新初中数学二次函数分类汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新初中数学二次函数分类汇编及答案
一、选择题
1.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】
根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.
【详解】
根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;
点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,
∴选项B 符合题意,选项A 不合题意.
故选B .
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )
A .m 1≥
B .0m ≤
C .01m ≤≤
D .m 1≥或0m ≤
【答案】C
【解析】
【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.
【详解】
解:如图1所示,当t 等于0时,
∵2
(1)4y x =--,
∴顶点坐标为(1,4)-,
当0x =时,3y =-,
∴(0,3)A -,
当4x =时,5y =,
∴(4,5)C ,
∴当0m =时, (4,5)D -,
∴此时最大值为0,最小值为5-;
如图2所示,当1m =时,
此时最小值为4-,最大值为1.
综上所述:01m ≤≤,
故选:C .
【点睛】
此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.
3.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )
A .-12<t ≤3
B .-12<t <4
C .-12<t ≤4
D .-12<t <3
【答案】C
【解析】
【分析】 根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.
【详解】
解:∵y =-x 2+bx +3的对称轴为直线x =-1,
∴b =−2,
∴y =-x 2−2x +3,
∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,
∵当x =−1时,y =4;当x =3时,y =-12,
∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,
∴-12<t≤4,
故选:C .
【点睛】
本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.
4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x
=在同平面直角坐标系中的图象大致是( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】
直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.
【详解】
∵二次函数y=ax2+bx+c的图象开口向下,
∴a<0,
∵二次函数y=ax2+bx+c的图象经过原点,
∴c=0,
∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,
∴b<0,
∴一次函数y=ax+c,图象经过第二、四象限,
反比例函数y=b
x
图象分布在第二、四象限,
故选D.
【点睛】
此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.
5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()
A.当m=-3时,函数图象的顶点坐标是(1
3

8
3

B.当m>0时,函数图象截x轴所得的线段长度大于3 2
C.当m≠0时,函数图象经过同一个点
D.当m<0时,函数在x>1
4
时,y随x的增大而减小
【答案】D
【解析】
分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;
B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;
C、首先求得对称轴,利用二次函数的性质解答即可;
D、根据特征数的特点,直接得出x的值,进一步验证即可解答.
详解:
因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];
A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣1
3
)2+
8
3
,顶点坐标是(
1
3

8
3
);此结论正
确;
B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣1
2

12m
, |x 2﹣x 1|=
32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32
,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.
D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m
-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14
右边先递增到对称轴位置,再递减,此结论错误;
根据上面的分析,①②③都是正确的,④是错误的.
故选D .
点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.
6.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )
A +
B .1
C .1
D .-【答案】B
【解析】
【分析】
由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值.
【详解】
∵y =x 2﹣2x+2=(x ﹣1)2+1,
∴抛物线开口向上,对称轴为x =1,
当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大,
∴当x =m 时,y 有最小值,
∴m 2﹣2m+2=6,解得m =m =1
当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小,
∴当x =m+1时,y 有最小值,
∴(m+1)2﹣2(m+1)+2=6,解得m m
综上可知m 的值为1+5或﹣5.
故选B .
【点睛】
本题主要考查二次函数的性质,用m 表示出其最小值是解题的关键.
7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;
0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )
A .①②
B .①②③
C . ①③④
D . ①②④
【答案】D
【解析】
【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a
=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123
b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b
c ++>,将23a b =-代入可得40c b ->.
【详解】
①根据抛物线开口方向得到0a >,根据对称轴02b x a
=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.
②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.
③由对称轴123
b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b
c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.
故答案选D.
【点睛】
本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

8.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )
A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4
【答案】B
【解析】
【分析】
先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解;
【详解】
解:∵对称轴为直线x=2,
∴b=﹣4,
∴y=x2﹣4x,
关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4,
∴二次函数y的取值为﹣4≤y<5,
∴﹣4≤t<5;
故选:B.
【点睛】
本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.
9.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()
A.16 B.15 C.12 D.11
【答案】B
【解析】
【分析】
过点F作AD的垂线交AD的延长线于点H,则△FEH∽△EBA,设AE=x,可得出△CEF面积与x的函数关系式,再根据二次函数图象的性质求得最小值.
【详解】
解:过点F作AD的垂线交AD的延长线于点H,
∵∠A=∠H=90°,∠FEB=90°,
∴∠FEH=90°-∠BEA=∠EBA,
∴△FEH∽△EBA,
∴ ,HF HE EF AE AB BE == G Q 为BE
的中点,
1,2
FE GE BE ∴== ∴ 1,2
HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==
∴HF 1,4,2
x EH =
= ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-
11111(8)8(4)422222x x x x =
++⨯--⨯• 2141644x x x x =
+--- 2116,4
x x =-+ ∴当12124
x -=-
=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .
【点睛】
本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.
10.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( ) A . B . C . D .
【解析】
【分析】
根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.
【详解】
当a >0时,二次函数的图象开口向上,
一次函数的图象经过一、三或一、二、三或一、三、四象限,
故A 、D 不正确;
由B 、C 中二次函数的图象可知,对称轴x=-2b a
>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .
故选C .
11.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭
是抛物线上两点,则12y y >.其中正确的结论有( )
A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.
【详解】
解:∵抛物线开口向下,
∴a <0,
∵抛物线的对称轴为直线12b x a
=-
= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方,
∴abc <0,所以①错误;
∵b=-2a ,
∴2a+b=0,所以②正确;
∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,
∴抛物线与x 轴的另一个交点为(3,0),
∴当x=3时,y=0,
∴930a b c ++=,所以③错误;
∵抛物线的对称轴为直线x=1,且抛物线开口向下,
∴当x 1<时,y 随x 的增大而增大 ∵103132
-<-< 点13,2y ⎛⎫-
⎪⎝⎭
到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确. 故选B .
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.
12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )
A .4个
B .3个
C .2个
D .1个
【答案】B
【解析】
【分析】
【详解】 解:∵抛物线和x 轴有两个交点,
∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正确;
∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,
∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,
∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,
∴4a+c>2b,∴②错误;
∵把(1,0)代入抛物线得:y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b,2c<0,∴③正确;
∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正确;
即正确的有3个,
故选B.
考点:二次函数图象与系数的关系
13.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.
C.D.
【答案】B
【解析】
【分析】
由题意可求m<﹣2,即可求解.
【详解】
∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,
∴△=4﹣4(﹣m﹣1)<0
∴m<﹣2
∴函数y =的图象在第二、第四象限,
故选B .
【点睛】
本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.
14.一次函数y=ax+b 与反比例函数y=c x
在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()
A .
B .
C .
D .
【答案】B
【解析】
【分析】
根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =-
>0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.
【详解】
解:∵一次函数y=ax+b 图像过一、二、四,
∴a <0,b >0,
又∵反比例 函数y=
c x 图像经过二、四象限, ∴c <0,
∴二次函数对称轴:2b x a
=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,
故答案为B.
【点睛】
本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.
15.在同一平面直角坐标系中,函数y=ax 2+bx 与y=bx+a 的图象可能是( )
A .
B .
C .
D .
【答案】C
【解析】
试题解析:A 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,对称轴x=﹣2b a
<0,应在y 轴的左侧,故不合题意,图形错误. B 、对于直线y=bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意,图形错误.
C 、对于直线y=bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,对称轴x=﹣2b a
位于y 轴的右侧,故符合题意, D 、对于直线y=bx+a 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2+bx 来说,图象开口向下,a <0,故不合题意,图形错误.
故选C .
考点:二次函数的图象;一次函数的图象.
16.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0
B .1
C .2
D .3
【答案】B
【解析】
【分析】
根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.
【详解】
若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.
故答案为:B .
【点睛】
本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.
17.平移抛物线2:L y x =得到抛物线L ',使得抛物线L '的顶点关于原点对称的点仍在抛物线L '上,下列的平移中,不能得到满足条件的抛物线L '的是( )
A .向右平移1个单位,再向下平移2个单位
B .向左平移1个单位,再向下平移2个单位
C .向左平移32个单位,再向下平移92
个单位 D .向左平移3个单位,再向下平移9个单位
【答案】D
【解析】
【分析】
通过各个选项的平移分别得到相应的函数关系式,再判断原点是否在该抛物线上即可.
【详解】
解:由A 选项可得L '为:2(1)2y x =--,
则顶点为(1,-2),顶点(1,-2)关于原点的对称点为(-1,2),
当x =-1时,y =2,则对称点在该函数图像上,故A 选项不符合题意;
由B 选项可得L '为:2(1)2y x =+-,
则顶点为(-1,-2),顶点(-1,-2)关于原点的对称点为(1,2),
当x =1时,y =2,则对称点在该函数图像上,故B 选项不符合题意;
由C 选项可得L '为:239()22y x =+-, 则顶点为(-
32,-92),顶点(-32,-92)关于原点的对称点为(32,92), 当x =32时,y =92
,则对称点在该函数图像上,故C 选项不符合题意; 由D 选项可得L '为:2(3)9y x =+-,
则顶点为(-3,-9),顶点(-3,-9)关于原点的对称点为(3,9),
当x =3时,y =27≠9,则对称点不在该函数图像上,故D 选项符合题意;
故选:D .
【点睛】
本题考查了二次函数图像的平移,熟练掌握平移的规律“左加右减,上加下减”是解决本题的关键.
18.如图抛物线
交轴于和点,交轴负半轴于点,且.有下列结论:①
;②;③.其中,正确结论的个数是
( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】 根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a 、b 、c 的符号以及它们之间的数量关系,即可得出结论.
【详解】
解:根据图象可知a >0,c <0,b >0,

, 故③错误; ∵.
∴B (-c ,0)
∴抛物线y=ax 2+bx+c 与x 轴交于A (-2,0)和B (-c ,0)两点,
∴, ac2-bc+c=0
∴,ac-b+1=0,
∴,故②正确;
∴,b=ac+1
∴,
∴2b-c=2,故①正确;
故选:C.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
19.已知二次函数y=ax2+bx+c的图象如图所示,下列结i论:①abc>0;②b2﹣4ac>0;③2a+b=0;④a﹣b+c<0.其中正确的结论有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
首先根据开口方向确定a的取值范围,根据对称轴的位置确定b的取值范围,根据抛物线与y轴的交点确定c的取值范围,根据抛物线与x轴是否有交点确定b2﹣4ac的取值范围,根据x=﹣1函数值可以判断.
【详解】
解:Q抛物线开口向下,
∴<,
a
Q 对称轴12b x a
=-=, 0b ∴>,
Q 抛物线与y 轴的交点在x 轴的上方,
0c ∴>,
0abc ∴<,故①错误;
Q 抛物线与x 轴有两个交点,
240b ac ∴->,故②正确;
Q 对称轴12b x a
=-
=, 2a b ∴=-, 20a b ∴+=,故③正确;
根据图象可知,当1x =-时,0y a b c =-+<,故④正确;
故选:C .
【点睛】
此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.
20.平移抛物线y =﹣(x ﹣1)(x +3),下列哪种平移方法不能使平移后的抛物线经过原点( )
A .向左平移1个单位
B .向上平移3个单位
C .向右平移3个单位
D .向下平移3个单位 【答案】B
【解析】
【分析】
先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.
【详解】
解:y =﹣(x ﹣1)(x +3)=-(x+1)2+4
A 、向左平移1个单位后的解析式为:y =-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;
B 、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;
C 、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;
D 、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.
【点睛】
本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。

相关文档
最新文档