2021年最新人教版八年级数学上册全册教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1 与三角形有关的线段
教学目标:
1.理解三角形的概念,认识三角形的顶点、边、角,会数三角形的个数.(重点)
2.能利用三角形的三边关系判断三条线段能否构成三角形.(重点)
3.三角形在实际生活中的应用.(难点)
教学过程:
一、情境导入
出示金字塔、战机、大桥等图片,让学生感受生活中的三角形,体会生活中处处有数学.教师利用多媒体演示三角形的形成过程,让学生观察.
问:你能不能给三角形下一个完整的定义?
二、合作探究
探究点一:三角形的概念
图中的锐角三角形有( )
A.2个
B.3个
C.4个
D.5个
解析:(1)以A为顶点的锐角三角形有△ABC、△ADC共2个;(2)以E为顶点的锐角三角形有△EDC共1个.所以图中锐角三角形的个数有2+1=3(个).故选B.
方法总结:数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那
么就有n(n-1)
2
条线段,也可以与线段外的一点组成
n(n-1)
2
个三角形.
探究点二:三角形的三边关系
【类型一】判定三条线段能否组成三角形
以下列各组线段为边,能组成三角形的是( )
A.2cm,3cm,5cm
B.5cm,6cm,10cm
C.1cm,1cm,3cm
D.3cm,4cm,9cm
解析:选项A中2+3=5,不能组成三角形,故此选项错误;选项B中5+6>10,能组成三角形,故此选项正确;选项C中1+1<3,不能组成三角形,故此选项错误;选项D中3+4<9,不能组成三角形,故此选项错误.故选B.
方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.
【类型二】判断三角形边的取值范围
一个三角形的三边长分别为4,7,x,那么x的取值范围是( ) A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三边长分别为4,7,x,∴7-4<x<7+4,即3<x<11.故选A.
方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.
【类型三】等腰三角形的三边关系
已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.
解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.
方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.
【类型四】三角形三边关系与绝对值的综合
若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.
解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.
解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a -b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.
三、板书设计
三角形的边
由不在同一直线上的三条线段首尾顺次相接所组成的图形.
两边之和大于第三边,两边之差小于第三边.
11.1.2 三角形的高、中线与角平分线
教学目标:
1.掌握三角形的高、中线和角平分线的定义,并能够对其进行简单的应用.(重点) 2.能够准确的画出三角形的高、中线和角平分线.(难点)
教学过程:
一、情境导入
这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题.
二、合作探究
探究点一:三角形的高
【类型一】三角形高的画法
画△ABC的边AB上的高,下列画法中,正确的是( )
解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选D.
方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.
【类型二】根据三角形的面积求高
如图所示,在△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,且AD=4,若点P在边AC上移动,则BP的最小值为________.
解析:根据垂线段最短,可知当BP⊥AC时,BP有最小值.由△ABC的面积公式可知1
2 AD·BC
=1
2
BP·AC,解得BP=
24
5
.
方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通
常称为“面积法”.
探究点二:三角形的中线
【类型一】应用三角形的中线求线段的长
在△ABC中,AC=5cm,AD是△ABC的中线,若△ABD的周长比△ADC的周长大2cm,则BA=________.
解析:如图,∵AD是△ABC的中线,∴BD=CD,∴△ABD的周长-△ADC的周长=(BA+BD +AD)-(AC+AD+CD)=BA-AC,∴BA-5=2,∴BA=7cm.
方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD与△ADC的周长之差转化为边长的差.
【类型二】利用中线解决三角形的面积问题
如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF 和△BEF的面积分别为S△ABC,S△ADF和S△BEF,且S△ABC=12,则S△ADF-S△BEF=________.
解析:∵点D是AC的中点,∴AD=1
2
AC.∵S
△ABC
=12,∴S△ABD=
1
2
S
△ABC

1
2
×12=6.∵EC=2BE,
S
△ABC =12,∴S△ABE=
1
3
S
△ABC

1
3
×12=4.∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.故答案为2.
方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.
探究点三:三角形的角平分线
如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.
解析:根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC 的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.
解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°.∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°-∠B-∠BAD=180°-50°-30°=100°.
方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.
三、板书设计
三角形的高、中线与角平分线
1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.
2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.
11.1.3 三角形的稳定性1
教学目标:
1.通过观察、感悟三角形具有稳定性,四边形不具有稳定性.(重点)
2.三角形的稳定性在生活、生产中的实际应用.(难点)
教学过程:
一、情境导入
一天数学小博士听到三角形和四边形在一起争论“有稳定性好还是没有稳定性好?”先听它们是怎么说的.
三角形:“具有稳定性的我最好,因为我牢固,不易变形,所以我最受欢迎,不像你四边形,你没有坚定的立场!”
四边形:“灵活性强,可伸可缩,我的这些优点比起你三角形那呆板、简单、一成不变的形式不知有多优越!”
三角形:“我广泛应用于人类的生产生活中,如三角尺、钢架桥、起重机、屋顶的钢架,我的用途大!”
四边形:“我的用途广,像活动衣架、缩放尺、活动铁门等,人类的生活因为我而丰富多彩!”
假如你是数学小博士,你会如何来调解它们的争论?
二、合作探究
探究点:三角形的稳定性
【类型一】三角形稳定性的应用
要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n边形木架不变形,至少需要几根木条固定?
解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.
解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.
方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,
然后验证求解.
【类型二】四边形的不稳定性
大家经常看到有些学校、小区的大门都使用了伸缩门,它常常做成四边形的形状,你知道这是为什么吗?
解析:从四边形特性的角度考虑.
解:伸缩门做成四边形的形状,是利用四边形易变形这一特性.
方法总结:四边形具有不稳定性,容易变形,我们生活中的很多实例都利用了这一性质,注意在日常生活中积累这方面的经验.
三、板书设计
三角形的稳定性
1.三角形具有稳定性
2.四边形没有稳定性
3.三角形的稳定性的应用
4.四边形的不稳定性的应用
11.2.1 三角形的内角
教学目标:
1.理解三角形内角和定理及其证明方法.(难点)
2.能用三角形的内角和定理解决一些简单问题.(重点)
教学过程:
一、情境导入
多媒体展示:(三兄弟之争)在一个直角三角形村庄里,住着三个内角,平时它们非常团结,有一天,老三不高兴了,对老大说:“凭什么你的度数最大,我也要和你一样大!”老大说:“这是不可能的,否则我们这个家就要被拆散,围不起来了!”“为什么呢?”老二、老三纳闷起来……
同学们,你们知道其中的道理吗?
二、合作探究
探究点一:三角形的内角和
【类型一】求三角形内角的度数
已知,如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,若∠A=46°,∠D=50°.求∠ACB的度数.
解析:在Rt△DFB中,根据三角形内角和定理,求得∠B的度数,再在△ABC中求∠ACB 的度数即可.
解:在△DFB中,∵DF⊥AB,∴∠DFB=90°.∵∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.在△ABC中,∵∠A=46°,∠B=40°,∴∠ACB=180°-∠A-∠B=94°.
方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.
【类型二】判断三角形的形状
一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.无法判定
解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180°,得x+2x+3x=180°,解得x=30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.
方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.
【类型三】三角形的内角与角平分线、高的综合运用
在△ABC中,∠A=1
2
∠B=
1
3
∠ACB,CD是△ABC的高,CE是∠ACB的角平分线,求∠
DCE的度数.
解析:根据已知条件用∠A表示出∠B和∠ACB,利用三角形的内角和求出∠A,再求出∠ACB,∠ACD,最后根据角平分线的定义求出∠ACE即可求得∠DCE的度数.
解:∵∠A=1
2
∠B=
1
3
∠ACB,设∠A=x,∴∠B=2x,∠ACB=3x.∵∠A+∠B+∠ACB=180°,
∴x+2x+3x=180°,解得x=30°,∴∠A=30°,∠ACB=90°.∵CD是△ABC的高,∴∠
ADC=90°,∴∠ACD=180°-90°-30°=60°.∵CE是∠ACB的角平分线,∴∠ACE=1
2
×90°
=45°,∴∠DCE=∠ACD-∠ACE=60°-45°=15°.
方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.
探究点二:直角三角形的性质
【类型一】直角三角形性质的运用
如图,CE⊥AF,垂足为E,CE与BF相交于点D,∠F=40°,∠C=30°,求∠EDF、∠DBC的度数.
解析:根据直角三角形两锐角互余列式计算即可求出∠EDF,再根据三角形的内角和定理求出∠C+∠DBC=∠F+∠DEF,然后求解即可.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC =100°.
方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.
三、板书设计
三角形的内角
1.三角形的内角和定理:三角形的内角和等于180°
2.三角形内角和定理的证明
3.直角三角形的性质:直角三角形两锐角互余
三角形的外角第1课时
教学目标:
1.掌握三角形外角的定义和三角形内角和定理的两个推论.(重点)
2.能运用三角形内角和定理的两个推论进行相关的几何计算和证明,并体会几何图形中的不等关系.(难点)
教学过程
一、情境导入
足球比赛中的数学知识
在绿茵场上,某球员在A处受到阻挡需要传球,请帮助他做出选择,应传给在B处的球员还是C处的球员,使其射门不易射偏.(不考虑其他因素)
请同学们帮助他做出选择.
二、合作探究
探究点:三角形的外角
【类型一】应用三角形的外角求角的度数
如图所示,P为△ABC内一点,∠BPC=150°,∠ABP=20°,∠ACP=30°,求∠A 的度数.
解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.
解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC -∠ABE=120°-20°=100°.
方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和
已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.
解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.
证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.
方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.
【类型三】三角形外角的性质和角平分线的综合应用
如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.
(1)如果∠A=60°,∠ABC=50°,求∠E的度数;
(2)猜想:∠E与∠A有什么数量关系(写出结论即可);
(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.
解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.
解:(1)根据外角的性质得∠ACD=∠A+∠ABC=60°+50°=110°,∵BE平分∠ABC,
CE平分∠ACD,∴∠1=1
2
∠ACD=55°,∠2=
1
2
∠ABC=25°.∵∠E+∠2=∠1,∴∠E=∠1-
∠2=30°;
(2)猜想:∠E=1
2
∠A;
(3)∵BE、CE是两外角的平分线,∴∠2=1
2
∠CBD,∠4=
1
2
∠BCF,而∠CBD=∠A+∠ACB,
∠BCF=∠A+∠ABC,∴∠2=1
2
(∠A+∠ACB),∠4=
1
2
(∠A+∠ABC).∵∠E+∠2+∠4=180°,
∴∠E+1
2
(∠A+∠ACB)+
1
2
(∠A+∠ABC)=180°,即∠E+
1
2
∠A+
1
2
(∠A+∠ACB+∠ABC)=
180°.∵∠A+∠ACB+∠ABC=180°,∴∠E+1
2
∠A=90°.
方法总结:对于本题发现的结论要予以重视:图①中,∠E=1
2
∠A;图②中,∠E=90°-
1
2
∠A.
三、板书设计
三角形的外角
1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.
2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.
11.3 多边形及其内角和
11.3.1 多边形
1.掌握多边形的定义及其有关概念,理解正多边形及其相关概念.(重点)
2.正确区分凹多边形和凸多边形.(重点)
3.理解多边形的对角线的概念,探索一个多边形能画几条对角线.(难点)
一、情境导入
利用多媒体展示生活、建筑方面等的图片(包含一个或多个明显的多边形).
问题:请学生观察图片,在图中能找出哪些多边形?
长方形、正方形、平行四边形等都是四边形,还有边数很多的图形,它们在日常生活、工农业生产中都有应用,引出本节课课题:多边形.
二、合作探究
探究点一:多边形的概念
【类型一】多边形及其概念
下列图形不是凸多边形的是( )
解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D的图形不是凸多边形.故选D.
方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边
形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.
【类型二】确定多边形的边数
若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( ) A.14或15或16 B.15或16
C.14或16 D.15或16或17
解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A.
方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.
探究点二:多边形的对角线
【类型一】确定多边形的对角线的条数
从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.
解析:根据n边形从一个顶点出发可引出(n-3)条对角线.从n个顶点出发引出n(n-3)条对角线,而每条重复一次,可得答案.
解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n边形
的一个顶点出发有(n-3)条对角线,从而推导出n边形共有n(n-3)
2
条对角线.
方法总结:(1)多边形有n条边,则经过多边形的一个顶点的对角线有(n-3)条;(2)多边
形有n条边,对角线的条数为n(n-3)
2
.
【类型二】根据对角线条数确定多边形的边数
从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( ) A.6 B.7
C.8 D.9
解析:设这个多边形是n边形.依题意,得n-3=5,解得n=8.故这个多边形的边数是8.故选C.
【类型三】根据分成三角形的个数,确定多边形的边数
连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )
A.五边形 B.六边形
C.七边形 D.八边形
解析:设原多边形是n边形,则n-2=6,解得n=8.故选D.
方法总结:从n边形的一个顶点出发可引出(n-3)条对角线,这(n-3)条对角线把n边形分成(n-2)个三角形.
探究点三:正多边形的有关概念
下列图形中,是正多边形的是( )
A.等腰三角形
B.长方形
C.正方形
D.五边都相等的五边形
解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C.
方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.
三、板书设计
多边形
1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.
2.相关概念:顶点、边、内角、对角线.
3.多边形的对角线:n边形从一个顶点出发的对角线条数为(n-3)条;n边形共有对角线n(n-3)
条(n≥3).
2
4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形.
11.3.2 多边形的内角和
1.理解多边形内角和公式的推导过程,并掌握多边形的内角和与外角和公式.(重点) 2.灵活运用多边形的内角和与外角和定理解决有关问题.(难点)
一、情境导入
多媒体演示:清晨,小明沿一个多边形广场周围的小路按逆时针方向跑步.
提出问题:
(1)小明是沿着几边形的广场在跑步?
(2)你知道这个多边形的各部分的名称吗?
(3)你会求这个多边形的内角和吗?
导入:小明每从一条小路转到下一条小路时,身体总要转过一个角,你知道是哪些角吗?
你知道它们的和吗?就让我们带着这些问题同小明一起走进今天的课堂.
二、合作探究
探究点一:多边形的内角和
【类型一】利用内角和求边数
一个多边形的内角和为540°,则它是( )
A.四边形 B.五边形
C.六边形 D.七边形
解析:熟记多边形的内角和公式(n-2)·180°.设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.
方法总结:熟记多边形的内角和公式是解题的关键.
【类型二】求多边形的内角和
一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( ) A.1620° B.1800°
C.1980° D.以上答案都有可能
解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.
方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.
【类型三】复杂图形中的角度计算
如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )
A.450° B.540°
C.630° D.720°
解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.
方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.
【类型四】利用方程和不等式确定多边形的边数
一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?
解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.
解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x <180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.
方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.
探究点二:多边形的外角和
【类型一】已知各相等外角的度数,求多边形的边数
正多边形的一个外角等于36°,则该多边形是正( )
A.八边形 B.九边形
C.十边形 D.十一边形
解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.
方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.
【类型二】多边形内角和与外角和的综合运用
一个多边形的内角和与外角和的和为540°,则它是( )
A.五边形 B.四边形
C.三角形 D.不能确定
解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.
方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
三、板书设计
多边形的内角和与外角和
1.性质:多边形的内角和等于(n-2)·180°;多边形的外角和等于360°.
2.多边形的边数与内角和、外角和的关系:
(1)n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.
(2)多边形的外角和等于360°,与边数的多少无关.
(3).正n边形:正n边形的内角的度数为(n-2)·180°
n
,外角的度数为
360°
n
12.1 全等三角形
教学目标:
1.了解全等形、全等三角形的概念及全等三角形的对应元素.(重点)
2.理解并掌握全等三角形的性质,能用符号正确地表示两个三角形全等.(重点)
3.能熟练找出两个全等三角形的对应角和对应边.(难点)
教学过程:
一、情境导入
在我们的周围,经常可以看到形状、大小完全相同的图形,这类图形在几何学中具有特殊的意义.观察下列图案,指出这些图案中形状与大小相同的图形.
你能再举出一些例子吗?
二、合作探究
探究点一:全等形和全等三角形的概念及对应元素
【类型一】全等形的认识
2013年第十二届全运会在辽宁举行,下图中的图形是全运会的会徽,其中是全等形的是( )
A.(1)(2) B.(2)(3)
C.(1)(3) D.(1)(4)
解析:根据能够完全重合的两个图形是全等形进行判断.由此可以判断选项D是正确的.方法总结:判断两个图形是不是全等形,可以通过平移、翻折、旋转等方法,将两个图形叠合起来观察,看其是否能完全重合,有时还可以借助网格背景来观察比较.
【类型二】全等三角形的对应元素
如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.
解析:结合图形进行分析,分别写出对应边与对应角即可.
解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.
方法总结:找全等三角形的对应元素的关键是准确分析图形,另外记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.
探究点二:全等三角形的性质
【类型一】应用全等三角形的性质求三角形的角或边
如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.
解析:根据全等三角形对应边、对应角相等求∠DEF的度数和CF的长.
解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC =EF=7,∴CF=BC-BF=7-4=3.
方法总结:本题主要是考查运用全等三角形的性质求角的度数和线段的长,解决问题的关键是准确识别图形.
【类型二】全等三角形的性质与三角形内角和的综合运用
如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠ACB的度数.。

相关文档
最新文档