雷达干涉测量(崔松整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达干涉测量(崔松整理)
雷达干涉测量(崔松整理)
第一章绪论
第二章雷达
SAR:使用短天线一段时间内不断收集回波信号,通过信号聚焦处理方法合成一较大的等效天线孔径的雷达。

1.1雷达及雷达遥感发展概况
ENVISAT
与ERS的SAR传感器相比,Envisat ASAR
的优点主要表现在:
扫描合成孔径雷达(ScanSAR)可达到500km的幅照宽度;(ERS只有100km)
可获得垂直和水平极化信息;
(如果发射的是水平极化方式的电磁波,与地物表面发生作用后会使电磁波极化方向产生不同程度的旋转,形成水平和垂直两个分量,用不同极化方式的天线接收,形成HH和HV两种极化方式的图像。

若雷达发射的是垂直极化方式的电磁波,同理,会产生VV和VH两种极化方式的图像。


交替极化模式可使目标同时以垂直极化与水平极化方式成像;
有不同的空间分辨率和数据率;
可提供7个条带,入射角在15°~45°的雷达数据。

RADARSAT
多极化、多入射角
ALOS
ALOS采用了先进的陆地观测技术,能够获
取全球高分辨率陆地观测数据。

该卫星载有三种传感器:全色立体测图传感
器,新型可见光和近红外辐射计、相控阵型
L波段合成孔径雷达(PALSAR)。

PALSAR不
受云层,天气和昼夜影响,可全天时全天候
对地观测,该卫星具有多入射角,多极化,
多工作模式及多种分辨率的特性,最高分辨
率可达7m。

(ERS、ENVISAT是多入射角吗?)TerraSAR-X
TerraSAR-X
TerraSAR-X 是固态有源相控阵的X 波段合
成孔径雷达(SAR)卫星,具有多极化、多
入射角的特性,具备4 种工作方式和4 种
不同分辨率的成像模式。

高分辨率聚束式(High Resolution
SpotLight(HS))
聚束式(SpotLight Mode(SL))
宽扫成像模式(ScanSAR Mode(SC))
条带成像模式(Stripmap Mode(SM)) COSMO-SkyMed
COSMO-SkyMed星座共包括4颗SAR卫星
工作在X波段,具有多极化、多入射角的特
性,具备3种工作方式和5种分辨率的成像
模式,作为全球第1个分辨率高达1 m的雷
达成像卫星星座,COSMO-SkyMed系统将以
全天候、全天时对地观测的能力、卫星星座
特有的高重访周期和l m高分辨率成像
1.2InSAR及发展概况
SAR的不足:
SAR传感器获取的原始资料主要包含两
种信息:一是地面目标区域的二维图
像,二是地面目标反射回来的相位
SAR成像没有利用回波相位信息。

经过
SAR成像处理后,对于地表三维目标,
得到二维SAR图像,即目标到SAR卫星
的斜距和相对于航迹的位置(或多普勒
频率)被投影到二维的SAR图像上,要
得到目标的三维坐标,需要利用立体定
位的方法的得到目标的三维坐标。

INSAR(合成孔径雷达干涉测量):一种以合成孔径雷达复数据提取的干涉相位信息为信息源获取地表三维信息和变化信息的技术。

InSAR:利用短基线(一般为几十~1000 m),由相邻航线上观测得到的同一地区两幅SAR 影像的相位进行干涉处理来获取高程资料,由得到的目标点的三维坐标建立高精度的数字高程模型(DEM)
D-InSAR:以InSAR为基础发展起来的差分雷达干涉测量(D-InSAR)对于高度的变化非常敏感
PS-DInSAR:利用散射特性在时间上保持稳定的高相干点来获取可靠的干涉相位信息GPS技术与InSAR技术结合:一方面可以利用GPS技术消除InSAR的大气及轨道误差,提高其时间分辨率,解决时间去相关问题;另一方面,可以利用InSAR技术提高GPS的空间分辨率,从而进行大尺度的地表形变监测。

1.3 InSAR的主要应用
高程生成、(地形图测绘)地面沉降、地震、滑坡检测、
火山活动研究(可连续动态监测地表变化,还可估计岩浆流厚度和宽度活火山现场观
测原来对人员设备危险)、
土地利用类型分类(可区分林地、开阔地,风、雪融对相干图的影响,基线越长对地表
微小运动和变化越敏感)、
海洋应用(利用相位差得到风力、海潮、内
波、船尾浪引起的洋面变化)
冰川运动和极地陆地边缘探测、山体运动监
测、坡度估计、变化监测
1.4.InSAR的技术发展趋势
雷达传感器向着多波段,多极化,多工作模式,视角可变的方向发展。

SAR 卫星向着轻型化发展。

是组成 SAR 卫
星星座、卫星编队、卫星编队星座等天基
SAR 系统的关键。

SAR 向着高分辨率,宽测绘带宽方向发展
InSAR 数据获取更为丰富、便捷。

InSAR 与其他技术的融合。

相位解缠,极化
干涉和 PS 技术仍是 InSAR 理论研究的热点
InSAR 应用更为广泛
第二章 InSAR 基本原理及数据处理
1. SAR影像的特点
1. SAR 影像是复数影像,包括振幅图和相位图影像。

复影像:复影像数据包括雷达波振幅和相位
两部分,被称为复数的实部和虚部。

SAR 影
像的每一像素不仅包含反映地表微波反射
强度即所谓的灰度值,而且还包含与雷达斜
距有关的相位值,这两个信息分量可用一个
复数(a + b·i)来表达。

2. 斑点噪声
雷达记录的信号是不同散射中心回波矢量
的叠加,由于散射中心的回波是随机变化
的,这种随机变化造成了相干斑噪声。

另一
方面,相邻像素点的灰度值会由于相干性而
产生一些随机变化,在图像中也会产生斑点
噪声
原因一:由于 SAR 系统的分辨率是有限的,目标表面相对于系统波长比较粗糙,图像中
的每一个分辨率单元都是许多散射点的合
成。

雷达记录的信号是不同散射中心回波矢
量的叠加。

由于散射中心的回波是随机变化
的,这种随机变化造成了相干斑噪声。

原因二:SAR 成像系统是基于相干原理的,在雷达回波信号中,相邻像素点的灰度值会
由于相干性而产生一些随机变化,并且这种
随机变化是围绕着某一均值而进行的,在图
像中也会产生斑点噪声。

相干斑点噪声是
SAR 图像固有的特征
3. 穿透性
4. 几何特征
纵向:平行于卫星的飞行航线,方位向
横向:垂直于卫星飞行的航线,距离向
SAR 影像几何特点:距离收缩、透视收缩、叠掩和阴影等现象。

5. 多视处理
SAR 影像有两种显示方式:斜距显示和地距
显示。

2.SAR干涉测量工作模式
InSAR工作方式
前两种主要用于机载SAR干涉测量;后一种
用于星载SAR干涉测量,卫星不受大气影
响,轨道和姿态稳定,为重轨干涉测量提供
了较好的条件。

1.交轨干涉测量(XTI)
飞行平台上同时装载两个天线,其中一个负责发射并接收雷达波束,另一个则只负责接收,这样基线固定,只要能准确确定平台位置,就有利于获得高质量的干涉测量数据和高程计算结果
航空平台多采用这种方式,航天飞机也
实现了这一方式(SRTM)
准确确定平台位置 GPS 、平台姿态稳
定 INS
侧滚的影响和坡度的影响很难区分相
位差由侧滚引起变化
2.顺轨干涉测量(ATI)
双天线,在飞机上一前一后
目前只是在飞机上采用,主要用于海流
速度制图、运动目标探测、方向波浪谱
测量
3.重复轨道干涉测量(RTI)
只需要一根天线,在尽可能短的时间间
隔内,在大致相同的的轨道上,两次获
取同一地区的数据。

目前航天INSAR的主要工作方式。

航天
InSAR具有航高高,姿态稳定的特点,
但是需要精确确定平台位置,等效基线
必须符合一定的要求,而目前提供的
参数均不精确,所以存在“参数估计问
题”
SAR重复轨道干涉条件
①两次观测期间地物没变化
②稳定的观测几何关系,姿态稳定
③作运动补偿后,能保留好内在的相位信息
相位构成:雷达接收信号中的相位由四部分
贡献组成:
1) 是往返路径确定的相位;
2) 是地表不同的散射特性造成的随机相
位;
3) 大气延迟的影响;
4) 噪声。

3.InSAR成像几何关系
式中,左边表示相邻像元的干涉相位差,右边
第一项表示目标高程变化引起的相位,第二项表示平地引起的相位,第二项引起的相位必须消除掉才能得到地形引起的相位,这就是所谓的“去平地”。

去平地相位之后,可以得到相位与高程之间的关系:
也可表示为
对于雷达干涉测量系统而言,4π是一个参数,雷达波长已知,通过计算每个像元对应的垂直基线分量B⊥、入射角θ以及传感器到地物的距离,即可通过高程h 与相位φ的函数关系求解地表高程,这就是雷达干涉测量的基本原理。

5.InSAR影像相干性估计
相干性:是指两幅图像的相干程度,相干性是衡量InSAR 像对处理效果的指标,相干性的高低决定了干涉条纹的质量,从而决定了干涉处理的结果
SAR 影像干涉处理以影像之间的相干性为
基础。

相干性是衡量InSAR 像对处理效果
的指标,相干性的高低决定了干涉条纹的质量,从而决定了干涉处理的结果,相干性很低的像对很难进行干涉处理,因此,常常利用相干性指标进行干涉像对的选取。

最大似然法相干估计具有一些优点:
无需计算干涉相位;干涉相位误差对其没有影响;可直接应用于单视图像;
不受局部干涉条纹频率或相位估计误差影响
去相干分析
去相干源;原因分析
补偿策略
几何去相干;雷达观测视角;
短基线与滤波处理;
多普勒去相干;不同时相多普勒质心频
率;通过系统参数控制与滤波处理;
系统热噪声;基线设置参数与地表反
射特征;依靠硬件设置来减少;
体散射特征去相干;雷达回拨的穿透能力,
与波长存在较大系;选择同季节的数据;
地面目标地物变化;地面目标的物理特性
变化;缩短时间基线;
数据处理;数据处理过程引入的
误差;选择比较精确的算法;
6. INSAR数据处理基本流程
复图像配准
•基于精密卫星星历和相干系数的配准•最
大频谱干涉法•相位差平均梯度函数法基线估计
•去平地效应•高程估算•地理编码
干涉图的生成
两复数共轭相乘得到像元干涉后的复数表
示形式。

对所有像元进行共轭相乘即可生成干涉图。

平地效应消除和干涉图的滤波
相位图中高度相同而干涉相位差不同的现象称为平地效应。

相位解缠和相位值向高程值转换
从干涉图上直接获得的相位是值在(-π,π ]之间,相位存在2π的模糊。

为了能够将干涉相位和干涉图的成像几何关系联系起来,获得地形高程和实际的地面距离,需要加上正确的2kπ,这一过程称为相位解缠。

DEM 生成及地理编码
影响InSAR 数据质量的因素
卫星系统:入射角、空间分辨率、系统噪声、影像失配、内部时钟偏差、近似聚焦
轨道:定位精度、基线、重复轨道时间差、不平行轨道
信号:频率、极化、带宽、噪声/斑点
地形地物:体散射、坡向(相位梯度角)、地表物体特征(如冻土)
气候条件:风(造成散射体运动)、雪(造
成去相干)
大气层:大气折射
7.InSAR软件简介
GAMMA:该软件分为组件式SAR处理器(MSP),干涉SAR处理器(ISP),差分干涉处理和地理编码(DIFF&GEO),土地利用工具(LAT)和干涉点目标分析(IPTA)五个模块
SARscape:由核心模块、聚焦扩展模块、滤波扩展模块、扫描式干涉雷达处理扩展模块、极化雷达处理扩展模块、干涉叠加扩展模块组成。

8. INSAR技术存在的问题
INSAR技术存在的问题
•单视复数据的高精度配准
•时间基线的去相关现象
散射目标在重复轨道两次观测期间散射特
性的变化所导致的时间去相干。

主要是指散
射体在分辨单元内位置或者自身散射特性
随时间的变化,其保持相干时间长短与本身
的性质有关。

•空间基线的去相关和参数精确估计
由于入射角的不同,在距离向地物频谱投影
到数据频谱时出现偏移•相位解缠
第三章 InSAR配准算法原理
1.SAR影像配准的要求
图像配准的目标是在两幅图像之间找到对
应同一位置的匹配点。

InSAR影像的相位信息远比能量信息对地形
的变化敏感。

对于双天线而言,数据配准相对比较容易
对于重轨INSAR数据配准,配准的难度较大
•轨道很难准确控制
•导航数据不准确
•其它干扰因素使影像有差异
如果配准误差大于或等于一个像元,则两幅
图像完全不相干,干涉图为纯噪声,因此,配准精度必须达到子(亚)像元级。

1.SLC数据处理与显示
SLC:单视复型数据,一般以实部数据文件
和虚部数据文件的形式存在,即单天线某一
时段所获取数据的集合。

影像不清楚的原因:由于振幅信号离散
程度比较大,加上噪声和因干涉效应产
生的或甚强或甚弱的信号,使数据的分
布出现极不正常的情况,绝大多数数据都是振幅强度很小的数值,振幅强度大的点极少。

解决方法:
1. 对图像进行预处理,进行振幅影像
的增强
2. 采取直方图分析的方法,即将频数
很少的而振幅强度很大的点都组合到一起,将数值范围压缩,减小零星点的影响。

3. 去噪增强,对影像进行对数变换,
抑制亮区,采用3X3窗口去除噪声。

2.对数变换和去噪声
1)对数变换:对于数值很大的振幅强
度值经过对数变换,可以将其数值范围
压缩,这样就可以起到抑制作用。

2)噪声判断与去除:采用领域分析法进行处理。

3)再作对数变换
4)显示灰度变换后的数据
5)镜像处理:以便和地形图和专题图对照时,方向基本一致。

5)多视处理(行方向压缩):由于原始
数据在方向上象元分辨率高于斜距方
向上的分辨率,往往要进行压缩。

6)确定重叠区(以找明显同名点)切
出重叠区
2. 配准原理
基于相位的配准,配准的标准
配准指标:评价 InSAR 复影像配准的常用指标:相干系数,平均波动函数,干涉条纹频谱。

1 相干系数法
在参考影像以待匹配点为中心取一定大小
的窗在对应输入影像的一定搜索范围内,逐
行、逐个像素地移动,并计算窗口内的相干
系数,相干系数最大处即为最佳匹配点。

优点:
1.在信噪比比较高的区域能够取得比
较好的效果
2.运算量少
以整像素间隔为移动距离,然后对定位结果
进行多项式拟合,求出最佳点。

这种后处理
方法要达到子像元级的精度较为困难。

信噪
比较低时,并不能保证精度的明显提高,拟
合出来的极值位置甚至还可能落在所取窗口之外。

为了达到子像元级配准精度,可以将窗口中影像进行过采样处理,或将移动间隔小于一个像元。

这种方法不仅增加了计算量还需要有较好的初始匹配候选点。

过采样也没有提高信噪比,本质上与多项式拟合的方法没有区别。

2 最大频谱法
在目标窗的范围内,计算各点上复型数据的积,在此基础上,做快速傅里叶变换,并计算二维频谱值,取最大值所对应的点为配准点。

找到同名点后,计算配准系数,然后进行配准。

该算法的出发点是:当影像达到精确配准时,所形成的干涉图质量应达到最佳。

最大频谱法实际上是利用了InSAR影像的相位信息进行配准,即当两幅影像相位越相近时,对应的频谱值越大。

优点:
1.能克服与频率相关的各种噪声,并
且有明显的峰值
2.匹配精度很高
3.适用于轨道平行性较差的条件下所
获得的复图像的配准
缺点:算法比较复杂,计算量很大
3 相位差平均波动函数法
以同名点领域内相位差变化的一致性为判断依据,计算目标窗内的相位差变化梯度的平均值,最小值对应的位置为配准点位置。

当正确配准两幅InSAR影像时,相位差图像上的平均起伏会达到最小化。

以上三种方法的局限性:
1.采用局部窗口进行无偏估计是有局限性
的,为此所得到的相似性测度与理论值
存在偏差,而这种偏差往往具有不确定
性,表现为相似性测度的计算结果上可
能会出现多个极大(小)值(峰值或谷点)
的情况。

而且计算结果受噪声或随机干
扰影响比较大,其中的最大(小)值可能
并不是实际的同名匹配点。

2.以整像素间隔为移动距离,然后对定位结
果进行多项式拟合,求出最佳点。

这种
后处理方法要达到子像元级的精度较
为困难。

在信噪比较高时,理论精度可
达0.15~0.2像素;信噪比较低时,并
不能保证精度的明显提高,拟合出来的
极值位置甚至还可能落在所取窗口之
外。

3.基于最大频谱法的干涉影像配准从干涉
条纹图的质量出发,以干涉图的效果为
判据,理论上最适合干涉影像配准。


这种算法需要反复生成局部的干涉图,
计算量巨大,而且根据信噪比引导配准
也需要较高的信噪比条件。

4.配准方法
多级配准流程,配准指标,粗匹配到精匹配的过程
1.多级配准流程
在 SAR 影像上选取一些满足特定条件的控
制点,然后再根据控制点的信息拟合出整幅图像的配准信息,最后对图像进行重采样得到配准图像。

为了达到 InSAR 配准的精度要求,通常采用从粗到精的多级配准策略2.粗配准
粗配准阶段主要是为了得到主图像与
辅图像间的偏移。

该偏移量的精度要求
在30像素以内。

可以采用用户在两幅
影像上选择一个同名点,然后分别得到
该点在各自影像上的坐标,将坐标相减
就可以得到两幅影像的偏移值。

3.像元级配准
像元的配准可以在影像的空间域或者
频率域进行。

通常在主图像上选取匹配
窗口,根据粗匹配结果在辅图像上选取
搜索窗口,然后根据配准评价指标计算
两个窗口的相似程度,通过移动搜索窗
得到最佳配准点。

对于所有的配准点,
经过一致性检验剔除粗差,最终达到像
元级的配准精度。

4.方位向滤波(可选)
由于多普勒效应的影响,主辅图像间会
存在由于多普勒频移导致的去相干,为
此在进行精配准前可以对两幅影像进
行方位向滤波,以减少这种去相干影
响。

5.子像元级精配准
子像元级配准主要方法有两类,一类基
于原始图像过采样数据进一步寻找更
加精确的配准位置,称之像元过采样匹
配法;另一类算法基于粗配准点周围若
干像元的相关系数插值求取最大相关
系数,以之确定更加精确的配准位置,
称之相干系数插值法。

前者有精度上的
优势,后者有速度上的优势。

1)像元过采样匹配法
步骤1:对已获得的每一个控制点采用
双线性插值等方法对相应主图像、辅图
像块作过采样处理。

插值的间隔决定过
采样程度
步骤2:进行最大相干估算。

与像元级
的配准相似,采用基于窗口的搜索方
法,寻找可靠的相对偏移量估算值。

步骤3:选取最大相干系数的匹配位置
即该控制点亚像元配准位置。

2)相关系数拟合法
插值相关系数法并不是对像素本身进行过采样,而是对周围像元的相关系数值进行高精度的插值来获得子像元级配准精度。

实相关系数过采样运算量比较大,利用FFT算法,在频率域进行插值,可以大大提高运算效率。

与像元级配准方法相比,该方法主要做了三点修改:
1 需要对配准图像进行插值,因而配准中的点变为亚像素点,搜索图不再是直接从配准图中截取连续的一小块,而是从插值后的配准图中抽取相应点而得到。

2 不再使用整体的位移矢量,而是使用局部位移矢量。

先计算一些像素点的位移矢量,再由这些位移矢量插值得到每一个像素的位移矢量。

起初选择的那些像素点被称为控制点。

3 配准的结果不是由配准图整体位移
得到,而是根据每一个像素点的位移矢
量,从插值后的配准图中抽取对应点,
得到配准结果。

6. 多项式拟合,配准函数的确定
在完成子像素级别配准后,就会得到一
系列同名点对,这个时候就可以用多项
式来描述主辅影像之间的变换关系,通
常采用二次多项式。

7. 辅图像重采样
8. 配准实验及分析
4. InSAR影像数字摄影测量配准方法
以振幅影像为对象,多种配准方法的结合,逐步精细。

多级配准的三个重要步骤
(1)基于特征点的配准
在参考影像或基准影像上首先确定一个格
网,以格网点为中心,在其邻域搜索特征点,对于每一个特征点,在待配准影像上搜索待
选同名点,搜索中以相关系数作为确定待选
点的测度。

在确定特征点的过程中可以采取各种各
样的方法比如采用Föstner算子法
该方法首先计算一点与其四邻点灰度差分绝对值只要有任意两方向上差分绝对值大于给定的阈值T 就可将该点作为待选点
然后在以待选点(i,j)为中心的3×3窗口内按Föstner算子法计算协方差矩阵N和误差椭圆的园度q:
根据误差椭圆度阈值Tq计算待选点(i,j)的权:
最后在一个适当选取的窗口内,取权值最大的待选点为特征点
(2)基于松弛迭代方法的整体影像匹配
在第一级配准结果基础上对待选点作进一步的分析特别是对多峰点作深入的分析(3)最小二乘匹配
在第二步配准结果的基础上,考虑待配准影像相对于参考影像的几何畸变和辐射畸变通过最小二乘方法逐步迭代以精确确定配准点位
多级配准方法的完善
(1)相干系数的估计用于精确配准
在最小二乘匹配中迭代终止条件用相干系
数的估计值替代相干系数
(2)基于相位差分的最小二乘匹配
第三步采取最小二乘匹配方法。

在误差方程
式中以相位差分代替影像灰度差分
5. 基于结构信息的配准方法(上课讲得很少)
根据SAR影像特点,以影像中结构信息为基
础,采取逐级匹配和多种信息相结合的方式第一步进行影像分割,提取多边形结构信息,在多边形匹配的基础上,取得配准的初步控制信息
第二步作影像边缘信息结构的检测,在初步控制匹配信息的支持下,作边缘影像匹配得到初步的同名点集合
第三步利用影像纹理匹配以剔除误配的数据,最后以高斯滤波和最小二乘匹配相结合,得到具有子像元匹配精度的结果
1)影像分割和多边形匹配
2)边缘提取和边缘匹配
3)纹理特征提取和纹理匹配
第四章干涉图的生成和处理
§4.1 干涉图的生成及其信息特点
1.干涉条纹的计算和干涉图的生成
干涉图的生成
两复数共轭相乘得到像元干涉后的复数表
示形式。

对所有像元进行共轭相乘即可生成干涉图。

每一个点的(fai)计算出来之后,将相位差数据灰度化显示出来就是干涉图
干涉图以干涉条纹表现出来。

干涉图具有条纹状,是由相位差的周期性变化而产生的
相位差由最近点至最远点逐渐增大主值周期变化
2.干涉条纹周期的高差估计
干涉图中的条纹是相位差数据周期性的表现,这种周期性与高差相关。

相关文档
最新文档