知,在BD 两点只能都带负电时,C 点的合场强才可能为零,则
22cos 32B Q Q
k k a a θ= 22
sin 3D Q Q
k
k a a θ= 其中2cos 3
θ=sin 3θ=解得
26
B Q = 39
D Q Q =
选项C 正确,D 错误。

故选C 。

11.如图所示,竖直绝缘墙上距O 点l 处固定一带电量Q 的小球A ,将另一带等量同种电荷、质量为m 的小球B 用长为l 的轻质绝缘丝线悬挂在O 点,A 、B 间用一劲度系数为k ′原长为
54
l
的绝缘轻质弹簧相连,静止时,A 、B 间的距离恰好也为l ,A 、B 均可看成质
点,以下说法正确的是( )
A .A 、
B 间库仑力的大小等于mg B .A 、B 间弹簧的弹力大小等于k ′l
C .若将B 的带电量减半,同时将B 球的质量变为4m ,A 、B 间的距离将变为
2
l D .若将A 、B 的带电量均减半,同时将B 球的质量变为2k l
m g '+,A 、B 间的距离将变为
2
l 【答案】D 【解析】 【分析】 【详解】
A .对小球受力分析如图;小球受弹簧的弹力与
B 所受的库仑力的合力(F 库+F 弹)沿AB 斜向上,由几何关系以及平衡条件可知
F 库+F 弹=mg

F 库= mg -F 弹
选项A 错误;
B .A 、B 间弹簧的弹力大小等于
''51=(
)44
l F k l k l -=弹
选项B 错误;
C .若将B 的带电量减半,A 、B 间的距离将变为2
l
,则库仑力变为2F 库,则弹力和库仑力的合力为
''
53=()22424
l l k l F k F F -+=+合库库
则由相似三角形关系可知
11'=13224
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'11
4=42
m g mg k l mg =+≠
选项C 错误;
D .若将A 、B 的带电量都减半,A 、B 间的距离将变为2
l
,则库仑力仍F 库,则弹力和库仑力的合力为
''
'
53=()424
l l k l
F k F F -+=+合库库
则由相似三角形关系可知
22''=1324
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'22m g mg k l =+

'22k l
m m g
=+
选项D 正确; 故选D 。

12.如图所示,按A 、B 、C 、D 四种方式在一个正方形的四个顶点分别放置一个点电荷,所带电量已在图中标出,其中正方形中心场强最大的是( )
A .
B .
C .
D .
【答案】A 【解析】 【分析】
先分析各点电荷在中心处的场强大小和方向,再根据矢量合成法则,即可求出中心处的场强。

【详解】
A .根据点电荷电场强度公式2kQ
E r
=
,结合矢量合成法则,正方形对角线异种电荷的电场强度,为各自点电荷在中心处相加,因此中心处的合电场强度大小为2
22
kQ E r =; B .两个负电荷在正方形中心处场强为零,两个正点电荷在中心处电场强度为零,因此中心处的合电场强度大小为0;
C .同理,正方形对角线的两负电荷的电场强度在中心处相互抵消,而正点电荷在中心处,叠加后电场强度大小为2
kQ E r =
; D .同理,在中心处的电场强度大小2
2
kQ E r = 综上比较,正方形中心场强最大的是A ,所以A 正确。

故选A 。

【点睛】
考察点电荷在某点场强的矢量合成。

二、第十章 静电场中的能量选择题易错题培优(难)
13.如图所示,真空中有一个边长为L 的正方体,正方体的两个顶点M 、N 处分别放置电荷量都为q 的正、负点电荷.图中的a 、b 、c 、d 是其他的四个顶点,k 为静电力常量.下列表述正确是( )
A .a 、b 两点电场强度大小相等,方向不同
B .a 点电势高于b 点电势
C .把点电荷+Q 从c 移到d ,电势能增加
D .同一个试探电荷从c 移到b 和从b 移到d ,电场力做功相同 【答案】D 【解析】
A 、根据电场线分布知,a 、b 两点的电场强度大小相等,方向相同,则电场强度相同.故A 错误.
B 、ab 两点处于等量异种电荷的垂直平分面上,该面是一等势面,所以a 、b 的电势相等.故B 错误.
C 、根据等量异种电荷电场线的特点,因为沿着电场线方向电势逐渐降低,则c 点的电势大于d 点的电势.把点电荷+Q 从c 移到d ,电场力做正功,电势能减小,故C 错误.
D 、因cb bd U U =可知同一电荷移动,电场力做功相等,则D 正确.故选D .
【点睛】解决本题的关键知道等量异种电荷周围电场线的分布,知道垂直平分线为等势线,沿着电场线方向电势逐渐降低.
14.一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳分为左右两部分,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称,已知一均匀带电球壳内部任一点的电场强度为零;取无穷远处电势为零,点电荷q 在距离其为r 处的电势为φ=k
q
r
(q 的正负对应φ的正负)。

假设左侧部分在M 点的电场强度为E 1,电势为φ1;右侧部分在M 点的电场强度为E 2,电势为φ2;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4.下列说法正确的是( )
A .若左右两部分的表面积相等,有12E E >,12ϕϕ>
B .若左右两部分的表面积相等,有12E E <,12ϕϕ<
C .不论左右两部分的表面积是否相等,总有12E E >,34E E =
D .只有左右两部分的表面积相等,才有12
E E >,34E E =
【答案】C
【解析】
【详解】
A、设想将右侧半球补充完整,右侧半球在M点的电场强度向右,因完整均匀带电球壳内部任一点的电场强度为零,可推知左侧半球在M点的电场强度方向向左,根据对称性和矢量叠加原则可知,E1方向水平向左,E2方向水平向右,左侧部分在M点产生的场强比右侧电荷在M点产生的场强大,E1>E2,根据几何关系可知,分割后的右侧部分各点到M点的
距离均大于左侧部分各点到M点的距离,根据k q r
ϕ=,且球面带负电,q为负,得:φ1
<φ2,故AB错误;
C、E1>E2与左右两个部分的表面积是否相等无关,完整的均匀带电球壳内部任一点的电场强度为零,根据对称性可知,左右半球壳在M、N点的电场强度大小都相等,故左半球壳在M、N点的电场强度大小相等,方向相同,故C正确,D错误。

15.在电场方向水平向右的匀强电场中,一带电小球从A 点竖直向上抛出,其运动的轨迹如图所示,小球运动的轨迹上A、B两点在同一水平线上,M为轨迹的最高点,小球抛出时的动能为8.0J,在M点的动能为6.0J,不计空气的阻力,则()
A.从A点运动到M点电势能增加 2J
B.小球水平位移x1与x2的比值 1:4
C.小球落到B点时的动能 24J
D.小球从A点运动到B点的过程中动能有可能小于 6J
【答案】D
【解析】
【分析】
【详解】
将小球的运动沿水平和竖直方向正交分解,水平分运动为初速度为零的匀加速直线运动,竖直分运动为匀变速直线运动;
A.从A点运动到M点过程中,电场力做正功,电势能减小,故A错误;
B.对于初速度为零的匀加速直线运动,在连续相等的时间间隔内位移之比为1:3,故B 错误;
C.设物体在B动能为E kB,水平分速度为V Bx,竖直分速度为V By。

由竖直方向运动对称性知
1
2
mV By 2=8J 对于水平分运动
Fx 1=
12mV Mx 2-1
2
mV AX 2 F (x 1+x 2)=
12mV Bx 2-1
2
mV AX 2 x 1:x 2=1:3
解得:
Fx 1=6J ; F (x 1+x 2)=24J

E kB =
1
2
m (V By 2+V Bx 2)=32J 故C 错误;
D .由于合运动与分运动具有等时性,设小球所受的电场力为F ,重力为G ,则有:
Fx 1=6J
2262 J 1F t m
⋅⋅= Gh =8J 221 8J 2G t m
⋅⋅= 所以:
3
2
F G =
由右图可得:
tan F
G
θ=
所以
3sin 7
θ=
则小球从 A 运动到B 的过程中速度最小时速度一定与等效G ’垂直,即图中的 P 点,故
2201124sin J 6J 227
kmin min E mv m v θ=
==()< 故D 正确。

故选D 。

16.如图所示,在纸面内有一直角三角形ABC ,P 1为AB 的中点, P 2为AP 1的中点,BC =2 cm ,∠A = 30°.纸面内有一匀强电场,电子在A 点的电势能为-5 eV ,在C 点的电势能为19 eV ,在P 2点的电势能为3 eV .下列说法正确的是
A .A 点的电势为-5 V
B .B 点的电势为-19 V
C .该电场的电场强度方向由B 点指向A 点
D .该电场的电场强度大小为800 V/m 【答案】D 【解析】 【分析】 【详解】 A .由公式p
E q
ϕ=
可知,
pA A 5eV
5V E q
e
ϕ-=
=
=- 故A 错误.
B .A 到P 2的电势差为
2A 5(3)V 8V P U ϕϕ=-=--=
B A 4548V 27V U ϕϕ=-=-⨯=-
故B 错误.
C .A 点到B 点电势均匀降落,设P 1与B 的中点为P 3,该点电势为:
3
A 3538V 19V P U ϕϕ=-=-⨯=-
C p 19eV
19V C E q
e
ϕ=
=
=-- P 3点与C 为等势点,连接两点的直线为等势线,如图虚线P 3C 所示.由几何关系知,P 3C 与
AB 垂直,所以AB 为电场线,又因为电场线方向由电势高指向电势低,所以该电场的电场强度方向是由A 点指向B 点,故C 错误.
D.P3与C为等势点,该电场的电场强度方向是由A点指向B点,所以场强为:
2
8
V/cm800V/m
1
U
E
AP
===
故D正确.
17.匀强电场中的三点A、B、C是一个三角形的三个顶点,AB的长度为1 m,D为AB的中点,如图所示.已知电场线的方向平行于△ABC所在平面,A、B、C三点的电势分别为14 V、6 V和2 V,设场强大小为E,一电量为1×6
10-C的正电荷从D点移到C点电场力所做的功为W,则
A.W=8×6
10-J E>8 V/m
B.W=6×6
10-J E>6 V/m
C.W=8×6
10-J E≤8 V/m
D.W=6×6
10-J E≤6 V/m
【答案】A
【解析】
【分析】
【详解】
试题分析:由题匀强电场中,由于D为AB的中点,则D点的电势10
2
A B
D
V
ϕϕ
ϕ
+
==,电荷从D点移到C点电场力所做的功为W=qU DC=q(φD-φC)=1×10-6×(10-2)J=8×10-6J.AB 的长度为1m,由于电场强度的方向并不是沿着AB方向,所以AB两点沿电场方向的距离d<1m,匀强电场中两点电势差与两点沿电场方向的距离成正比,即U=Ed,所以8/
U
E V m
d
=>,故选A.
考点:电势;电场强度
18.如图甲所示,平行金属板A 、B 正对竖直放置,C 、D 为两板中线上的两点。

A 、B 板间不加电压时,一带电小球从C 点无初速释放,经时间T 到达D 点,此时速度为v 0;在A 、B 两板间加上如图乙所示的交变电压,t =0带电小球仍从C 点无初速释放,小球运动过程中未接触极板,则t =T 时,小球( )
A .在D 点上方
B .恰好到达D 点
C .速度大于v
D .速度小于v
【答案】B 【解析】 【分析】 【详解】
小球仅受重力作用时从C 到D 做自由落体运动,由速度公式得0v gT ,现加水平方向的周期性变化的电场,由运动的独立性知竖直方向还是做匀加速直线运动,水平方向0~4
T 沿电场力方向做匀加速直线运动,
~42
T T
做匀减速直线运动刚好水平速度减为零,3~24
T T 做反向的匀加速直线运动,3~4T
T 做反向的匀减速直线运动水平速度由对称性减为零,故t =T 时合速度为v 0,水平位移为零,则刚好到达D 点,故选B 。

【点睛】
平行板电容器两极板带电后形成匀强电场,带电离子在电场中受到电场力和重力的作用,根据牛顿第二定律求出加速度,根据分运动和合运动的关系分析即可求解。

19.如图所示,在方向水平向右的匀强电场中,细线一端固定,另一端拴一带正电小球,使球在竖直面内绕固定端O 做圆周运动。

不计空气阻力,静电力和重力的大小刚好相等,细线长为r 。

当小球运动到图中位置A 时,细线在水平位置,拉力F T =3mg 。

重力加速度大小为g ,则小球速度的最小值为 ( )
A 2gr
B . gr
C (6-22)gr
D (6+22)gr
【答案】C
【解析】
【详解】
由题意可知:
qE=mg,
tanθ=qE
mg
=1,
解得:
θ=45°,
在A位置,由牛顿第二定律得:
F T+qE=m
2
A
v
r

解得:
v A=2gr,
小球在图示B位置速度最小,从A到B过程,由动能定理得:
-mgr cosθ+qEr(1-sinθ)=1
2
mv B2-
1
2
mv A2,
解得,小球的最小速度:
v B=(622)gr

故ABD错误,C正确额。

故选C。

【点睛】
本题考查了求小球的最小速度,分析清楚小球运动过程、知道小球在何处速度最小是解题的前提与关键,应用动能定理与牛顿第二定律可以解题.
20.两个质量相同的小球用不可伸长的细线连结,置于场强为E的匀强电场中,小球1和2均带正电,电量分别为和(>).将细线拉直并使之与电场方向平行,如图所示.若将两小球同时从静止状态释放,则释放后细线中的张力T为(不计重力及两小球间的库仑力)
A .T=(-)E
B .T=(-)E
C .T=(+)E
D .T=(
+
)E
【答案】A 【解析】 【分析】 【详解】
将两个小球看做一个整体,整体在水平方向上只受到向右的电场力,故根据牛顿第二定律可得
,对小球2分析,受到向右的电场力,绳子的拉力,由于
,球1
受到向右的电场力大于球2向右的电场力,所以绳子的拉力向右,根据牛顿第二定律有
,联立解得
,故A 正确;
【点睛】
解决本题关键在于把牛顿第二定律和电场力知识结合起来,在研究对象上能学会整体法和隔离法的应用,分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用隔离法可以较简单的分析问题
21.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为
A a 、
B a ,电势能分别为PA E 、PB E .下列说法正确的是( )
A .电子一定从A 向
B 运动
B .若A a >B a ,则Q 靠近M 端且为正电荷
C .无论Q 为正电荷还是负电荷一定有PA E <PB E
D .B 点电势可能高于A 点电势
【答案】BC 【解析】
由于不知道电子速度变化,由运动轨迹图不能判断电子向那个方向运动,故A 错误;若a A >a B ,则A 点离点电荷Q 更近即Q 靠近M 端;又由运动轨迹可知,电场力方向指向凹的一侧即左侧,所以,在MN 上电场方向向右,那么Q 靠近M 端且为正电荷,故B 正确;由B 可知,电子所受电场力方向指向左侧,那么,若电子从A 向B 运动,则电场力做负功,电势能增加;若电子从B 向A 运动,则电场力做正功,电势能减小,所以,一定有E pA <E pB 求解过程与Q 所带电荷无关,只与电场线方向相关,故C 正确;由B 可知,电场线方向由M 指向N ,那么A 点电势高于B 点,故D 错误;故选BC .
22.质量为m 电量为q +的小滑块(可视为质点),放在质量为M 的绝缘长木板左端,木板放在光滑的水平地面上,滑块与木板之间的动障擦因数为μ,木板长为L ,开始时两者都处于静止状态,所在空间存在范围足够大的一个方向竖直向下的匀强电场E ,恒力F 作用在m 上,如图所示,则( )
A .要使m 与M 发生相对滑动,只须满足()F mg Eg μ>+
B .若力F 足够大,使得m 与M 发生相对滑动,当m 相对地面的位移相同时,m 越大,长木板末动能越大
C .若力F 足够大,使得m 与M 发生相对滑动,当M 相对地面的位移相同时,E 越大,长木板末动能越小
D .若力F 足够大,使得m 与M 发生相对滑动,
E 越大,分离时长本板末动能越大 【答案】BD 【解析】
A 、m 所受的最大静摩擦力为()f mg Eq μ=+ ,则根据牛顿第二定律得F f f
a m M
-== ,计算得出()()
mg Eq M m F M
μ++=
.则只需满足()()
mg Eq M m F M
μ++>
,m 与M 发生
相对滑动.故A 错误.
B 、当M 与m 发生相对滑动,根据牛顿第二定律得,m 的加速度()
F mg Eq a m
μ-+=
,知m
越大,m 的加速度越小,相同位移时,所以的时间越长,m 越大,m 对木板的压力越大,摩擦力越大,M 的加速度越大,因为作用时间长,则位移大,根据动能定理知,长木板的动能越大.所以B 选项是正确的.
C 、当M 与m 发生相对滑动,E 越大,m 对M 的压力越大,摩擦力越大,则M 相对地面的位移相同时,根据动能定理知,长木板的动能越大.故C.错误。

相关文档
最新文档