中枢初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中枢初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)已知方程组的解满足x+y<0,则m的取值范围是()
A. m>﹣1
B. m>1
C. m<﹣1
D. m<1
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:两式相加得:3x+3y=2+2m
∵x+y<0
∴3(x+y)<0
即2+2m<0
m<﹣1.故答案为:C.
【分析】观察x和y的系数,如果相加,它们的系数相同,得x+y=(2+2m)÷3,再让(2+2m)÷3<0,解不等式得m<﹣1
2、(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()
A. 45°
B. 60°
C. 54°
D. 30°
【答案】C
【考点】扇形统计图
【解析】【解答】解:15÷(30+23+15+32)×360°=54°.
故答案为:C
【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.
3、(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()
①②③④
A. ①②
B. ②③
C. ③④
D. ①④
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:试题分析:
把y的系数变为相等时,①×3,②×2得,

把x的系数变为相等时,①×2,②×3得,

所以③④正确.
故答案为:C.
【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。

4、(2分)如果方程组的解中与的值相等,那么的值是()
A.1
B.2
C.3
D.4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:∵方程组的解中与的值相等,
∴x=y
∴3x+7x=10
解之:x=1
∴y=1
∴a+a-1=5
解之:a=3
故答案为:C
【分析】根据已知可得出x=y,将x=y代入第1个方程可求出x、y的值,再将x、y的值代入第2个方程,解方程求出a的值。

5、(2分)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()
A. 5
B. 7
C. 9
D. 11
【答案】C
【考点】一元一次不等式的应用
【解析】【解答】解:设第二份餐的单价为x元,
由题意得,(120+x)×0.9≤200,
解得:x≤102,
故前9种餐都可以选择.
故答案为:C
【分析】先利用一元一次不等式求得第二份餐的单价的取值范围,再参照价格表及优惠即可知道可以选餐的种类.
6、(2分)在- ,,,了11,2.101101110...(每个0之间多1个1)中,无理数的个数是()
A.2个
B.3个
C.4个 D 5个
【答案】B
【考点】无理数的认识
【解析】【解答】解:依题可得:
无理数有:,, 2.101101110……,
∴无理数的个数为3个.
故答案为:B.
【分析】无理数:无限不循环小数,由此即可得出答案.
7、(2分)实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()
A. 4种
B. 3种
C. 2种
D. 1种
【答案】C
【考点】二元一次方程的解,二元一次方程的应用
【解析】【解答】根据题意可得:5x+6y=40,根据x和y为非负整数可得:或,共两种,故选C.
【分析】根据总人数为40人,建立二元一次方程,再根据x和y为非负整数,,用含y的代数式表示出x,得到x=,求出y的取值范围为0<y<,得出满足条件的x、y的值即可。

8、(2分)若关于x的一元一次不等式组有解,则m的取值范围为()
A.
B.
C.
D.
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:,
解①得:x<2m,
解②得:x>2-m,
根据题意得:2m>2-m,
解得:.
故答案为:C.
【分析】先求出每个不等式的解集,再根据已知不等式组有解,即可得出关于m的不等式,即可得出答案.
9、(2分)下列说法中,不正确的是()
A. 8的立方根是22
B. -8的立方根是-2
C. 0的立方根是0
D. 125的立方根是±5
【答案】D
【考点】立方根及开立方
【解析】【解答】A、8的立方根是2,故不符合题意;
B、-8的立方根是-2,故不符合题意;
C、0的立方根是0,故不符合题意;
D、∵5的立方等于125,∴125的立方根等于5,故符合题意.
故答案为:D.
【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。

(1)根据立方根的意义可得原式=2;
(2)根据立方根的意义可得原式=-2;
(3)根据立方根的意义可得原式=0;
(4)根据立方根的意义可得原式=5.
10、(2分)若不等式组有三个非负整数解,则m的取值范围是()
A.3<m<4
B.2<m<3
C.3<m≤4
D.2<m≤3
【答案】D
【考点】一元一次不等式的特殊解
【解析】【解答】解不等式组,可得,,即-3≤x<m,该不等式组有三个非负整数解,分析可知,这三个非负整数为0、1、2,由此可知2≤m<3.
【分析】首先确定不等式组非负整数解,然后根据不等式的非负整数解得到一个关于m的不等式组,从而求解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
11、(2分)x的5倍与它的一半之差不超过7,列出的关系式为()
A.5x-x≥7
B.5x-x≤7
C.5x-x>7
D.5x-x<7
【答案】B
【考点】一元一次不等式的应用
【解析】【解答】解:根据题意,可列关系式为:5x-x≤7,
故答案为:B.
【分析】先求出x的5倍与它的一半,再求差,再根据题意列出不等式解答即可.注意“不超过”用数学符号表示为“≤”.
12、(2分)所有和数轴上的点组成一一对应的数组成()
A. 整数
B. 有理数
C. 无理数
D. 实数【答案】D
【考点】实数在数轴上的表示
【解析】【解答】解:∵实数与数轴上的点成一一对应。

故答案为:D
【分析】根据实数与数轴上的点成一一对应,即可得出答案。

二、填空题
13、(1分)如图,若按虚线剪去长方形纸片相邻的两个角,并使∠1=120°,则∠2的度数为________
【答案】150°
【考点】垂线,平行线的判定与性质
【解析】【解答】解:过点B作BD∥CE
∴∠2+∠4=180°
∵AF∥CE
∴AF∥BD
∴∠1+∠3=180°
∴∠3=180°-120°=60°
∵∠3+∠4=90°
∴∠4=90°-60°=30°
∴∠2=180°-∠4=180°-30°=150°
故答案为:150°【分析】过点B作BD∥CE,可证得∠2+∠4=180°,再证明AF∥BD,得出∠1+∠3=180°,再根据已知求出∠3,∠4的度数,然后利用∠2=180°-∠4,求出结果。

14、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
15、(1分)如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=________。

【答案】77°
【考点】平行线的性质,翻折变换(折叠问题)
【解析】【解答】解:根据平角的度数为180°,即可求得∠BGE=154°,
∴根据折叠的性质可得∠BGF=∠FGE=77°
∵AD∥BC
∴∠DFG=∠BGF=77°
故答案为:77°。

【分析】根据折叠的性质,折叠前后,两个图形的对应边和对应角分别对应相等,根据平行线的性质,进行求值即可。

16、(1分)对于有理数,定义新运算:* ;其中是常数,等式右边是通常
的加法和乘法运算,已知,,则的值是________ .
【答案】-6
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:根据题中的新定义化简1∗2=1,(−3)∗3=6得:,
解得:,
则2∗(−4)=2×(−1)−4×1=−2−4=−6.
故答案为:−6
【分析】根据新定义的运算法则:* ,由已知:,,建立关于a、b的
方程组,再利用加减消元法求出a、b的值,然后就可求出的结果。

17、(1分)﹣4是a的一个平方根,则a的算术平方根是________.
【答案】4
【考点】平方根,算术平方根
【解析】【解答】∵(﹣4)2=16,
∴a=16.
∵16的算术平方根是4,
∴a的算术平方根是4.
故答案为:4.
【分析】平方根是指如果一个数的平方等于a,则这个数叫作a的平方根。

根据平方根的意义可求得a= =16;再根据算术平方根的意义可得16的算术平方根为4.
18、(1分)已知一个数的平方根是和,则这个数的立方根是________.
【答案】4
【考点】平方根,立方根及开立方
【解析】【解答】解:依题可得:
(3a+1)+(a+11)=0,
解得:a=-3,
∴这个数为:(3a+1)2=(-9+1)2=64,
∴这个数的立方根为:=4.
故答案为:4.
【分析】一个数的平方根互为相反数,依此列出方程,解之求出a,将a值代入求出这个数,从而得出对这个数的立方根
三、解答题
19、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。

20、(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。

然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
21、(5分)如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
【答案】解:∵∠AFE=90°,
∴∠AEF=90°﹣∠A=90°﹣35°=55°,
∴∠CED=∠AEF=55°,
∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.
答:∠ACD的度数为83°
【考点】余角、补角及其性质,对顶角、邻补角,三角形内角和定理
【解析】【分析】先根据两角互余得出∠AEF =55°,再根据对顶角相等得出∠CED=∠AEF=55° ,最后根据三角形内角和定理得出答案。

22、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。

(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。

【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。

(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。

23、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。

24、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
25、(5分)把下列各数填在相应的大括号里:
正分数集合:{};
负有理数集合:{};
无理数集合:{};
非负整数集合:{}.
【答案】解:正分数集合:{|-3.5|,10%,…… };
负有理数集合:{-(+4),,…… };
无理数集合:{,……};
非负整数集合:{0,2013,…… }.
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据有理数的分类:正分数和负分数统称为分数。

正有理数、0、负有理数统称有理数。

非负整数包括正整数和0;无理数是无限不循环的小数。

将各个数准确填在相应的括号里。

26、(5分)如图所示是小明自制对顶角的“小仪器”示意图:
(1 )将直角三角板ABC的AC边延长且使AC固定;
(2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF的度数.。

相关文档
最新文档