鱼峰区高级中学2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鱼峰区高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________ 一、选择题
1.已知是虚数单位,若复数
2
2
ai
Z
i
+
=
+
在复平面内对应的点在第四象限,则实数的值可以是()
A.-2 B.1 C.2 D.3 2.已知函数f(x+1)=3x+2,则f(x)的解析式是()
A.3x﹣1 B.3x+1 C.3x+2 D.3x+4
3.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()
A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题
4.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为()
A.B.C.D.
5.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z
A.1 B.2 C.3 D.4
6.已知i为虚数单位,则复数所对应的点在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()
A.{x|x≥0} B.{x|x≤1} C.{﹣1,0,1} D.R
8.函数f(x)=sinωx(ω>0)在恰有11个零点,则ω的取值范围()
A. C. D.时,函数f(x)的最大值与最小值的和为()
A.a+3 B.6 C.2 D.3﹣a
9.在下列区间中,函数f(x)=()x﹣x的零点所在的区间为()
A.(0,1) B.(1,2) C.(2,3 )D.(3,4)
10.一个椭圆的半焦距为2,离心率e=,则它的短轴长是()
A.3 B.C.2D.6
11.已知抛物线x2=﹣2y的一条弦AB的中点坐标为(﹣1,﹣5),则这条弦AB所在的直线方程是()A.y=x﹣4 B.y=2x﹣3 C.y=﹣x﹣6 D.y=3x﹣2
12.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]
二、填空题
13.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为.
14.设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f (x)>0成立的x的取值范围是.
15.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.
16.在(2x+)6的二项式中,常数项等于(结果用数值表示).
17.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)
18.已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.
三、解答题
19.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.
20.(本小题满分12分)某市拟定2016年城市建设,,
A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,
A B C三项重点工程竞标成功的概率分
别为a,b,1
4()
a b
>,已知三项工程都竞标成功的概率为
1
24
,至少有一项工程竞标成功的概率为3
4

(1)求a与b的值;
(2)公司准备对该公司参加,,
A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.
【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.
21.已知条件
4
:1
1
p
x
≤-
-
,条件22
:q x x a a
+<-,且p是的一个必要不充分条件,求实数
的取值范围.
22.(本小题满分10分)直线l 的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中α∈[0,π),曲线C 1的参数方
程为⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数),圆C 2的普通方程为x 2+y 2+23x =0.
(1)求C 1,C 2的极坐标方程;
(2)若l 与C 1交于点A ,l 与C 2交于点B ,当|AB |=2时,求△ABC 2的面积.
23.已知不等式的解集为

(1)求,的值 (2)解不等式.
24.已知函数f (x0=
. (1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间;
(2)解不等式f(x﹣1)≤﹣.
鱼峰区高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题
1.【答案】A
【解析】
试题分析:
()()
()()
22
24(22)
2225
ai i
ai a a i
i i i
+-
+++-
==
++-
,对应点在第四象限,故
40
220
a
a
+>


-<

,A选项正确.
考点:复数运算.
2.【答案】A
【解析】∵f(x+1)=3x+2=3(x+1)﹣1
∴f(x)=3x﹣1
故答案是:A
【点评】考察复合函数的转化,属于基础题.
3.【答案】A
【解析】解:时,sinx0=1;
∴∃x0∈R,sinx0=1;
∴命题p是真命题;
由x2+1<0得x2<﹣1,显然不成立;
∴命题q是假命题;
∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;
∴A正确.
故选A.
【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.
4.【答案】C
【解析】解:易证所得三棱锥为正四面体,它的棱长为1,
故外接球半径为,外接球的体积为,
故选C.
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
5.【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=,
第5行的第1、3个数分别为,.
所以z=.
所以x+y+z=++=1.
故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.6.【答案】A
【解析】解:==1+i,其对应的点为(1,1),
故选:A.
7.【答案】A
【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.
A、{x|x≥0}={x|x≥0}=A,故本选项正确;
B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;
D、给出的集合是R,不合题意,故本选项错误.
故选:A.
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.8.【答案】A
【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,
故选:A.
9.【答案】A
【解析】解:函数f(x)=()x﹣x,
可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,
函数的零点在(0,1).
故选:A.
10.【答案】C
【解析】解:∵椭圆的半焦距为2,离心率e=,
∴c=2,a=3,
∴b=
∴2b=2.
故选:C.
【点评】本题主要考查了椭圆的简单性质.属基础题.
11.【答案】A
【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)
∴直线AB的斜率k=1,
∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.
故选A,
12.【答案】B
【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},
∴f(x1)=f(f(x1))=0,
∴f(0)=0,
即f(0)=m=0,
故m=0;
故f(x)=x2+nx,
f(f(x))=(x2+nx)(x2+nx+n)=0,
当n=0时,成立;
当n≠0时,0,﹣n不是x2+nx+n=0的根,
故△=n2﹣4n<0,
故0<n<4;
综上所述,0≤n+m<4;
故选B.
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.二、填空题
13.【答案】(,).
【解析】解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y﹣6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=≥,当且仅当2a=3b时,取“=”,
∴a=,②
联立①②求得:a=,b=,
故点C的坐标为(,).
故答案是:(,).
【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.
14.【答案】(﹣2,0)∪(2,+∞).
【解析】解:设g(x)=,则g(x)的导数为:
g′(x)=,
∵当x>0时总有xf′(x)﹣f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(﹣x)====g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(﹣2)==0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).
15.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.

一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.
故答案为:①②④.
16.【答案】240
【解析】解:由(2x+)6,得
=.
由6﹣3r=0,得r=2.
∴常数项等于.
故答案为:240.
17.【答案】充分不必要
【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,
∴在复平面内对应的点M的坐标是(a+2,a﹣2),
若点在第四象限则a+2>0,a﹣2<0,
∴﹣2<a<2,
∴“a=1”是“点M在第四象限”的充分不必要条件,
故答案为:充分不必要.
【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.
18.【答案】.
【解析】解:依题意,当0≤x≤时,f(x)=2x,当<x≤1时,f(x)=﹣2x+2
∴f(x)=
∴y=xf(x)=
y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣
+x2)=+=
故答案为:
三、解答题
19.【答案】
【解析】解:(Ⅰ)元件A为正品的概率约为.
元件B为正品的概率约为.
(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A 次B次.
∴随机变量X的所有取值为90,45,30,﹣15.
∵P(X=90)==;P(X=45)==;P(X=30)==;
P(X=﹣15)==.
∴随机变量X的分布列为:
EX=.
(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.
依题意得50n﹣10(5﹣n)≥140,解得.
所以n=4或n=5.
设“生产5件元件B所获得的利润不少于140元”为事件A,
则P(A)==.
20.【答案】
【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩
.…………………4分 (Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X ,
则X 的值可以为0,2,4,6,8,10,12.…………5分 而4
1433221)0(=⨯⨯=
=X P ;1231(2)2344P X ==⨯⨯=; 1131(4)2348P X ==⨯⨯=; 1211135(6)23423424
P X ==⨯⨯+⨯⨯=; 1211(8)23412P X ==⨯⨯=; 1111(10)23424
P X ==⨯⨯=; 1111(12)23424
P X ==⨯⨯=.…………………9分 所以X 的分布列为:
于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分 21.【答案】[]1,2-.
【解析】
试题分析:先化简条件p 得31x -≤<,分三种情况化简条件,由p 是的一个必要不充分条件,可分三种情况列不等组,分别求解后求并集即可求得符合题意的实数的取值范围. 试题解析:由
411
x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12
a >时,():,1q a a -- 由题意得,p 是的一个必要不充分条件,
当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭
, 当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦ 综上,[]1,2a ∈-. 考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.
【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断p 是的什么条件,需要从两方面分析:一是由条件p 能否推得条件,二是由条件能否推得条件p .对于带有否定性的命题
或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.
22.【答案】
【解析】解:(1)由C 1:⎩⎪⎨⎪⎧x =cos t y =1+sin t
(t 为参数)得 x 2+(y -1)2=1,
即x 2+y 2-2y =0,
∴ρ2-2ρsin θ=0,即ρ=2sin θ为C 1的极坐标方程,
由圆C 2:x 2+y 2+23x =0得
ρ2+23ρcos θ=0,即ρ=-23cos θ为C 2的极坐标方程.
(2)由题意得A ,B 的极坐标分别为
A (2sin α,α),
B (-23cos α,α).
∴|AB |=|2sin α+23cos α|
=4|sin (α+π3
)|,α∈[0,π), 由|AB |=2得|sin (α+π3)|=12
, ∴α=π2或α=5π6
. 当α=π2时,B 点极坐标(0,π2)与ρ≠0矛盾,∴α=5π6
, 此时l 的方程为y =x ·tan 5π6
(x <0), 即3x +3y =0,由圆C 2:x 2+y 2+23x =0知圆心C 2的直角坐标为(-3,0),
∴C 2到l 的距离d =|3×(-3)|(3)2+32
=32, ∴△ABC 2的面积为S =12
|AB |·d =12×2×32=32
. 即△ABC 2的面积为32
. 23.【答案】
【解析】
解:(1)因为不等式的解集为或
所以,是方程的两个解
所以,解得
(2)由(1)知原不等式为,即,
当时,不等式解集为
当时,不等式解集为;
当时,不等式解集为;
24.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为
(﹣∞,0),(1,+∞),
丹迪减区间是(0,1)
(2)由已知可得
或,
解得x≤﹣1或≤x≤,
故不等式的解集为(﹣∞,﹣1]∪
[,].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.。

相关文档
最新文档