老河口市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

老河口市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 数列{}n a 中,11a =,对所有的2n ≥,都有2123
n a a a a n =,则35a a +等于( )
A .259
B .2516
C .6116
D .3115
2. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )
A .4
B .8
C .10
D .13
3. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )
A .2
B .4
C .
D .
4. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4
5. 在△ABC 中,已知a=2
,b=6,A=30°,则B=( )
A .60°
B .120°
C .120°或60°
D .45°
6. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )
A .0°
B .45°
C .60°
D .90°
7.
与向量=(1,﹣3,2)平行的一个向量的坐标是( ) A
.(,1,1) B .(﹣1,﹣3,2) C
.(﹣
,,﹣1) D
.(,﹣3,﹣
2

8. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( ) A

B

C

D .6
9. 抛物线y=4x 2的焦点坐标是( )
A .(0,1)
B .(1,0)
C

D

10.下列哪组中的两个函数是相等函数( ) A .(
)(
)4
f x x =
g B .()()24
=
,22
x f x g x x x -=-+ C .()()1,01,1,0
x f x g x x >⎧==⎨<⎩ D .()(
)=f x x x =,g 11.已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )
A .4
π
α=
B .3
π
α=
C .34
πα=
D .23
π
α=
12.已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )
A

B

C

D

二、填空题
13.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .
14.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
15.定积分sintcostdt= .
16.【泰州中学2018届高三10月月考】设函数()()21x
f x e x ax a =--+,其中1a <,若存在唯一的整数
0x ,使得()00f x <,则a 的取值范围是
17.不等式()2
110ax a x +++≥恒成立,则实数的值是__________.
18.函数f (x )=(x >3)的最小值为 .
三、解答题
19.已知集合A={x|a ﹣1<x <2a+1},B={x|0<x <1} (1)若a=,求A ∩B .
(2)若A ∩B=∅,求实数a 的取值范围.
20.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=

(Ⅰ)求;
(Ⅱ)若三角形△ABC 的面积为,求角C .
21.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.
(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;
(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.
22.已知函数f(x)=|x﹣10|+|x﹣20|,且满足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求实数a的取值集合A
(Ⅱ)若b∈A,a≠b,求证a a b b>a b b a.
23.已知数列{a n }满足a 1=,a n+1=a n +,数列{b n }满足b n =
(Ⅰ)证明:b n ∈(0,1)
(Ⅱ)证明:
=
(Ⅲ)证明:对任意正整数n 有a n .
24.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;
(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.
老河口市第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】C 【解析】
试题分析:由2
123
n a a a a n =,则2
123
1(1)n a a a a n -=-,两式作商,可得2
2
(1)
n n a n =-,所以2235223561
2416
a a +=+=,故选C .
考点:数列的通项公式. 2. 【答案】 C
【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),
∵2tan =2,lg =﹣1,
∴(2tan )⊗lg
=(2tan
)×(lg
+1)=2×(﹣1+1)=0,
∵lne=1,()﹣1
=5,
∴lne ⊗(
)﹣1
=()﹣1
×(lne+1)=5×(1+1)=10,
∴+=0+10=10. 故选:C .
3. 【答案】C
【解析】解:由于q=2,



故选:C .
4. 【答案】D 【解析】
考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
+=(D点是AB的中点),另外,要选好基底
OA OB OD
OA OB BA
-=,这是一个易错点,两个向量的和2
AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,
何意义等.
5.【答案】C
【解析】解:∵a=2,b=6,A=30°,
∴由正弦定理可得:sinB===,
∵B∈(0°,180°),
∴B=120°或60°.
故选:C.
6.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.7.【答案】C
【解析】解:对于C中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,
因此与向量=(1,﹣3,2)平行的一个向量的坐标是.
故选:C.
【点评】本题考查了向量共线定理的应用,属于基础题.
8.【答案】C.
【解析】解:∵2a=3b=m,
∴a=log2m,b=log3m,
∵a,ab,b成等差数列,
∴2ab=a+b,
∵ab≠0,
∴+=2,
∴=log m2,=log m3,
∴log m2+log m3=log m6=2,
解得m=.
故选C
【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.
9.【答案】C
【解析】解:抛物线y=4x2的标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,
故焦点坐标为(0,),
故选C.
【点评】本题考查抛物线的标准方程,以及简单性质的应用;把抛物线y=4x2的方程化为标准形式,是解题的关键.
10.【答案】D111]
【解析】

点:相等函数的概念. 11.【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
12.【答案】D
【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为

画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,
∴△A ′B ′C ′的高为=

∴△A ′B ′C ′的面积S==

故选D .
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
二、填空题
13.【答案】 2 .
【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1), 故2m+n=1.
∴4m
+2n
≥2
=2=2.
当且仅当4m =2n
,即2m=n ,
即n=,m=时取等号.
∴4m
+2n
的最小值为2

故答案为:2
14.【答案】
【解析】【知识点】空间几何体的三视图与直观图 【试题解析】正方体中,BC 中点为E ,CD 中点为F ,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
15.【答案】 .
【解析】解: 0sintcostdt=
0sin2td (2t )=
(﹣cos2t )|=×(1+1)=.
故答案为:
16.【答案】
【解析】试题分析:设
,由题设可知存在唯一的整数0x ,使得
在直线
的下方.因为
,故当
时,
,函数
单调递减;
当时,
,函数
单调递增;故,而当
时,
,故当

,解之得,应填答案
3,12e ⎡⎫
⎪⎢⎣⎭
. 考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点0x ,使得()00f x <为背景,设置了一道求函数解析式中的参数的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数0x ,使得在直线
的下方.然后再借助导数的知识求出函数的最小值,依
据题设建立不等式组求出解之得.
17.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足2
(1)40
a a a >⎧⎨
∆=+-≤⎩,即2
0(1)0
a a >⎧⎨
-≤⎩,解得1a =.1
考点:不等式的恒成立问题.
18.【答案】 12 .
【解析】解:因为x >3,所以f (x )>0
由题意知:
=﹣
令t=∈(0,),h (t )=
=t ﹣3t 2
因为 h (t )=t ﹣3t 2
的对称轴x=,开口朝上知函数h (t )在(0,)上单调递增,(,)单调递减;
故h (t )∈(0,]
由h (t )=⇒f (x )=
≥12
故答案为:12
三、解答题
19.【答案】
【解析】解:(1)当a=时,A={x|},B={x|0<x <1}
∴A ∩B={x|0<x <1} (2)若A ∩B=∅
当A=∅时,有a ﹣1≥2a+1 ∴a ≤﹣2
当A≠∅时,有
∴﹣2<a≤或a≥2
综上可得,或a≥2
【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.
20.【答案】
【解析】解:(Ⅰ)由题意知,tanA=,
则=,即有sinA﹣sinAcosC=cosAsinC,
所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,
由正弦定理,a=b,则=1;…
(Ⅱ)因为三角形△ABC的面积为,a=b、c=,
所以S=absinC=a2sinC=,则,①
由余弦定理得,=,②
由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,
又0<C<π,则C+<,即C+=,
解得C=….
【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.
21.【答案】
【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,
∴BD⊥AC,可知A(),
故,m=2;
(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,
设E(x1,y1),由于A,E均在椭圆T上,则

由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,
显然x1≠x0,从而=,
∵AE⊥AC,∴k AE•k AC=﹣1,
∴,
解得,
代入椭圆方程,知.
【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.
22.【答案】
【解析】解(1)要使不等式|x﹣10|+|x﹣20|<10a+10的解集不是空集,
则(|x﹣10|+|x﹣20|)min<10a+10,
根据绝对值三角不等式得:|x﹣10|+|x﹣20|≥|(x﹣10)﹣(x﹣20)|=10,
即(|x﹣10|+|x﹣20|)min=10,
所以,10<10a+10,解得a>0,
所以,实数a的取值集合为A=(0,+∞);
(2)∵a,b∈(0,+∞)且a≠b,
∴不妨设a>b>0,则a﹣b>0且>1,
则>1恒成立,即>1,
所以,a a﹣b>b a﹣b,
将该不等式两边同时乘以a b b b得,
a a
b b>a b b a,即证.
【点评】本题主要考查了绝对值三角不等式的应用和不等式的证明,涉及指数函数的性质,属于中档题.
23.【答案】
【解析】证明:(Ⅰ)由b n=,且a n+1=a n+,得,
∴,下面用数学归纳法证明:0<b n<1.
①由a1=∈(0,1),知0<b1<1,
②假设0<b k<1,则,
∵0<b k<1,∴,则0<b k+1<1.
综上,当n∈N*时,b n∈(0,1);
(Ⅱ)由,可得,,
∴==.
故;
(Ⅲ)由(Ⅱ)得:

故.
由知,当n≥2时,
=.
【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题.
24.【答案】(1)证明见解析;(2)
【解析】
试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.

点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式.。

相关文档
最新文档