带钢板形的概念及CVC轧机板形控制原理综述共32页
轧机测厚仪带钢轧机与板形控制技术研究
轧机测厚仪带钢轧机与板形控制技术研究对常见带钢轧机的类型进行讨论,对先进板形控制技术展开阐述。
关键词:轧机;自动厚度控制;板形控制目前,hc轧机已发展了多种机型。
我们所说的中间辊移动的hc 轧机,也称为hcm六辊轧机。
此外,还有工作辊移动的hcw四辊轧机,以及工作辊和中间辊都移动的hcwm六辊轧机。
hc轧机的主要特点是:(1)通过轧辊的轴向移动,消除了板宽以外辊身间的有害接触部分,提高了辊缝刚度;(2)由于工作辊一端是悬臂的,在弯辊力作用下,工作辊边部变形明显增加。
如果对弯控制板形能力的要求不变时,则在hc轧机上可选用较小的弯辊力,这就提高了工作辊轴承的使用寿命并降低了轧机的作用载荷;(3)由于可通过弯辊力和轧辊轴向移动量两种手段进行调整,使轧机具有良好的板形控制能力;(4)能采用较小的工作辊直径,实现大压下轧制;(5)工作辊和支承辊都可采用圆柱形辊子,减小了磨辊工序,节约了能耗。
这种轧机典型应用如宝钢1550冷轧酸洗——连轧机组。
轧辊凸度边续可变轧机-cvc(continuouslyvariablecrown)轧机cvc轧机的基本特征是:(1)轧辊(工作辊)的原始辊型为s形曲线呈瓶状,上下轧辊互相错位1800布置;(2)带s形曲线的轧辊具有轧辊轴向抽动装置。
虽然cvc轧机与hc轧机一样有轧辊轴向抽动装置,但其目的和板形控制的基本原理是不同的。
hc轧机是为了消除辊间的有害接触部分来提高辊缝刚度,以实现板形调整的,是刚性辊缝型。
cvc轧机则是通过轧辊轴向抽动装置来改变s形曲线形成的原始辊缝形状来实现板形控制的,是柔性辊缝型。
当上下轧辊对称布置时,辊缝各部分高度相同。
如果上轧辊向右移动,下轧辊以相同的移动量向左移动,则辊缝中部高度变小。
反之,上辊向左移动,下辊以相同的移动量向右移动,辊缝中部高度变大(如图1所示)。
cvc轧机的主要特点是:(1)通过一组s形曲线轧辊可代替多组原始辊型不同的轧辊,减少了轧辊备品量;(2)可以进行无级辊缝调整来适应不同产品规格的变化,以获得良好的板带平直度和表面质量;(3)辊缝调节范围大,与弯辊装置配合使用时,如1700mm板带轧机的辊缝调整量可达600μm。
浅谈轧机板形控制系统的组成及控制原理
电荷放大器将压电传感器生成的电荷信号转换为电压。 旋转变送器(PCM 变送器)将这些电荷放大器的输出信号 转换为(PCM 编码的)数字信号。数据通过电缆从旋转变 送器传递给安装在控制柜内的 PCM 解码器插架(PCM 已 经停产,现在基本都采用集成的 SIKO 模块代替 IOP 模块及 PCM 插架)。下图是 SIKO 模块实物图。
[1] 阿 亨 巴 赫 .OPTIROLL i2 SFC and SCA Training[CP/ K].2004[2021.5]. 设备厂家 .
Fti = 每个测量区铝箔张力 Fri= 每个传感器的径向力 HExit= 铝箔出口厚度
图 2 传感器受力模型
图 1 板形辊结构
收稿时间 :2021-05 作者简介 :郭明明,生于 1985 年,男,助理工程师,高级技师,研究方向 : 自动化控制、传动控制、设备管理。
铝箔两边张力 Fti 会产生一个向下的压力 Fri 即传感器的 径向压力。那压电传感器上会产生电荷脉冲。每个脉冲的强 度取决于轧制铝箔在铝箔横截面上的长度分布情况 , 铝箔精 确位置对覆盖少的传感器影响很大,以至于只有传感器覆盖 面积超过额定 50%,系统才可以使用测量。
M 冶金冶炼 etallurgical smelting
带钢板形的概念及CVC轧机板形控制原理
Cn (6a3 L2s n 3a3 L3 2a2 L2 ) / 4 a3 (Cm Cn ) /(3L2 sm )
a2
(2sm L)Cm (2sm L)Cn 2 L2 sm
2
R Rt ( B0 ) Rt (0) B0 (a1 a2 B0 a3 B0 )
a1 与辊缝凸度无关,为了减小带钢参与应力 及改善带钢质量,实际生产中可以用辊径差 最小作为设计依据
解得:a1
1 2 3 (R a2 B0 a3 B0 ) B0 a0 Rt ) (0
横截面形状:凸度、楔形度、边部减薄、局部
高点
hEL
hL
hc 图1.凸度
hR
hER
hL
hR
图2.楔度
凸度 楔形度(左右标志点厚度之差) CT hR hL 边部减薄 EL=hL-hEL ER=hR-hER
CR hc (hL hR ) / 2
平直度(Flatness)
带钢平直度可以用波形表示法,也可以用相长度表示法来描述。 波形表示法定义的带钢平直度 式中: R-----波高;L-----波距。
变态
弯
拉
错位
动态鼓肚
CVC轧机工作原理
CVC(Continuously Variable Crown)技术是
由德国SMS公司于1984年提出的控制轧件板形 的一种新型轧辊技术,由于该技术控制板形的
优越性能而在热轧和冷轧板带材中获得了广泛
的应用
CVC轧辊辊身曲线呈S形,图5为CVC轧辊的辊
CVC精轧机概述
CVC精轧机概述摘要:CVC轧机是在HC轧机的基础上发展起来的一种轧机,它虽然与HC轧机一样有轧辊轴向抽动装置,但其目的和板形控制的基本原理是不同的。
HC轧机是为了消除辊间的有害接触部分来提高轧缝刚度,以实现板形调整的,是刚性辊缝型。
CVC轧机则是通过轧辊轴向抽动装置来改变S形曲线形成的原始辊缝形状来实现板形控制的,是柔性辊缝型。
关键词:CVC轧机、CVC工作辊、液压弯辊缸、轴向横移缸1 CVC轧机的原理CVC时Continuously Variable Croun的英文缩写,所谓CVC轧机就是指为了满足调整热带钢板凸度和板型的需要,将工作辊加工成具有S性辊身的CVC辊,在将上下工作辊相互倒置180度,从而具有工作辊轴向移动时空载辊缝形状连续可变能力的轧机。
工作辊轴向移动可分为正向抽动和反向抽动,其中正向定义为加大辊型凸度的方向,反之定义为反向抽动。
轧辊抽动量一般为±80~±150毫米,CVC辊的辊型曲线设计在过去常采用二次曲线,目前已经开始采用高次(含三次及四次)曲线以便有利于控制更宽更薄的热带钢,其中辊型的最大直径与最小直径之差不超过1毫米,差值过大将使轴向力过大而无法应用。
CVC轧机通常采用CRA表示轧辊辊型,以数值形式体现出来,即:CRA=中间直径—边缘直径,对于CVC工作辊来讲,CRA应是一个经过换算的当量值。
CVC技术在热轧是仅用于对空载辊缝形状的调解,因此主要用于板型设定模型对辊缝形状的设定,在线控制一般只用液压弯辊进行调解,但是目前已经开始研究当热轧采用润滑油轧制时是否将CVC用于在线调节。
2 采用CVC技术的轧机具有很多显著的优点:1、具有良好的带钢平直度控制能力和稳定性,它可以通过调整工作辊的弯辊力和轴向抽动量来获得最佳辊风从而得到最理想的平直度。
2、其弯辊力在最佳辊缝情况下始终处于最小状态,大大提高了轧辊和轴承的使用寿命。
3、CVC轧机可以使用较小的工作辊直径,从而减小了轧制力,实现了大压下量轧制。
板形指标及CVC轧机
-150 -100
-150 -100
-50
50 -100 -200 -300 -400 -500
100
150
CRA = -500 µm
CRA = -700 µm
+
+
+
+
+
(a) )
(b) ) (c) ) 图8 CVC辊形曲线与轧辊原始凸度的关系
经过我们的理论推导,可以证明,CVC轧辊凸度与轧辊窜动量之 间的关系不是线性关系,而是图9所示的曲线关系。线性关系的导出 没有考虑轧辊移动后对实际辊缝的影响,这与轧辊的实际凸度有一定 的误差,原因在于在推导线性轧辊凸度关系时,当轧辊相对移动一定 的量后,仍然认为两个轧辊的接触长度为原始辊身长度,忽略了轧辊 移动距离对有效凸度的影响, 从而使计算轧辊凸度与轧辊 移动量之间的结果产生误差。 由于误差是由于忽略了轧辊 移动而引起的,因此,轧辊 移动量越大,则这些公式的 计算结果误差越大,图9中的 曲线a和曲线b证明了这一点。
带钢板形指标及CVC轧机
2006年5月15日
目
录
1.带钢板形指标 1.带钢板形指标 2.CVC轧机工作原理 2.CVC轧机工作原理
1. 带钢板形指标
带钢尺寸质量指标包括纵向和横向尺寸,其中纵向厚度 尺寸精度由AGC AGC(Automatic Gauge Control)系统控制,AGC AGC 经过几十年的应用,目前已经很成熟。最近几年,热轧、冷 轧带钢的板形控制研究及应用也日趋成熟,新建的板带轧机 都装备了板形控制系统。一个完整的板形控制系统必须具备 以下三个条件: 可靠的、高精度的板形指标检测系统; 成熟的板形理论模型; 快速的板形调节、执行机构。
hEL
轧钢板形讲解
板形控制的基本理论包含三个方面相互关联的理论体系,即:
轧件三维弹塑性变形理论。
辊系变形理论(弹性变形、热变形和磨损变形)。
轧后带钢失稳理论。
根据这三个方面的理论和实验所建立的数学模型也是相互联系、密不可分的统一体。轧件弹塑性三维变形为辊系弹性变形模型提供轧制压力的横向分布,同时为带钢失稳判别模型提供前张力的横向分布,辊系变形模型为轧件变形模型提供有载辊缝横向分布。三者关系如图1.5所示。
2.1.1解析法
解析法是三维轧制理论研究的开端,其物理模型仍然是构建于Karman或Orown的力平衡方程式上,只不过三维轧制理论在平面变形理论基础之上又添加了一个板宽方向(轧辊轴向)的平衡方程式,再结合三个主应力的塑性条件进行求解。柳本左门应用解析法给出了热轧问题的近似解析解。柳本在计算中采用了以下假设:
自20世纪60年代以来,人们对构成板形理论体系的三个模型进行了大量的研究。辊系弹性变形模型的研究起步较早,发展至今日已形成相对完善的理论体系,无论从计算精度及计算效率方面均可满足工程应用的要求;由于轧件变形特性的高度非线性,轧件的弹塑性变形计算较辊系的弹性变形计算复杂得多,虽然借助有限元法方法也能获得较好的计算精度,但计算量大,计算时间过长,不具有工程应用 价值;相对来说,对于轧后带钢失稳判别模型的研究较少。
图1.2带钢的平坦度
图1.3带钢的应力分布
1.1.2.3带钢的张力分布
带钢的张力分布可以回归为多项式形式:
σ(x) = A0+A1x+A2x2+A4x4+…(1-8)
式中σ(x)-带钢横向张力分布;
A0-带钢横向张力分布平均值;
A1-带钢横向张力分布的线性不对称分量;
热轧带钢板形控制
热轧带钢板形控制一、 板形基本概念板形是指成品带钢的断面形状和平直度两项指标,二者都是标志带钢质量的重要指标,并且在生产中有着密不可分的联系。
1、断面形状断面形状是带钢厚度沿板宽方向的分布情况,如图1所示。
在实际生产中,以凸度来简单表示,如下式:e c h h -=δ式中:δ——带钢凸度。
h c ——带钢中部厚度。
h e ——带钢两边厚度平均值(由于存在“边部减薄”现象,一般取距带钢边部25~50mm 处的厚度作为边部厚度)。
2、平直度平直度指标表示带钢是否存在翘曲及翘曲的程度,即浪形,见图2。
可用以下几种方法表示:(1) 相对波峰值表示法%1000⨯=L hλ式中:h 、L 0——分别表示浪高和浪距。
(2) 相对长度差表示法相对长度差表示波浪部分的曲线长度对于平直部分标准长度的相对增长量。
可用下式表示:I L L x L x 5010)()(⨯-=ε 式中:L(x)——宽度方向任一点x 上的波浪弧长I ——表示平直度的单位,1I 单位相当于1m 长的带材中有10μm 的相对长度差。
图1 带钢横断面形状图2 带钢浪形示意图另外,还有张力差表示法、向量表示法和带钢断面的多项式表示法等。
二、 板形控制原理 1、凸度控制在带钢轧制过程中,其断面形状最终将取决于两工作辊间的辊缝形状。
因为辊缝形状由工作辊辊型曲线决定,所以,凡是影响工作辊辊型曲线形状的因素都会改变带钢的断面形状。
影响带钢凸度的因素有:(1) 工作辊原始凸度; (2) 工作辊热凸度; (3) 工作辊磨损凸度;(4) 工作辊在轧制力及弯辊力作用下产生的弯曲挠度;(5) 工作辊在不均匀分布的轧制力作用下沿板宽方向产生的弹性压扁。
控制带钢凸度(即控制工作辊辊缝形状)的方法因轧机的技术装备水平不同而不同。
(1) 以原始辊型设计为基础,合理地编制轧制规程。
通过合理分配各架轧机的负荷,来补偿因轧辊热凸度、磨损凸度和弹性变形而带来的辊缝形状的改变。
板形控制技术第一章
2021/6/2
9
双边浪
中浪
2021/6/2
两肋浪 单边浪
10
轧件与辊缝
2021/6/2
带钢宽度方向内应力发布
带钢外观
11
2021/6/2
12
2021/6/2
13
➢ 板形表示法 A 相对长度差表示法
将带钢设想成是由若干纵条组成,各窄条之间相互牵 制、相互影响。若带钢沿横向厚度压下不一样,则各窄条 就会相应地发生延伸不均,从而在各窄条之间产生相互作 用的内应力。当该应力足够大时,就会引起带钢的翘曲。
钢中心和接近带钢边部的某点的厚度差表
示断面形状。下面讨论采用这种表示方法
良好板形条件应取何种形式。仍如上图,
设轧前带钢中心和边部的厚度分别为Hc和 He,轧后相应的厚度为hc和he,应有:
2021/6/2
36
2021/6/2
37
2021/6/2
38
1. 4 良好板形的力学条件
2021/6/2
39
2021/6/2
44
2021/6/2
40
边部减薄是辊系变形和带钢金属三维变形共 同造成的:
(1)由于轧制过程中工作辊发生弹性压扁,因 而轧辊在轧件边部的压扁量明显小于在中部 的压扁量,相应地轧件发生边部减薄,见图。
2021/6/2
41
2021/6/2
42
(2) 对于一般的冷轧生产,轧辊原始辊 形采用凹辊形,对应的辊缝为凸辊缝,在 轧制过程中边部金属有较大的延伸趋势, 引起轧件边部厚度发生较大变化。
2021/6/2
20
平直度缺陷形式 a—长度方向瓢曲;b—宽度方向瓢曲;c—纵向波浪;d—马鞍型瓢曲; e—中浪;f—中心波;g—双边浪;h—单边浪;i—近边波;j—镰刀弯
板形控制与CVC技术
板形控制与CVC技术板形控制与CVC技术介绍了带钢板形控制的概念和CVC技术的工作原理和特点,包括板形及平直度、要求凸度和扰动因素凸度,CVC板形控制技术对带钢凸度的控制效果十分明显。
关键词带钢板形控制CVC轧辊1前言钢板和带钢可以按要求随意剪切、焊接和铆接,也可以进行弯曲及冲压成型,所以在国民经济各部门中得到广泛应用。
特别是汽车和家用电器工业的飞速发展,对板带的板形和平直度要求越来越高。
针对板带产品的板形和平直度,世界几个主要的工业发达国家,进行了长期的探讨和研究,先后开发了HC, CVC和UPC等技术。
CVC技术在1984年首先由德国施罗曼·西马克公司推出,它以其独特之处在世界板带的热轧和冷轧领域里大显神通。
目前,世界上已有100多架轧机使用了CVC设备和技术。
实践证明,CVC板形控制技术对带钢凸度的控制效果十分明显,能生产出平坦的带钢。
轧辊等效凸度调节范围大,轧辊磨削和管理方便等优点,已在生产中充分体现出来。
2CVC基本原理CVC轧机即连续可变凸度轧机,这种轧机的主要特征是工作辊设计成S形,上下工作辊外形是一样的,彼此呈1800反向配置,均可以横向移动。
当上下工作辊横移时,可得到中性凸度、正凸度和负凸度的轧辊凸度,而且使辊缝断面形状可在较大范围内无级连续调节。
CVC轧机只需一套辊型就可以满足轧制不同宽度带钢对板形调节的要求,如果它与工作辊弯辊装置相配合,更能扩大板形调节范围。
当CVC辊轴向移动距离为士100 ^-150mm时,再加上弯辊作用,辊缝调节量可达60μm左右,这是一般轧机达不到的。
图一由图一可见:CVC的基本原理即为上下轧辊(S)轴向窜动,以便形成所需要的辊缝断面形状,两轧辊向相反的方向轴向窜动以形成连续可变凸度的辊缝;左侧为正凸度控制,中间为中性凸度控制,右侧为负凸度控制;可见通过这种轧辊轴向窜动的控制方法可以使辊缝轮廓有极大的变化范围。
1985年德国蒂森公司第一架CVC F4机架正式运转,并以实测数据就人们对CVC系统关心的问题做出了回答。
CVC六辊轧机板形控制原理及冷轧带钢板形的概念解读
成品平直度 综 合 最 佳
成品横断面
24
CVC六辊轧机板形控制原理及冷轧带钢板形的概念
一、板形控制理论
⑤ 板形良好(带材失稳)判别模型——判断带材是否失稳
基本原理 最小势能原理
求解方法 经典特征值求解
CVC六辊轧机板形控制原理及冷轧带钢板形的概念
一、板形控制理论
⑥ 板形模式识别模型1——根据残余应力的分布及大小判断
PC四辊,HC轧机,UC轧机,UCMW轧机等
21
CVC六辊轧机板形控制原理及冷轧带钢板形的概念
一、板形控制理论
③ 轧件与轧辊温度场模型——计算带材与轧辊温度场 带材温度场
互为边界条件
轧辊温度场
基本方法 有限差分法:快速、稳定 基本原理
能量守恒原理 热传导方程
T 2T 1 T 2T c ( 2 ) t r r z 2 r
y2 ( x) a0 a1 (L x) a2 (L x) 2 a3 (L x) 3 y2 ( x) a0 a1 (L x) a2 (L x)2 a3 (L x)3 a4 (L x)4 a5 (L x)5
CVC六辊轧机板形控制原理及冷轧带钢板形的概念
a2 (2sm L)Cm (2sm L)Cn 2 L2 sm
2
R Rt (B0 ) Rt (0) B0 (a1 a2 B0 a3 B0 )
a1 与辊缝凸度无关,为了减小带钢参与应力 及改善带钢质量,实际生产中可以用辊径差 最小作为设计依据
解得:a1
1 2 3 (R a2 B0 a3 B0 ) B0 a0 R ( ) t 0
板凸度和板形控制
改变负载辊缝的形状
板形控制讲解学习
板形控制四、板形控制板形包括带钢的板廓和带钢的平坦度。
板廓即带钢的凸度和楔形,表示带钢的横向厚度差用凸度和楔形表示。
平坦度包括带钢平直度、不对称度;带钢的浪形,用纵向带钢的延伸差值表示或用带钢的浪形高度表示;平直度表示带钢的综合对称浪形,不对称度表示带钢的不对称浪形。
带钢板形分类:1)理想板形是平坦的,内应力沿带钢宽度向上均匀分布;2)潜在板形是带钢内应力沿带钢宽度方向上不均匀分布,但其内部应力足以抵制带钢平直度的改变,当内应力释放后,带钢板形就会发生不规则的改变;3)表观板形是带钢内应力沿宽度方向上不均匀分布,同时其内部应力不足以抵制带钢平直度的改变,导致局部区域发生了翘曲变形。
1、影响板形的因素1.1 影响板形的因素很多、很复杂,主要有以下几方面:力学条件:带钢沿宽度方向的轧制压力、弯辊力、辊间接触压力几何条件:原始辊型、负荷辊型、热膨胀辊型、磨损辊型来料条件:来料板廓、轧件钢种特性、轧件厚度、轧件宽度、轧件温度、轧件长度等。
1.2 轧制过程中带钢的板形取决于负载下轧辊的凸度、金属的流动和带钢的原始板形:轧辊的空载凸度=轧辊原始辊型+轧辊热态凸度+轧辊磨损凸度轧辊的负载凸度=轧辊空载凸度+轧辊挠度+轧辊弹性压扁以上因素决定了轧机的辊缝形状,轧机的辊缝形状影响着带钢的板形,构成了板形数学模型的主要参数和控制因素。
通过制定原始辊型制度,控制弯辊和窜辊,来改善带钢的凸度和平直度。
1.3 板形不良的产生机理如果带钢的入口凸度和入口厚度的比值与带钢的出口凸度和出口厚度的比值相等,则轧出的带钢是平直的,带钢的平直度为零,即:当入口比值与出口比值不相等时,带钢边部纤维与中部纤维的延伸长度不相等,纤维间产生内应力;内应力在一定的范围内,只发生弹性变形;当纤维之间的内应力超出弹性范围,则纤维之间会产生塑性变形,产生中间浪或两边浪,造成板形不良。
板形控制就是消除带钢纤维内应力或控制在弹性范围内,使带钢的纵向纤维内应力值趋近于零,从而得到良好的凸度和平直度。
板形与板形控制基础知识
有害接触区 使轧辊弯曲
支撑辊 中间辊
中间辊 支撑辊
第19页/共27页
板形与板形控制基础知识
b 工作辊的一端呈悬臂状态,用很小的力就能使工作辊的挠度明显改变,增强 了弯辊的效能;
c 可采用小直径工作辊(比普通四辊轧机的工作辊小30%)、大压下量,减少 轧制道次和中间退火的次数,节约了能源;
d 工作辊可不带原始凸度,减少了磨辊、换辊次数及备用辊的数量。
板形与板形控制基础知识
1.板形的基本概念 板形是描述板带材形状的一个综合性的概念,主要包括:板 凸 度 和平 直 度 两个基本概念。 板凸度-指板带材沿宽度方向横截面的中部与边部的厚度差,也称为 横向厚差。该厚度差取决于板带材轧后的断面形状或轧制时的实际辊缝形状。
正凸度
理想断面形状
负凸度
从用户的角度,厚差是零最好;从轧制稳定的角度,应该有一定量的 “中厚量”,异常的厚差存在将导致板形出现问题。
第2页/共27页
板形与板形控制基础知识
平直度-指板带材的翘曲度,有无浪形、瓢曲等及其程度。其实质是 板带材内部残余应力的分布,只要板带材内部存在残余应力,即为板形不 良。如残余应力不足以引起板带翘曲,称为“潜在”的板形不良;如残余 应力引起板带失稳,产生翘曲,则称为“表观”的板形不良。
平直度良好
中间浪形
板形与板形控制基础知识
如果在轧制时上述各个影响因素都是稳定的,则通过合理的轧辊原始 辊型设计,就可获得良好的板形。但是,在轧制过程中各因素是在不断变 化的,需要随时补偿这些变化因素对轧辊工作辊缝的影响,以便获得良好 的板形。
传统板形控制的基本原则是:按照轧制过程中的实际情况,随 时改变辊缝凸度,使其能满足获得良好板形的要求。
双阶梯辊支撑辊
轧钢板形讲义(杨荃)
宽带钢生产线板形质量控制理论和应用杨荃北京科技大学高效轧制国家工程研究中心2005.08.16主要内容1、板形理论的基础知识2、轧件变形和辊系变形理论3、轧后带钢的屈曲失稳理论4、轧辊磨损及热膨胀理论5、部分板形测量仪表的原理6、层流冷却对板形的影响7、基于板形控制的轧机选型8、板形控制系统的应用9、板形控制模型的参数分析10、变凸度辊形的相关技术思考题1、如果我负责新建轧机的技术工作,我将在机型、辊形、工艺和控制诸方面注重哪些技术要点?2、如果我负责轧机生产线的技术工作(工艺、设备、电气、质检等专业),我应该把握板形质量的哪些重要环节?3、如果我负责某条生产线的技术工作(热轧、酸洗、冷轧、热处理、涂镀层等专业),我如何考虑前后工序的配合来保证板形质量?图1.1板带的横截面轮廓h c h eo ’h ed ’ h edh eo e 2B We 11板形理论的基础知识板带材做为基础原材料,被广泛应用于工业、农业、国防及日常生活的各个方面,在国民经济发展中起着重要的作用。
随着科学技术的发展,特别是一些现代化工业部门如建筑、能源、交通、汽车、电子、机械、石油、化工、轻工等行业的飞速发展,不仅对板带材的需求量急剧增加,而且对其内在性能质量、外部尺寸精度和表面质量诸方面提出了严格的要求。
日益激烈的市场竞争和各种高新技术的应用使得板带的横向和纵向厚度精度越来越高,也推动着轧机机型和板形控制技术的不断向前发展。
对于热轧、冷轧板的尺寸精度问题,有相对成熟的专门研究方法和解决手段。
对于板形问题,无论是研究领域或技术应用领域的工作,都具有更大的难度。
有关板形的基础知识是解决板形问题所必需掌握的。
1.1板形的概念板形(Shape )所含的内涵很广泛,从外观表征来看,包括带钢整体形状(横向、纵向)以及局部缺陷;从表现形式看,有明显板形及潜在板形之分。
板带的横截面轮廓(Profile )和平坦度(Flatness )是目前用以描述板形的两个重要方面。
板形控制概述
冷轧板形控制技术发展现状
• 板形调节机构
•普通四辊轧机
••+
•-
冷轧板形控制技术发展现状
• 普通四辊轧机
冷轧板形控制技术发展现状
• 调节机构主要有工作辊正/负弯辊,轧 辊倾斜控制,板形控制能力较弱,只能 用于一般的冷轧带钢生产,或在连轧机 中作为控制压下机架,而不作为板形调 节机架
冷轧板形控制技术发展现状
板形控制的基本理论
• 根据向量在坐标系中的位置可以确定带钢板形缺陷的 分布趋势
板形控制的基本理论
• 板形矢量 有两个分量 和 ,即
• 根据该矢量在不同象限的位置,可以表示板形的 不同变化趋势和变化的剧烈程度。
板形控制的基本理论
板形控制的基本理论
•边部减薄的原因
a. 轧制力引起轧辊压扁变形的分布特征:边部轧辊压扁量 较小,轧制力越大,边部减薄越严重。
较低
冷轧板形控制技术发展现状
• 引进的板形控制技术应用现状 • 一是引进的板形控制系统与国内生产企业的设备生产 情况并不完全符合,板形控制系统功能单一,对产品规格 和品种有严格的限制,难以满足多样化产品的生产要求, 而且对来料带钢的质量要求较高,在来料带钢存在板形缺 陷时很难消除后续生产带来的重叠板形缺陷;二是国外板 形控制系统引进价格极为昂贵,维护费用和备件费用很高 ,中小钢铁生产企业一般都难以负担高昂的引进费用和维 护费用。这限制了国外板形控制系统在国内中小型钢铁企 业的广泛推广应用。
板形控制概述
2020年7月17日星期五
主要内容
冷轧板形控制技术发展现状
•板形的一般概念: •带钢是否平直
•平直
•中浪
•边浪
冷轧板形控制技术发展现状
• 导致断带
HC轧机HU轧机CVC轧机等轧制板形控制系统介绍
HC轧机HU轧机CVC轧机等轧制板形控制系统介绍
改善和提高板形控制水平,需要从两个方面入手,一是从设备配置方面,如采用先进的板形控制手段,增加轧机刚度等;二是从工艺配置方面,包括轧辊原始凸度的给定、变形量与道次分配等。
常规的板形控制手段主要有弯辊控制技术、倾辊控制技术和分段冷却控制技术等。
近年来,一些特殊的控制技术,如抽辊技术(HC 轧机和UC系列轧机)、涨辊技术(VC轧机和IC轧机) 、轧制力分布控制技术(DSR动态板形辊)和轧辊边部热喷淋技术等先进的板形控制技术,得到日益广泛的应用。
板形控制与CVC技术
板形控制与CVC技术
高苏;张正秀
【期刊名称】《鞍钢技术》
【年(卷),期】1996(000)002
【摘要】介绍了带钢板形控制的概念和CVC技术的工作原理和特点,包括板形及平直度、热轧和冷轧后的板形比较、要求凸度和扰动因素凸度,CVC板形控制技术对带钢凸度的控制效果十分明显。
由于CVC技术以独特的方式解决了板形控制的难题并经受住了生产实践的考验,必将在我国得到进一步的应用。
【总页数】6页(P18-23)
【作者】高苏;张正秀
【作者单位】不详;不详
【正文语种】中文
【中图分类】TG335.56
【相关文献】
1.CVC轧机板形控制技术
2.应用冷连轧机板形控制CVC+技术的体会
3.CVC板形控制技术的研究
4.CVC板形控制技术的研究
5.冷轧CVC和DSR板形控制技术之比较
因版权原因,仅展示原文概要,查看原文内容请购买。