2019年一轮北师大版(理)数学教案:第7章 第2节 空间图形的基本关系与公理 Word版含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 空间图形的基本关系与公理
[考纲传真] 1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
1.空间图形的公理
(1)公理1:过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面).
(2)公理2:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(即直线在平面内).
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
(4)公理4:平行于同一条直线的两条直线平行.
2.空间中两直线的位置关系
(1)空间中两直线的位置关系
⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 相交直线平行直线异面直线:不同在任何一个平面内
(2)异面直线所成的角
①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.
②范围:⎝ ⎛⎦
⎥⎤0,π2. 3.空间中直线与平面、平面与平面的位置关系
(1)直线与平面的位置关系有相交、平行、在平面内三种情况.
(2)平面与平面的位置关系有平行、相交两种情况.
4.定理(等角定理)
空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()
(2)两两相交的三条直线最多可以确定三个平面.()
(3)如果两个平面有三个公共点,则这两个平面重合.()
(4)若直线a不平行于平面α,且a⊆/α,则α内的所有直线与a异面.()
[答案](1)×(2)√(3)×(4)×
2.(教材改编)如图7-2-1所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()
图7-2-1
A.30°B.45°
C.60°D.90°
C[连接B1D1,D1C(图略),则B1D1∥EF,
故∠D1B1C为所求的角,
又B1D1=B1C=D1C,∴∠D1B1C=60°.]
3.在下列命题中,不是公理的是()
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
A[A不是公理,是个常用的结论,需经过推理论证;B,C,D是公理.]。