高三数学复数多选题专项训练单元 易错题难题测试综合卷学能测试试卷(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学复数多选题专项训练单元 易错题难题测试综合卷学能测试试卷(1)
一、复数多选题
1.已知复数122,2z i z i =-=则( )
A .2z 是纯虚数
B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =答案:AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,对应的
解析:AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;
对于C 选项,122+=+z z i ,则12z z +==,故C 错;
对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z =
=D 正确.
故选:AD
【点睛】
本题考查复数的相关概念及复数的计算,较简单. 2.对任意1z ,2z ,z C ∈,下列结论成立的是( )
A .当m ,*n N ∈时,有m n m n z z z +=
B .当1z ,2z
C ∈时,若2212
0z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅
D .12z z =的充要条件是12=z z
答案:AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.
【详解】
解:由复数乘法的运算律知,A 正确;
取,;,满足,但且不
解析:AC
【分析】
根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .
【详解】
解:由复数乘法的运算律知,A 正确;
取11z =,;2z i =,满足2212
0z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;
由12z z =能推出12=z z ,但12||||z z =推不出12z z =
, 因此12z z =的必要不充分条件是12
=z z ,D 错误. 故选:AC
【点睛】 本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.
3.(多选)()()321i i +-+表示( )
A .点()3,2与点()1,1之间的距离
B .点()3,2与点()1,1--之间的距离
C .点()2,1到原点的距离
D .坐标为()2,1--的向量的模
答案:ACD
【分析】
由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D
【详解】
由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B
解析:ACD
【分析】
由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D
【详解】
由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;
()()()()3211322i i i i i +-+=+-+=
--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,
故选:ACD
【点睛】
本题考查复数的几何意义,考查复数的模
4.以下命题正确的是( )
A .0a =是z a bi =+为纯虚数的必要不充分条件
B .满足210x +=的x 有且仅有i
C .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件
D .已知()f x =()1
878
f x x '= 答案:AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式
解析:AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.
【详解】
对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,
所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;
对于B 选项,解方程210x +=得x i =±,B 选项错误;
对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.
反之,取()3f x x =,()2
3f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,
即“在区间(),a b 内()0f x '>”⇐
/“()f x 在区间(),a b 内单调递增”. 所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.
C 选项正确;
对于D 选项,()11172488
f x x x ++=
==,()1878f x x -'∴=,D 选项错误. 故选:AC.
【点睛】
本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.
5.下面四个命题,其中错误的命题是( )
A .0比i -大
B .两个复数当且仅当其和为实数时互为共轭
复数
C .1x yi i +=+的充要条件为1x y ==
D .任何纯虚数的平方都是负实数 答案:ABC
【分析】
根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正
误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.
【详解】
对于A 选项,由于虚数不能比大小,
解析:ABC
【分析】
根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.
【详解】
对于A 选项,由于虚数不能比大小,A 选项错误;
对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,
C 选项错误;
对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()2
20ai a =-<,D 选项正确. 故选:ABC.
【点睛】
本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.
6.以下为真命题的是( )
A .纯虚数z 的共轭复数等于z -
B .若120z z +=,则12z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数 答案:AD
【分析】
根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.
【详解】
解:对于A ,若为纯虚数,可设,则,
即纯虚数的共轭复数等于,故A 正确;
对于B
解析:AD
【分析】
根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.
【详解】
解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,
即纯虚数z 的共轭复数等于z -,故A 正确;
对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;
对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;
对于D ,120z z -=,则12z z =
,则1z 与2z 互为共轭复数,故D 正确. 故选:AD.
【点睛】
本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题.
7.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数
B .若z 的共轭复数为z ,且z z =,则z 是实数
C .若||z z =,则z 是实数
D .||z 可以等于12
答案:BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由
解析:BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1
||2
z =
得2214
a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于
12,D 错误. 故选:BC
【点睛】
本小题主要考查复数的有关知识,属于基础题.
8.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )
A .20z
B .2z z =
C .31z =
D .1z =
答案:BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数(其中为虚数单位),
,故错误;
,故正确;
,故正确;
.故正确.
故选:.
【点睛】
本题考查命题真假的判断,考查复数的运算法则
解析:BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数12z =-+(其中i 为虚数单位),
2131442z ∴=--=-,故A 错误; 2z z ∴=,故B 正确;
31113()()12244
z =---+=+=,故C 正确;
||1z ==.故D 正确. 故选:BCD .
【点睛】
本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.
9.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )
A .z =-1+2i
B .|z |=5
C .12z i =+
D .5z z ⋅= 答案:AD
【分析】
因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量,
所以,,|z|=,,
故选:AD
解析:AD
【分析】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,
所以12z i =-+,12z i =--,|z 5z z ⋅=,
故选:AD
10.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限 答案:BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数,
所以其虚部为,即A 错误;
,故B 正确;
解析:BCD
【分析】
根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.
【详解】
因为复数1z i =+,
所以其虚部为1,即A 错误;
z =,故B 正确;
复数z 的共轭复数1z i =-,故C 正确;
复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.
故选:BCD.
【点睛】
本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.
11.下列关于复数的说法,其中正确的是( )
A .复数(),z a bi a b R =+∈是实数的充要条件是0b =
B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠
C .若1z ,2z 互为共轭复数,则12z z 是实数
D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称
答案:AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于:复数是实数的充要条件是,显然成立,故正确;
对于:若复数是纯虚数则且,故错误;
对于:若,互为共轭复数
解析:AC
【分析】
根据复数的有关概念和充分条件和必要条件的定义进行判断即可.
【详解】
解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;
对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;
对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2
122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;
故选:AC
【点睛】
本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关
键,属于基础题.
12.已知复数1cos2sin 22
2z i ππθθθ⎛⎫=++-
<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限 B .z 可能为实数 C .2cos z θ= D .1z 的实部为12
- 答案:BC
【分析】
由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.
【详解】
因为,所以,所以,所以,所以A 选
解析:BC
【分析】 由22π
π
θ-<<可得2πθπ-<<,得01cos 22θ<+≤,可判断A 选项,当虚部
sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭
时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得
11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.
【详解】 因为22π
π
θ-<<,所以2πθπ-<<,所以1cos 21θ-<≤,所以01cos 22θ<+≤,
所以A 选项错误;
当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭
时,复数z 是实数,故B 选项正确;
2cos z θ===,故C 选项正确:
()()111cos2sin 21cos2sin 21cos2sin 21cos2sin 21cos2sin 212cos2i i z i i i θθθθθθθθθθθ
+-+-===+++++-+,1z 的实部是1cos 2122cos 22
θθ+=+,故D 不正确. 故选:BC
【点睛】
本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.
13.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 答案:BD
【分析】
先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.
【详解】
设复数,
则,
所以,
则,解得或,
因此或,所以对应的点为或,
因此复
解析:BD
【分析】
先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.
【详解】
设复数(),z a bi a b R =+∈,
则2222724z a abi b i =+-=--,
所以2222724z a abi b i =+-=--,
则227224a b ab ⎧-=-⎨=-⎩
,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,
因此复数z 对应的点可能在第二或第四象限.
故选:BD.
【点睛】
本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.
14.已知复数12z =-
(其中i 为虚数单位,,则以下结论正确的是( ).
A .20z
B .2z z =
C .31z =
D .1z = 答案:BCD
【分析】
计算出,即可进行判断.
【详解】

,故B 正确,由于复数不能比较大小,故A 错误;
,故C 正确;
,故D 正确.
故选:BCD.
【点睛】
本题考查复数的相关计算,属于基础题.
解析:BCD
【分析】 计算出23
,,,z z z z ,即可进行判断.
【详解】
1
2z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222
222z ,故C 正确; 2213122z
,故D 正确.
故选:BCD.
【点睛】 本题考查复数的相关计算,属于基础题.
15.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
2
答案:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确
解析:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.
【详解】
复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;
复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;
设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即
=y x =;即Z 点在直线y x =上,C 正确;
易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距
2=,故D 正确. 故选:ACD
【点睛】
本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.
16.已知复数(),z x yi x y R =+∈,则( )
A .20z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =答案:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取,则,A 选项错误;
对于B 选项,复数的虚部为,B 选项错误;
解析:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取z i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】 本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.
17.已知复数z 满足220z z +=,则z 可能为( ).
A .0
B .2-
C .2i
D .2i+1- 答案:AC
【分析】
令,代入原式,解出的值,结合选项得出答案.
【详解】
令,代入,
得,
解得,或,或,
所以,或,或.
故选:AC
【点睛】
本题考查复数的运算,考查学生计算能力,属于基础题.
解析:AC
【分析】
令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.
【详解】
令()i ,z a b a b R =+∈,代入2
20z z +=,
得222i 0a b ab -+=,
解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩
, 所以0z =,或2i z =,或2i z =-.
故选:AC
【点睛】
本题考查复数的运算,考查学生计算能力,属于基础题.
18.设复数z 满足
1z i z +=,则下列说法错误的是( ) A .z 为纯虚数
B .z 的虚部为12i -
C .在复平面内,z 对应的点位于第三象限
D .2
z =
答案:AB
【分析】
先由复数除法运算可得,再逐一分析选项,即可得答案.
【详解】
由题意得:,即,
所以z 不是纯虚数,故A 错误;
复数z 的虚部为,故B 错误;
在复平面内,对应的点为,在第三象限,故C 正确
解析:AB
【分析】 先由复数除法运算可得1122z i =-
-,再逐一分析选项,即可得答案. 【详解】
由题意得:1z zi +=,即111122
z i i -==---, 所以z 不是纯虚数,故A 错误;
复数z 的虚部为12
-,故B 错误; 在复平面内,z 对应的点为11(,)22-
-,在第三象限,故C 正确;
z ==,故D 正确. 故选:AB
【点睛】
本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.
19.已知i 为虚数单位,则下列选项中正确的是( )
A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数()()
2234224m m m m +-+--i 是纯虚数,则1m =或4m =-
D .对任意的复数z ,都有20z
答案:AB
【分析】
求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.
【详解】
解:对于,复数的模,故正确;
对于,若复数,则,在复平面内对应的点的坐标为,在第四
解析:AB
【分析】
求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.
【详解】
解:对于A ,复数34z i =+的模||5z ==,故A 正确;
对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;
对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,
则223402240
m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.
故选:AB .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.
20.已知i 为虚数单位,下列说法正确的是( )
A .若,x y R ∈,且1x yi i +=+,则1x y ==
B .任意两个虚数都不能比较大小
C .若复数1z ,2z 满足22120z z +=,则120z z ==
D .i -的平方等于1
答案:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,且,根据复数相等的性质,则,故正确;
对于选项B ,
解析:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正
确;
对于选项B ,∵虚数不能比较大小,故正确;
对于选项C ,∵若复数1=z i ,2=1z 满足2212
0z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;
故选:AB .
【点睛】
本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.
21.设()()
2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )
A .z 对应的点在第一象限
B .z 一定不为纯虚数
C .z 一定不为实数
D .z 对应的点在实轴的下方
答案:CD
【分析】
利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.
【详解】
,,
所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD
【分析】
利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.
【详解】
2
2549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;
当222530220
t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;
由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.
【点睛】
本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.
22.已知i 为虚数单位,下列命题中正确的是( )
A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==
B .2(1)()a i a +∈R 是纯虚数
C .若2212
0z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数
答案:BD
【分析】
选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入
,验证结果是纯虚数,所以正确.
【详解】
取,,则,
但不满足,故A 错误;
,恒成
解析:BD
【分析】
选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以
正确;选项C :取1z i =,21z =,2212
0z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.
【详解】
取x i =,y i =-,则1x yi i +=+,
但不满足1x y ==,故A 错误;
a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,
故B 正确;
取1z i =,21z =,则2212
0z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,
故D 正确.
故选:BD .
【点睛】
本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

相关文档
最新文档