DMC信道容量迭代计算的matlab实现

合集下载

mimo信道容量matlab代码

mimo信道容量matlab代码

【概述】MIMO(Multiple-Input Multiple-Output)技术在无线通信领域具有广泛的应用,通过利用多个天线,MIMO技术可以显著提高无线信道的传输容量和可靠性。

而信道容量则是衡量无线信道性能的重要指标,它表示在给定的无线信道条件下,信道可以支持的最大数据传输速率。

本文将以matlab代码为例,通过对MIMO信道容量进行仿真分析,来深入探讨MIMO技术在无线通信中的应用和性能。

【1. MIMO信道容量的基本原理】MIMO系统通过利用多个天线进行信号的传输和接收,可以有效地提高无线信道的传输容量。

其基本原理是,利用了空间分集技术,通过将数据分别送入多个天线,并在接收端进行合并处理,从而提高了系统的传输速率和稳定性。

MIMO系统的信道容量受到信道质量、天线数目和信号调制方式等多个因素的影响,因此需要通过仿真分析来进行评估。

【2. MIMO信道容量的matlab代码实现】在matlab中,可以通过编写相应的MIMO信道容量仿真代码,来实现对MIMO系统性能的分析。

以下是一个简化的MIMO信道容量计算的matlab代码示例:```matlab定义MIMO系统参数Nt = 2; 发射天线数Nr = 2; 接收天线数SNR_dB = 0:5:30; 信噪比范围生成随机信道矩阵H = (randn(Nr, Nt) + 1i*randn(Nr, Nt)) / sqrt(2);计算MIMO信道容量capacity = zeros(1, length(SNR_dB));for i = 1:length(SNR_dB)SNR = 10^(SNR_dB(i)/10);capacity(i) = log2(det(eye(Nr) + SNR/Nt*H*H'));end绘制MIMO信道容量曲线plot(SNR_dB, capacity, 'b-o')xlabel('SNR (dB)')ylabel('Capacity (bps/Hz)')title('MIMO Channel Capacity')grid on```以上代码中,首先定义了MIMO系统的参数,包括发射天线数Nt、接收天线数Nr和信噪比范围SNR_dB。

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真

无线通信原理-基于matlab的ofdm系统设计与仿真基于matlab的ofdm系统设计与仿真摘要OFDM即正交频分复用技术,实际上是多载波调制中的一种。

其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。

该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。

本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。

重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。

在仿真过程中对OFDM信号使用QPSK 调制,并在AWGN信道下传输,最后解调后得出误码率。

整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

- 1 -第一章 ODMF系统基本原理1.1多载波传输系统多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。

用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。

在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。

图1,1中给出了多载波系统的基本结构示意图。

图1-1多载波系统的基本结构多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM中,各子载波必须保持相互正交,而在MCM则不一定。

1.2正交频分复用OFDM就是在FDM的原理的基础上,子载波集采用两两正交的正弦或余弦函sinm,tcosn,t数集。

matlab中的迭代算法

matlab中的迭代算法

matlab中的迭代算法迭代算法在matlab中的应用迭代算法是一种通过多次重复计算来逼近解的方法,它在matlab中得到了广泛的应用。

在本文中,我们将介绍一些常见的迭代算法,并探讨它们在matlab中的实现和应用。

1. 二分法二分法是一种简单而直观的迭代算法,它通过将问题的解空间一分为二,并根据中间点的取值来确定解所在的子空间。

在matlab中,可以使用while循环来实现二分法。

首先,需要指定解空间的上下界,然后通过计算中间点的值来判断解所在的子空间,并更新解空间的上下界。

重复这个过程,直到解的精度满足要求为止。

2. 牛顿迭代法牛顿迭代法是一种用于求解方程的迭代算法,它利用函数的局部线性近似来逼近方程的解。

在matlab中,可以使用while循环来实现牛顿迭代法。

首先,需要给定一个初始点,然后根据函数的一阶和二阶导数来计算下一个点的值。

重复这个过程,直到解的精度满足要求为止。

3. 高斯-赛德尔迭代法高斯-赛德尔迭代法是一种用于求解线性方程组的迭代算法,它通过不断更新近似解来逼近方程的解。

在matlab中,可以使用while循环和矩阵运算来实现高斯-赛德尔迭代法。

首先,需要给定一个初始解向量,然后根据方程组的系数矩阵和常数向量来计算下一个解向量的值。

重复这个过程,直到解的精度满足要求为止。

4. 迭代法求特征值迭代法也可以用于求解矩阵的特征值和特征向量。

在matlab中,可以使用while循环和矩阵运算来实现迭代法求特征值。

首先,需要给定一个初始特征向量,然后根据矩阵的幂来计算下一个特征向量的值。

重复这个过程,直到特征向量的变化小于某个阈值为止。

5. 迭代法求最优化问题除了求解方程和矩阵相关的问题,迭代算法还可以用于求解最优化问题。

在matlab中,可以使用while循环和梯度计算来实现迭代法求最优化问题。

首先,需要给定一个初始解向量,然后根据目标函数的梯度来计算下一个解向量的值。

重复这个过程,直到解的精度满足要求为止。

MIMO通信系统的信道容量分析及MATLAB仿真实现

MIMO通信系统的信道容量分析及MATLAB仿真实现

3 MI MO 系 统 信 道 模 型
研 究 MI MO系统 必 须考虑 信 道模 型 , 设研 究 的信道 为基 于瑞 利衰 落 的随机信 道 , MI 设 MO系统 信道模 型有 J V根发 射 天线 和 M 根接 收天 线 ,信道矩 阵 H( J 表 示第 i 发射 天线 到第 7 接 收天线 的信道 衰落 系 i) , 根 根 数 ,每根 发射 天线 的功 率为 P Ⅳ,每 根接 收天 线 的噪声 功率 为 ,故 信 噪 比 S R为 : =P/ I.通过分 / N 4 】
21 0 2年 4月
Apr 201 . 2
MI MO通信系统 的信道容 量分析及 MA L B仿真实现 TA
朱琳璐
( 丽水广播 电视 大 学 ,浙 江 丽水 3 3 0 2 0 0)

要 :在 多入 多 出( MO) MI 系统原 理和模 型 的基础 上 ,分析 了基 于单入 单 出(I O 、单入 多 出( I SS ) SMO) 、多
解信道特征矩阵 Q的特征值 ,由香农公式导出 MI MO信道容量 C= o:el +P( ̄) } Wl dt 【/ r 】 ,其中威沙 g { N Q
特矩 阵 Q=HH“,M <N ;Q=日“ , M ≥N ; I 是 mi( n M,N) 阶单位 矩 阵 ;W 为 每个子 信道 的带宽 ,
还是 提高 频谱 的资源 利用率 .在无线 通信 中,使 用 多输入 、多输 出( MO:Mut l Ip t lpeOup t MI lpe n u— t l— tu) i — Mu i
技术 既能增 加 系统容量 ,也 能增强 系统 性能 ,在其 他条 件相 同 的前 提下 ,可 以成倍地 提 高频谱 效率 .
‘4 1 5‘

MATLAB科学计算使用教程

MATLAB科学计算使用教程

MATLAB科学计算使用教程第一章:MATLAB入门MATLAB(Matrix Laboratory)是一种用于科学计算和技术计算的强大软件工具。

本章将介绍如何安装MATLAB,并进行初步的配置和设置。

同时还将介绍MATLAB的基本操作,如变量的定义和使用、基本数学运算、矩阵的创建和操作等。

第二章:数据处理与分析本章将介绍MATLAB在数据处理与分析方面的强大功能。

涵盖了数据的导入和导出、数据预处理、常用统计分析方法、数据可视化等内容。

具体包括:使用MATLAB读取和写入常见数据格式,例如Excel、CSV、TXT等;数据清洗和处理的常用方法,如缺失值处理、异常值检测等;常用统计分析方法的实现,如假设检验、方差分析等;数据可视化方法和技巧,如统计图表的绘制和优化。

第三章:信号处理与滤波本章将介绍MATLAB在信号处理和滤波方面的应用。

包括信号生成和操作、常用信号处理方法、数字滤波器设计等内容。

具体包括:使用MATLAB生成各类常用信号,如正弦信号、方波信号等;对信号进行时域和频域的分析;常用的信号处理方法,如时域滤波、频域滤波、小波变换等;数字滤波器的设计和实现。

第四章:图像处理与计算机视觉本章将介绍MATLAB在图像处理和计算机视觉方面的应用。

涵盖图像读取和显示、图像处理和增强、计算机视觉算法等内容。

具体包括:使用MATLAB读取和显示图像文件,如JPEG、PNG 等;图像的基本处理和增强,如灰度变换、滤波器应用、颜色空间转换等;图像分割和特征提取方法;计算机视觉算法的实现,如目标检测、图像识别等。

第五章:数学建模与优化本章将介绍MATLAB在数学建模与优化方面的应用。

包括数学建模的基本方法、优化问题和求解方法等。

具体包括:数学建模的基本步骤和实现思路,如问题分析、建立数学模型等;常见数学建模问题的解决方法,如线性规划、非线性规划等;优化问题的MATLAB求解方法,如线性规划求解器、遗传算法优化等。

如何在Matlab中进行迭代优化和迭代求解

如何在Matlab中进行迭代优化和迭代求解

如何在Matlab中进行迭代优化和迭代求解引言:Matlab是一种非常强大和流行的数值计算软件,广泛应用于工程、科学和数学等领域。

在问题求解过程中,迭代优化和迭代求解是常常使用的技术。

本文将介绍如何在Matlab中利用迭代方法进行优化和求解,以及相关的技巧和应用。

一、什么是迭代优化和迭代求解迭代优化指的是通过多次迭代,逐步接近优化问题的最优解。

常用的迭代优化方法包括梯度下降法、牛顿法、拟牛顿法等。

迭代求解则是通过多次迭代,逐步逼近方程或问题的解,常用的迭代求解方法有牛顿迭代法、弦截法、二分法等。

二、迭代优化的基本原理与方法1. 梯度下降法(Gradient Descent):梯度下降法是一种常用的迭代优化方法,用于寻找函数的极小值点。

其基本原理是通过计算函数对各个变量的偏导数,从当前点开始沿着负梯度的方向迭代更新,直至达到最小值。

在Matlab中,可以利用gradient函数计算梯度向量,并通过循环迭代实现梯度下降法。

2. 牛顿法(Newton's Method):牛顿法是一种迭代优化方法,用于求解非线性方程的根或函数的极值点。

其基本思想是利用函数的局部线性近似,通过求解线性方程组来得到函数的极值点。

在Matlab中,可以使用fminunc函数来实现牛顿法。

3. 拟牛顿法(Quasi-Newton Methods):拟牛顿法是一类迭代优化方法,主要用于求解无约束非线性优化问题。

其基本思想是通过构造逼近目标函数Hessian矩阵的Broyden-Fletcher-Goldfarb-Shanno(BFGS)公式或拟牛顿方法中的其他公式,来估计目标函数的梯度和Hessian矩阵。

在Matlab中,可以利用fminunc函数,并设置算法参数来实现拟牛顿法。

三、迭代求解的基本原理与方法1. 牛顿迭代法(Newton's Method):牛顿迭代法是一种常用的迭代求解方法,用于求解方程或问题的根。

一般离散无记忆信道容量的迭代计算

一般离散无记忆信道容量的迭代计算

一般离散无记忆信道容量的迭代计算信道容量的迭代算法1信道容量的迭代算法的步骤一、用了matlab 实现DMC 容量迭代的算法如下:第一步:首先要初始化信源分布:.0deta 10,1,0,1)(>>=⋯==,选置,,k r i rP k i 即选取一个精度,本次中我选deta=0.000001。

第二步:}{,)()()()(k ij i ji k i jik i k ij t p pp p t 得到反向转移概率矩阵根据式子∑=。

第三步:第四步:第五步: 若a C C C k k k det )1()()1(>-++,则执行k=k+1,然后转第二步。

直至转移条件不成立,接着执行下面的程序。

第六步:输出迭代次数k 和()1+k C 和1+k P ,程序终止。

()()()()(){}111]log exp[]log exp[+++==∑∑∑k i k i j ij k ji j ij k ji k i p P t pt p p 计算由式()()()()()()。

C t p t P I C k r i s j k ij ji k k k 10011log exp log ,+==++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡==∑∑计算由式2. Matlab实现clear;r=input('输入信源个数:');s=input('输入信宿个数:');deta=input('输入信道容量的精度: ');Q=rand(r,s); %形成r行s列随机矩阵QA=sum(Q,2); %把Q矩阵每一行相加和作为一个列矩阵AB=repmat(A,1,s); %把矩阵A的那一列复制为S列的新矩阵%判断信道转移概率矩阵输入是否正确P=input('输入信道转移矩阵P:')%从这句话开始将用下面两句代替可自动生成信道转移矩阵[r,s]=size(P);for i=1:rif(sum(P(i,:))~=1) %检测概率转移矩阵是否行和为1.error('概率转移矩阵输入有误!!')return;endfor j=1:sif(P(i,j)<0||P(i,j)>1) %检测概率转移矩阵是否负值或大于1error('概率转移矩阵输入有误!!')return;endendend%将上面的用下面两句代替可自动生成信道转移矩阵%disp('信道转移概率矩阵:')%P=Q./B 信道转移概率矩阵(每一个原矩阵的新数除以所在行的数总和)i=1:1:r; %设置循环首项为1,公差为1,末项为r(Q的行数)的循环p(i)=1/r; %原始信源分布r个信源,等概率分布disp('原始信源分布:')p(i)E=repmat(p',1,s);%把r个等概率元素组成一列,复制为s列for k=1:1:1/detam=E.*P; % m=p.*E; %后验概率的分子部分a=sum(m); %把得到的矩阵m每列相加之和构成一行su1=repmat(a,r,1);%把得到的行矩阵a复制r行,成一新矩阵sul,后验概率的分母部分t=m./su1; %后验概率矩阵n=exp(sum(P.*log(t),2)); %信源分布的分子部分su2=sum(n); %信源分布的分母部分p=n/su2; %信源分布E=repmat(p,1,s);C(k+1)=log(sum(exp(sum(P.*log(t),2))))/log(2);kk=abs(C(k+1)-C(k))/C(k+1);if(kk<=deta)break;enddisp('迭代次数:k='),disp(k)enddisp('最大信道容量时的信源分布:p='),disp(p')disp('最大信道容量:C='),disp(C(k+1))3.运行结果及分析结果分析:这两组数据都是我随机选的,都是选的信源个数为2,信宿的个数为3,选用的精度为0.000001。

不同调制编码方式的信道容量matlab

不同调制编码方式的信道容量matlab

不同调制编码方式的信道容量matlab【不同调制编码方式的信道容量matlab】1. 引言调制编码是数字通信系统中非常重要的一部分,它将数字信号转换为模拟信号,以便在信道中传输。

不同的调制编码方式具有不同的性能和信道容量。

信道容量是指在给定传输条件下,最大可支持的数据传输速率。

本文将使用Matlab来分析不同调制编码方式的信道容量。

2. 信道容量的定义和计算在理想的情况下,信道容量由香农公式给出,其计算公式为:C = B * log2(1 + SNR)其中,C是信道容量,B是信道带宽,SNR是信噪比。

3. QAM调制正交幅度调制(QAM)是一种常见的调制方式,它通过同时改变信号的振幅和相位来携带信息。

QAM调制的信道容量可以通过计算等价的高斯信道容量来估计,即:C = B * log2(1 + SNR)这里,SNR是等效高斯信道的信噪比。

4. PSK调制相位移键控(PSK)是另一种常见的调制方式,它通过改变信号的相位来传输信息。

PSK调制的信道容量也可以通过计算等效高斯信道容量来估计。

5. QPSK调制正交相移键控(QPSK)是一种常用的PSK调制方式,其采用4个不同的相位来携带信息。

QPSK调制的信道容量可以通过计算等效的高斯信道容量来估计。

6. 信道编码除了调制方式外,信道编码也可以提高数字通信系统的性能和信道容量。

常见的信道编码方式有卷积码和低密度奇偶检验码(LDPC码)。

这些编码技术可以有效地纠正传输过程中的错误,提高系统的可靠性和信道容量。

7. 基于Matlab的信道容量计算使用Matlab可以方便地计算不同调制编码方式的信道容量。

首先,可以通过生成不同调制方式的调制信号,并在AWGN信道中传输来模拟信道传输的过程。

然后,可以使用Matlab中的信道容量计算函数来计算信道容量。

这个函数通常可以根据信噪比和信道带宽计算信道容量。

8. 结论本文介绍了不同调制编码方式的信道容量计算,并使用Matlab来进行信道容量的计算。

容量代价函数

容量代价函数

实验二、容量代价函数的计算一、问题描述假定一个离散无记忆信源(DMC )的输入符号集为AX={1,2,...,r},输出符号集为AY={1,2,....,s},信道的转移概率矩阵P(Y|X):{p(y|x)};该信道不是免费的,其输入代价为b(x)。

利用Matlab 画出容量代价函数C(β)的曲线图。

二、实验环境计算机、Windows 2000 或以上、Matlab 6.5或以上三、实验目的1.了解容量代价函数性质、意义。

2.掌握简单的容量代价函数计算方法;3.掌握使用Matlab 实现一般容量代价函数的计算方法;4.掌握Matlab 求解非线性方程组的方法。

四、实验原理1.C(β)的一般计算方法:计算βmin 是很容易的。

)(min min x b XA x ∈=β;当βmin ≤β≤βmax时,设试验信源X 达到了C(β),即C(β)=max{I(X;Y):E([b(x)]=β}。

在数学上,就是在约束条件下:∑==rx x b x p x b E 1)()()(( (1)1)(1=∑=rx x p 并且P(x)≥0 (2)的约束下求平均互信息量∑∑===r x sy y p x y p x y p x p Y X I 11)()|(log)|()();( 的条件极大值。

为此引入待定常数S 和μ,并作辅助函数∑∑∑∑====--=rx r x r x sy x p x b x p S y p x y p x y p x p x p F 1111)()()()()|(log)|()()]([μ (3)其中∑==rx x y p x p y p 1)|()()(由0)(=∂∂x p F得,μ++=∑=)(log )()|(log)|(1x Sb e y p x y p x y p sy (4) 上式两边同乘以p(x)并对x 求和。

∑∑==++=r x sy x b SE e y p x y p x y p x p 11)]([log )()|(log)|()(μ C(β)=loge+S β+μ (5) 显然(4)提供r 个方程,再加上(1)(2)的方程,共r+2个方程;而有r 个未知数p(x)、及S 、μ,共r+2未知数,显然可以求解。

迭代法求解方程matlab

迭代法求解方程matlab

迭代法求解方程的MATLAB实现1.引言迭代法是一种求解方程的常用方法,尤其适用于大规模矩阵和高维问题。

在迭代法中,我们通过不断迭代来逐步逼近方程的解。

本篇文章将介绍如何使用MATLAB实现迭代法求解方程。

2.收敛性判断在使用迭代法求解方程时,我们需要判断迭代是否收敛。

通常,我们使用以下两种方法进行收敛性判断:2.1 判断迭代公式是否收敛对于许多迭代公式,我们可以根据其结构来判断其是否收敛。

例如,Jacobi迭代法和Gauss-Seidel方法通常适用于对角占优的矩阵,而SOR方法适用于对角占优或松弛型的矩阵。

2.2 判断迭代误差是否收敛我们还可以通过判断迭代误差是否收敛来判断迭代是否收敛。

迭代误差通常定义为实际解与迭代解之间的范数。

如果迭代误差逐渐减小并趋于零,则说明迭代收敛。

3.迭代公式下面我们以Jacobi迭代法为例,介绍迭代公式的实现。

Jacobi迭代法的迭代公式如下:x{n+1}=(\frac{1}{a{ii}})(b i-A{ii,1:i-1}x1-A{ii,i+1:n}x_n)其中,A是系数矩阵,b是右侧向量,x是解向量,a_{ii}是矩阵A的主对角线元素。

4.误差计算为了判断迭代是否收敛,我们需要计算迭代误差。

通常,我们使用实际解与迭代解之间的相对误差或范数误差来衡量误差大小。

例如,相对误差可以按下式计算:||x^-x_n||_2/(||x^||_2)其中,x^*是实际解向量,x_n是第n次迭代的解向量。

5.MATLAB实现下面是一个使用MATLAB实现Jacobi迭代法的示例代码:function x = jacobi(A, b, x0, tol, max_iter)% 输入参数:系数矩阵A、右侧向量b、初始解向量x0、容许误差tol和最大迭代次数max_iter% 输出参数:方程的解向量xn = length(b); % 方程的未知数个数x = zeros(n, 1); % 初始化解向量xx(:) = x0; % 将初始解向量赋值给xerr = tol + 1; % 初始化误差大于容许误差,表示未收敛k = 0; % 初始化迭代次数k=0while err > tol && k < max_iterk = k + 1; % 更新迭代次数k=k+1for i = 1:n % 对每个未知数进行更新x(i) = (b(i) - A(i, 1:i-1)*x(1:i-1) - A(i, i+1:n)*x(i+1:n)) / A(i, i); % 更新解向量x的第i个元素x(i)的公式为x(i)=[b(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x(i+1:n)]/A(i,i)endforendwhileif k < max_itererr = norm(x - x_prev, 'fro') / norm(x_prev, 'fro'); % 计算相对误差endendendfunction```。

matlab的迭代法编程

matlab的迭代法编程

matlab的迭代法编程迭代法是一种常用的解决数值计算问题的方法, 在MATLAB中也有相应的编程实现。

本文将介绍如何使用MATLAB实现迭代法来解决数值计算问题。

一、迭代法简介迭代法是通过反复迭代计算来逼近问题的解的一种方法。

它适用于无法直接求得解析解的问题,但可以通过一系列近似的计算逐步逼近真实解。

二、基本思想迭代法的基本思想是通过不断迭代,逐步逼近问题的解。

假设我们要求解一个方程 f(x)=0 的根,可以从一个初始值开始,通过迭代计算逐步逼近真实解。

三、MATLAB的迭代法编程实现在MATLAB中,可以使用循环语句结合适当的迭代公式来实现迭代法。

首先,我们需要确定迭代的终止条件。

通常可以使用误差判定条件来进行终止判断,比如当迭代结果的相对误差小于某一阈值时,可以认为迭代已经达到了足够的精度。

然后,我们可以使用循环语句(如for循环或while循环)来进行迭代计算。

在每次迭代中,根据迭代公式更新迭代结果,并进行误差判定。

最后,当满足终止条件时,迭代停止,并返回最终的迭代结果作为近似解。

下面是一个简单的例子,演示了如何使用MATLAB实现牛顿迭代法求解方程的根。

```matlabfunction x = Newton_method(f, df, x0, epsilon, max_iter)for i = 1:max_iterx = x0 - f(x0)/df(x0);if abs(f(x)) < epsilonreturn;endx0 = x;enderror('迭代次数超过上限');end```在上述代码中,函数`Newton_method`用于实现牛顿迭代法。

其中,`f`代表方程函数,`df`代表方程函数的导数,`x0`是初始点的值,`epsilon`是误差判定的阈值,`max_iter`是最大迭代次数。

四、迭代法的应用迭代法在数值计算中有广泛的应用。

它可以用于求解非线性方程的根、线性方程组的解、优化问题的最优解等等。

matlab迭代算法程序

matlab迭代算法程序

matlab迭代算法程序摘要:一、迭代算法简介二、Matlab迭代算法程序1.牛顿下山法2.进退法三、迭代算法的应用四、总结正文:一、迭代算法简介迭代算法是一种求解方程或优化问题的方法,通过不断迭代更新变量值,逐步逼近最优解。

Matlab提供了丰富的迭代算法工具箱,可以帮助我们方便地实现迭代算法。

二、Matlab迭代算法程序1.牛顿下山法牛顿下山法是一种在局部收敛的迭代算法,适用于求解非线性方程组。

其基本思想是利用函数在当前迭代点的二阶导数来估计下一个迭代点的值。

下面是一个用牛顿下山法求解非线性方程的Matlab程序:```matlabfunction [x, k] = myfunnewton(f, x0, emg)% f表示非线形方程% x0迭代初值,此种方法是局部收敛,初值要选择恰当% emg是精度指标% k,u分别表示迭代次数和下山因子% d1表示非线形方程f在x0处的导数值[f1, d1] = feval(f, x0);k1 = 1;x(1) = x0;x(2) = x(1) - f1 / d1;while abs(f1) > emgu1 = 1;k = k + 1;[f1, d1] = feval(f, x(k));x(k+1) = x(k) - f1 / d1;endend```2.进退法进退法是一种在全局收敛的迭代算法,适用于求解无约束一维极值问题。

其基本思想是每次迭代时,先向前一步,再根据当前步长和目标函数值的变化决定是否需要后退一步。

下面是一个用进退法求解无约束一维极值问题的Matlab程序:```matlabfunction x = myfunbacktracking(f, x0, fprime, emg)% f表示目标函数% x0迭代初值% fprime表示目标函数的一阶导数% emg是精度指标x = x0;while truex1 = x + 0.5 * (x - x0) / (f(x) - f(x0));if abs(f(x1)) < emgx0 = x1;break;elseif fprime(x1) * (x - x0) > 0x = x1;elsex = x0;endendend```三、迭代算法的应用迭代算法广泛应用于数学、物理、工程等领域,可以用于求解非线性方程组、优化问题等。

matlab用迭代法求方程

matlab用迭代法求方程

matlab用迭代法求方程Matlab是一种常用的科学计算软件,可用于解决各种数学问题。

其中,迭代法可以用来求解方程,是一种简单但非常有效的算法。

本文将介绍如何在Matlab中使用迭代法求解方程的步骤。

步骤一:构造迭代式迭代法的核心在于构造一个迭代式,通过不断迭代的方式逼近方程的解。

在求解方程f(x)=0时,一般可以构造形如x(n+1)=g(x(n))的递推公式来进行迭代。

其中,g(x)是一个函数,可以通过试错与调整来确定。

步骤二:设定初值x(0)在开始迭代之前,需要确定初值x(0),即从哪个点开始进行迭代。

初值不同可能会得到不同的解,在实际应用中需要特别注意。

步骤三:设定迭代停止条件为了避免无限迭代,需要设定迭代停止的条件。

常用的条件有两种:一种是设定迭代次数,即达到一定迭代次数后停止迭代;另一种是设置收敛条件,即在一定误差范围内停止迭代。

步骤四:编写Matlab代码完成以上准备工作后,可以开始编写Matlab代码。

具体实现可以采用for循环或while循环的方式进行迭代,根据设定的迭代停止条件来决定何时停止迭代。

以求解方程f(x)=x^3-x-1为例,其迭代式可以构造为:x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1)初值设为x(0)=1,迭代停止条件设为当两次迭代之差小于0.0001时停止。

则对应的Matlab代码可写为:x(1)=1;tol=0.0001;for n=1:100x(n+1)=x(n)-(x(n)^3-x(n)-1)/(3*x(n)^2-1);if abs(x(n+1)-x(n))<tolbreak;endend步骤五:运行程序并解读结果编写完Matlab代码后,可以运行程序并查看结果。

对于上述例子,最终的解为x=1.3247,满足收敛条件。

在使用迭代法求解方程时,需要注意函数的收敛性、初值选择、迭代次数等问题。

此外,迭代法也存在无法收敛或收敛速度慢的情况,需要特别注意。

matlab迭代法求解方程组

matlab迭代法求解方程组

matlab迭代法求解方程组Matlab是一种功能强大的数学软件,在科学研究、工程设计、数据分析等领域有着广泛的应用。

其中,利用Matlab的迭代法求解方程组是一项重要的数值计算技术。

本文将通过几个具体的例子来介绍如何使用Matlab的迭代法求解方程组。

我们需要了解什么是迭代法。

迭代法是一种通过逐步逼近的方式求解方程组的数值方法。

它基于一个简单的思想:通过不断地迭代计算,逐渐接近方程组的解。

迭代法的核心是迭代公式,它描述了如何根据已知的初始值进行迭代计算,直至达到一定的精度要求。

我们先来看一个简单的例子。

假设我们要求解方程组:```x + y = 3x - y = 1```我们可以将其转化为矩阵形式:```[1 1] [x] [3][1 -1] [y] = [1]```根据迭代法的思想,我们可以通过以下步骤求解方程组:1. 首先,给定初始值x0和y0;2. 根据迭代公式进行迭代计算,直到满足精度要求为止;3. 输出最终的解x和y。

在Matlab中,我们可以使用循环结构来实现迭代计算。

下面是一个简单的Matlab代码示例:```x0 = 0;y0 = 0;tol = 1e-6; % 精度要求while truex = (3 - y0) / 2;y = (1 + x0) / 2;if abs(x - x0) < tol && abs(y - y0) < tolbreak; % 达到精度要求,退出循环endx0 = x;y0 = y;endfprintf('x = %.6f\ny = %.6f\n', x, y);```在上述代码中,我们使用了一个while循环来进行迭代计算。

每次迭代时,根据迭代公式计算新的x和y,并判断是否达到了精度要求。

如果满足精度要求,则通过break语句退出循环,输出最终的解x和y。

除了上述的迭代法,Matlab还提供了其他一些常用的迭代法求解方程组的函数,如Jacobi迭代法、Gauss-Seidel迭代法等。

matlab中信道估计函数

matlab中信道估计函数

在MATLAB中,信道估计通常是在通信系统中进行的,以便模拟信号传输过程中可能经历的各种效应。

以下是一个使用MATLAB中内置函数`comm.ChannelEstimation`进行信道估计的示例。

这个例子中使用了两个基本参数:信号的已知模式和接收到的信号。

在更复杂的情况下,可能需要额外的信息,如训练序列或导频。

假设我们有一个线性时不变信道模型,我们可以使用以下代码:```matlab建立系统对象M = comm.SystemModel('CommLink', 'TransmitAntenna', 1, 'ReceiveAntenna', 1);设定信道参数h = 1; 信道增益d = 1; 距离f = 2; 频率mLink.PathLoss = d^2 * f^2 / (4 * pi * d * f); 路损mLink.Channel = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)', 'SNR', 10); 加性白高斯噪声信道生成训练序列和接收信号N = 1000; 训练序列长度data = randi([0 1], 1, N);train = [1 1]; 训练序列train = train(1:N); 填充训练序列以达到所需长度y = filter(h, 1, train); 通过信道传输训练序列并添加噪声进行信道估计estimatedH = estimateChannel(y, train, h); 使用函数estimateChannel进行信道估计显示结果disp('原始信道增益: ' + h)disp('估计的信道增益: ' + estimatedH)```注意,这里的`estimateChannel`函数并未在MATLAB内置函数中提供,需要自行实现,它的实现可能依赖于特定的信道模型、噪声模型或其他参数。

matlab迭代法求解方程

matlab迭代法求解方程

matlab迭代法求解方程在MATLAB中,可以使用迭代法来求解方程。

迭代法是一种通过反复迭代逼近方程解的方法。

下面我将从多个角度全面回答你关于MATLAB迭代法求解方程的问题。

首先,迭代法的基本思想是通过不断迭代一个初始猜测值,使得迭代序列逐渐趋近方程的解。

在MATLAB中,可以使用循环结构来实现迭代过程。

一般来说,迭代法需要满足收敛条件,即迭代序列能够收敛到方程的解。

常见的迭代法包括简单迭代法、牛顿迭代法和割线法等。

其次,我将介绍一种常见的迭代法——简单迭代法(也称为不动点迭代法)。

简单迭代法的基本思想是将方程转化为等价的不动点形式,即将方程f(x) = 0转化为x = g(x)的形式。

然后,通过迭代序列x_{n+1} = g(x_n)来逼近方程的解。

在MATLAB中,可以通过编写一个循环结构来实现简单迭代法。

下面是一个使用简单迭代法求解方程的MATLAB代码示例:matlab.function x = simple_iteration(g, x0, tol, max_iter)。

% 简单迭代法求解方程。

% 输入,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。

% 输出,x为方程的解。

x = x0; % 初始猜测值。

iter = 0; % 迭代次数。

while abs(g(x) x) > tol && iter < max_iter.x = g(x); % 迭代计算下一个近似解。

iter = iter + 1; % 迭代次数加1。

end.if iter == max_iter.disp('迭代次数超过最大迭代次数,未找到解');else.disp(['迭代次数为,', num2str(iter)]);disp(['方程的解为,', num2str(x)]);end.end.在上述代码中,g为迭代函数,x0为初始猜测值,tol为容差,max_iter为最大迭代次数。

基于matlab的信道编码仿真(可编辑)

基于matlab的信道编码仿真(可编辑)

基于matlab的信道编码仿真(可编辑)基于matlab的信道编码仿真海南大学毕业论文(设计)题目:基于matlab的信道编码仿真学号:姓名:年级:学院:信息科学技术学院系别:电子信息工程专业:电子信息工程指导教师: 完成日期:摘要通信技术的飞速发展,信道编码已经成功地应用于各种通信系统中。

以及各种传输方式对可靠性要求的不断提高,信道编码技术作为抗干扰技术的一种重要的手段,在数字通信技术领域和数字传输系统中显示出越来越重要的作用。

信道编码的目的是为了改善通信系统的传输质量。

由于实际信道存在噪声和干扰,使发送的码字与信道传输后所接收的码字之间存在差异,称这种差异为差错。

一般情况下,信道噪声、干扰越大,码字产生差错的概率也就越大。

本文利用matlab对二进制对称信道BSC,高斯白噪声信道AWGN两种信道的仿真,(7,4)Hamming码对信道的仿真,通过误码率的曲线图来了解信道的编码。

并利用matlab的simulink模块仿真,运用simulink里的卷积码viterbi译码器来对二进制对称信道和高斯白噪声信道的仿真,观察误码率的曲线图来了解2个信道的不同。

关键字:matlab,信道,编码,译码,Simulink。

AbstractWith the rapid development of communication technology, channelcoding has been successfully applied to various communications systems. And a variety of transmission of the continuous improvement ofreliability requirements, anti-jamming channel coding technology as an important means of technology in the field of digital communications technology and digital transmission systems in a more and more important role The purpose of channel coding is to improve the transmissionquality of communications systems. As the actual existence of thechannel noise and interference, the transmitted codewords and channel transmission received after the difference between code words, said this difference is wrong. Under normal circumstances, channel noise, the greater the interference, the code word generated the greater the probability of errorIn this paper, matlab binary symmetric channel BSC, Gaussian white noise channel AWGN two channel simulation, 7,4 Hamming code simulation of the channel, through the bit error rate curve to understand the channel coding. Using matlab to simulink block simulation, using simulink in the viterbi decoder to convolutional codes on the binary symmetric channel and Gaussian white noise channel simulation, observation error rategraphs to understand the two different channelsKeywords: matlab, channel, coding, decoding, Simulink.目录1引言 11.1选题的目的和意义 11.2本选题的理论依据、研究内容 12.信道编码以及其运行环境MATLAB的介绍 2 2.1 信道编码的概念及分类 22.2 信道编码定理及信道编码中所包含的各种码类的简介 22.2.1卷积码 22.2.2线性分组码 32.2.3循环码 32.3 MATLAB语言的简介 42.4 Simulink 53.信道 53.1二进制对称信道(BSC) 53.2二进制删除信道(BEC) 63.3高斯白噪声信道AWGN 64. Hamming码 74.1汉明码 74.2校验方法 74.3汉明码编码 94.3.1汉明码对高斯白噪声信道 94.3.2汉明码对二进制对称信道的仿真 115.卷积码 155.1卷积码定义与原理 155.2维特比译码原理 155.3卷积码译码器对高斯白噪声信道的设计与仿真 18 5.3.1卷积码译码器的设计与仿真 195.3.2简化维特比译码器的仿真 225.3.3卷积码译码器的误码率分析 245.4卷积编码器在二进制对称信道(BSC)中的性能 256.卷积码译码器对二进制对称信道和高斯白噪声信道仿真比较 307.总结 31致谢 32参考文献 33附录1: 34附录2: 37附录3: 40附录4: 411引言1.1选题的目的和意义数字信号在传输中往往由于各种原因,使得在传送的数据流中产生误码,从而使接收端产生图象跳跃、不连续、出现马赛克等现象。

迭代法matlab

迭代法matlab

迭代法matlab一、引言编程是计算机科学中非常重要的一部分,它能够帮助我们解决各种各样的问题。

在计算机科学中,迭代法(Iteration Method)是一种常用的解决数值问题的方法。

本文将详细介绍迭代法在MATLAB中的应用及其原理。

二、迭代法的原理迭代法是一种通过递归或循环计算来逼近方程解的方法。

它通常用于无法通过解析方法求解的问题,例如非线性方程、积分、微分方程等。

迭代法基于以下原理: 1. 初始值的选择:我们需要选择一个合适的初始值作为迭代的起点。

2. 迭代公式的确定:我们需要找到一个迭代公式(或更新规则),通过不断迭代来逼近方程的解。

3. 精度要求的设定:我们需要设定一个精度要求,当迭代结果达到该精度要求时,迭代可以停止。

三、迭代法在MATLAB中的应用MATLAB是一款功能强大的科学计算软件,它提供了丰富的数学函数和工具箱,方便我们进行数值计算。

下面是迭代法在MATLAB中的常见应用场景和示例代码。

3.1 解非线性方程迭代法可用于解非线性方程。

例如,我们要解方程f(x) = 0,我们可以通过不断迭代来逼近方程的解。

以下是一个示例代码:function [x] = iterationMethod(f, x0, epsilon, maxIter)% f: 方程的函数句柄% x0: 初始值% epsilon: 精度要求% maxIter: 最大迭代次数x = x0;iter = 0;while iter < maxIterx_new = f(x); % 迭代公式if abs(x_new - x) < epsilonbreak;endx = x_new;iter = iter + 1;endif iter == maxIterdisp('迭代次数已达到最大值,未能满足精度要求!');elsedisp(['迭代成功,解为:', num2str(x)]);endend3.2 求解积分迭代法还可用于求解积分。

实验三 信道容量计算

实验三 信道容量计算

实验三信道容量计算一、实验目的:了解对称信道与非对称信道容量的计算方法。

二、实验原理:信道容量是信息传输率的极限,当信息传输率小于信道容量时,通过信道编码,能够实现几乎无失真的数据传输;当数据分布满足最佳分布时,实现信源与信道的匹配,使得信息传输率能够达到信道容量。

本实验利用信道容量的算法,使用计算机完成信道容量的计算。

实验采用迭代算法计算信道容量,即:设DMC的转移概率pyx(i,j),p(i)是任意给定的一组初始给定输入分布,开始为等概率分布,以后逐次迭代更新p(i)的取值。

其所有分量P (i)均不为0。

按照如下方法进行操作:具体方法:1、计算q(j)=∑ijipyxip),(*)(,pyx(i,j)为信道转移概率2、计算a(i)先算中间变量d(i)=∑jjqjipyxjipyx)(/),(log(*),(然后,a(i)=exp(d(i))3、计算中间变量U=∑iip ia)(*)(4、计算IL=log2(u)5、计算IU=log2(max(a(i))6、当IU-IL>ε(ε为设定的迭代精度)时,进入以下循环,否则输出迭代次数n,信道容量C=IU计算结果,最佳分布p(i)。

①重新计算p(i)=p(i)*a(i)/U②计算q(j),方法同1③计算a(i),方法同2④计算中间变量U=∑iip ia)(*)(⑤计算IL=log2(u)⑥计算IU=log2(max(a(i))⑦计次变量n=n+1返回6判断循环条件是否满足。

四、实验内容:假设离散无记忆二元信道如图所示,编程,完成下列信道容量的计算2e1. 令120.1e e p p ==和120.01e e p p ==,先计算出信道转移矩阵,分别计算该对称信道的信道容量和最佳分布,将用程序计算的结果与用对称信道容量计算公式的结果进行比较,并贴到实验报告上。

2. 令10.15e p =,20.1e p =和10.075e p =20.01e p =,分别计算该信道的信道容量和最佳分布;四、实验要求:在实验报告中给出源代码,写出信道对应的条件转移矩阵,计算出相应结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DMC 信道容量迭代计算的matlab 实现--通信与信息系统
一、用了matlab 实现DMC 容量迭代的算法如下:
1. 初始化信源分布:.0deta 10,1,0,1)(>>=⋯==,选置,,k r i r
P k i 一般我选deta=0.000001。

2. }{,)()()()(k ij i
ji
k i ji k i k ij t p p p p t 得反向转移概率矩阵由式∑=。

3.
()()()()(){}111]log exp[]
log exp[+++==∑∑∑k i k i j ij k ji j
ij k ji k i p P t p
t p p 计算由式。

4.
()()()()()()。

C t p t P I C k r i s j k ij ji k k k 10011log exp log ,+==++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡==∑∑计算由式
5. 若a C C C k k k det )1()
()1(>-++,则k=k+1,转第2步
6.输出迭代次数k 和()1+k C 和1+k P ,终止。

二、了解了信道容量的定义和DMC 信道容量迭代计算方法,我用了matlab 来进行编程进行迭代计算得出信道容量。

不足之处在于每迭代一次就输出一次迭代次数直到最后一次迭代。

1)输入:输入信源个数、信宿个数和信道容量的精度,程序能任意生成随机的
信道转移概率矩阵,也可以自己输入信道转移矩阵。

2)输出:输出最佳信源分布和信道容量。

将附件里的dmc.m 文件直接run 运行
可以自主输入信道转移概率矩阵,按照程序中提示将那两句代替判
断输入矩阵是否正确的那部分,dmc1.m 运行可以随机生成信道转移
概率矩阵。

三、检验程序
之一:
输入信源个数:2
输入信宿个数:3
输入信道容量的精度: 0.000001
输入信道转移矩阵P :[0.5000 0.3000 0.2000;0.3000 0.5000 0.2000] 之二:P :[0.4000 0.3000 0.2000;0.3000 0.5000 0.2000] 之三:P :[1.1000 -0.3000 0.2000;0.3000 0.5000 0.2000] 之四:P:[0.6 0.4;0.01 0.99]
之五:自动生成信道转移矩阵
四、程序源代码:
clear;
r=input('输入信源个数:');
s=input('输入信宿个数:');
deta=input('输入信道容量的精度:');
Q=rand(r,s); %形成r行s列随机矩阵Q
A=sum(Q,2); %把Q矩阵每一行相加和作为一个列矩阵A
B=repmat(A,1,s); %把矩阵A的那一列复制为S列的新矩阵
%判断信道转移概率矩阵输入是否正确
P=input('输入信道转移矩阵P:')%从这句话开始将用下面两句代替可自动生成信道转移矩阵[r,s]=size(P);
for i=1:r
if(sum(P(i,:))~=1) %检测概率转移矩阵是否行和为1.
error('概率转移矩阵输入有误!!')
return;
end
for j=1:s
if(P(i,j)<0||P(i,j)>1) %检测概率转移矩阵是否负值或大于1
error('概率转移矩阵输入有误!!')
return;
end
end
end
%将上面的用下面两句代替可自动生成信道转移矩阵
%disp('信道转移概率矩阵:')
%P=Q./B 信道转移概率矩阵(每一个原矩阵的新数除以所在行的数总和)
i=1:1:r; %设置循环首项为1,公差为1,末项为r(Q的行数)的循环
p(i)=1/r; %原始信源分布r个信源,等概率分布
disp('原始信源分布:')
p(i)
E=repmat(p',1,s);%把r个等概率元素组成一列,复制为s列
for k=1:1:1/deta
m=E.*P; % m=p.*E; %后验概率的分子部分
a=sum(m); %把得到的矩阵m每列相加之和构成一行
su1=repmat(a,r,1);%把得到的行矩阵a复制r行,成一新矩阵sul,后验概率的分母部分t=m./su1; %后验概率矩阵
n=exp(sum(P.*log(t),2)); %信源分布的分子部分
su2=sum(n); %信源分布的分母部分
p=n/su2; %信源分布
E=repmat(p,1,s);
C(k+1)=log(sum(exp(sum(P.*log(t),2))))/log(2);
kk=abs(C(k+1)-C(k))/C(k+1);
if(kk<=deta)
break;
end
disp('迭代次数:k='),disp(k)
end
disp('最大信道容量时的信源分布:p='),disp(p')
disp('最大信道容量:C='),disp(C(k+1))
五、运行结果如下:
检验程序之一:
输入信源个数:2
输入信宿个数:3
输入信道容量的精度:0.000001
输入信道转移矩阵P:[0.5000 0.3000 0.2000;0.3000 0.5000 0.2000]
P =
0.5000 0.3000 0.2000
0.3000 0.5000 0.2000
原始信源分布:
ans =
0.5000 0.5000
迭代次数:k=
1
最大信道容量时的信源分布:p=
0.5000 0.5000
最大信道容量:C=
0.0365
检验程序之二:P:[0.4000 0.3000 0.2000;0.3000 0.5000 0.2000]
检验程序之三:P:[1.1000 -0.3000 0.2000;0.3000 0.5000 0.2000]
检验程序之四:P:[0.6 0.4;0.01 0.99]
输入信源个数:2
输入信宿个数:2
输入信道容量的精度:0.000001
输入信道转移矩阵P:[0.6 0.4;0.01 0.99]
P =
0.6000 0.4000
0.0100 0.9900
原始信源分布:
ans =
0.5000 0.5000
迭代次数:k=
1
迭代次数:k=
2
迭代次数:k=
3
迭代次数:k=
4
迭代次数:k=
5
迭代次数:k=
6
迭代次数:k=
7
迭代次数:k=
8
迭代次数:k=
9
最大信道容量时的信源分布:p=
0.4240 0.5760
最大信道容量:C=
0.3688
检验程序之五:自动生成信道转移矩阵变为dmc1.m文件改程序如下:
结果运行如下:
输入信源个数:2
输入信宿个数:2
输入信道容量的精度:0.000001 信道转移概率矩阵:
P =
0.6102 0.3898
0.3223 0.6777
原始信源分布:
ans =
0.5000 0.5000
迭代次数:k=
1
迭代次数:k=
2
迭代次数:k=
3
迭代次数:k=
4
迭代次数:k=
5
迭代次数:k=
6
迭代次数:k=
7
迭代次数:k=
8
迭代次数:k=
9
迭代次数:k=
10
迭代次数:k=
11
迭代次数:k=
12
最大信道容量时的信源分布:p=
0.4977 0.5023
最大信道容量:C=
0.0610
YS20112508 夏笑笑通信与信息系统。

相关文档
最新文档