从化区二中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从化区二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )
A .34种
B .35种
C .120种
D .140种
2. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}
{},,a b a b =;③{}{},,a b b a ⊆;
④{}0∅⊆,正确的有( )个
A.个
B.个
C.个
D.个
3. 已知双曲线

=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2
关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( )
A .1<e <
B .e >
C .e >
D .1<e <
4. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )
A .(﹣2,0)
B .(﹣∞,﹣2)∪(﹣1,0)
C .(﹣∞,﹣2)∪(0,+∞)
D .(﹣2,﹣1)∪(0,
+∞)
5. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )
A .3
B .4
C .5
D .6
6. 已知a=5
,b=log 2,c=log 5,则( )
A .b >c >a
B .a >b >c
C .a >c >b
D .b >a >c
7. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)
+(cos 2θ)
(θ∈R ),则(
+


的最小值是( )
A .1
B .﹣1
C .﹣2
D .0
8. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当
]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则
实数的取值范围是( )111] A .)2
2,
0( B .)33,0( C .)55,0( D .)66,0(
9. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )
A .
B .
C .
D .
10.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )
A .
B .
C .
D .
11.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,0)∪(0,1)
12.数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .
B .20
C .21
D .31
二、填空题
13.若等比数列{a n }的前n 项和为S n ,且,则= .
14.设α为锐角,若sin (α﹣)=,则cos2α= .
15.已知f (x )=,则f[f (0)]= .
16.已知关于 的不等式在
上恒成立,则实数的取值范围是__________
17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=
,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A .
B .
C .
D .
18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinAsinB+sinBsinC+cos2B=1.若C=,则= .
三、解答题
19.如图,在四棱锥
中,等边
所在的平面与正方形
所在的平面互相垂直,


中点,为的中点,且
(Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)在线段上是否存在点,使线段与所在平面成角.若存在,
求出的长,若不存在,请说明理由.
20.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1
()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2y
y
a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.
21.已知函数f (x )=(ax 2+x ﹣1)e x ,其中e 是自然对数的底数,a ∈R .
(Ⅰ)若a=0,求曲线f (x )在点(1,f (1))处的切线方程;
(Ⅱ)若
,求f (x )的单调区间;
(Ⅲ)若a=﹣1,函数f (x )的图象与函数的图象仅有1个公共点,求实数m 的取值范
围.
22.(本小题满分10分)
已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θ
θ=⎧⎨=⎩,(α为参数),经过伸缩变
换32x x
y y '=⎧⎨'=⎩
后得到曲线2C .
(1)求曲线2C 的参数方程;
(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.
23.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一
次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指
数不低于70,说明孩子幸福感强).
(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留
(2)从5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
附表:
24.已知函数,且.
(Ⅰ)求的解析式;
(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.
从化区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有
种,所以既有男生又有女生的选法有﹣
=34种. 故选:A .
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
2. 【答案】C 【解析】
试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系.
3. 【答案】B
【解析】解:设点F 2(c ,0),
由于F 2关于直线PF 1的对称点恰在y 轴上,不妨设M 在正半轴上, 由对称性可得,MF 1=F 1F 2=2c ,
则MO==
c ,∠MF
1F 2=60°,∠PF 1F 2=30°,
设直线PF 1:y=
(x+c ),
代入双曲线方程,可得,(3b 2﹣a 2)x 2﹣2ca 2x ﹣a 2c 2﹣3a 2b 2
=0,
则方程有两个异号实数根,
则有3b 2﹣a 2>0,即有3b 2=3c 2﹣3a 2>a 2
,即c >
a ,
则有e=>.
故选:B .
4. 【答案】B
【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,
∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .
5. 【答案】B
【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,
∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点, 对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,
但5个以上的交点不能实现.
故选B
【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.
6. 【答案】C
【解析】解:∵a=5>1,b=log 2<log 5=c <0,
∴a >c >b . 故选:C .
7. 【答案】 C
【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),
且sin 2θ+cos 2
θ=1,
∴=(1﹣cos 2θ)+(cos 2θ)=
+cos 2θ•(

),
即﹣
=cos 2θ•(

),
可得
=cos 2θ•

又∵cos 2
θ∈[0,1],∴P 在线段OC 上,
由于AB 边上的中线CO=2,
因此(+)•=2•,设|
|=t ,t ∈[0,2],
可得(+
)•
=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,
∴当t=1时,(
+
)•
的最小值等于﹣2.
故选C .
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.
8. 【答案】B 【解析】
试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,
()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,
()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,
()x g 在()+∞,0上单调递减,则⎩⎨
⎧-><<2
3log 10a a ,解得:33
0<<a 故选A .
考点:根的存在性及根的个数判断.
【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的
图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.
9. 【答案】D
【解析】解:设F 2为椭圆的右焦点
由题意可得:圆与椭圆交于P ,并且直线PF 1(F 1为椭圆的左焦点)是该圆的切线,
所以点P 是切点,所以PF 2=c 并且PF 1⊥PF 2.
又因为F 1F 2=2c ,所以∠PF 1F 2=30°
,所以.
根据椭圆的定义可得|PF 1|+|PF 2|=2a ,
所以|PF 2|=2a ﹣c .
所以2a ﹣
c=,所以
e=

故选D .
【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.
10.【答案】C
【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数,
故这3个数构成一组勾股数的概率为.
故选:C
11.【答案】D
【解析】解:由奇函数f(x)可知,即x与f(x)异号,
而f(1)=0,则f(﹣1)=﹣f(1)=0,
又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,
当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1.
故选D.
【点评】本题综合考查奇函数定义与它的单调性.
12.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
二、填空题
13.【答案】.
【解析】解:∵等比数列{a n}的前n项和为S n,且,
∴S4=5S2,又S2,S4﹣S2,S6﹣S4成等比数列,
∴(S4﹣S2)2=S2(S6﹣S4),
∴(5S2﹣S2)2=S2(S6﹣5S2),
解得S6=21S2,
∴==.
故答案为:.
【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题.
14.【答案】﹣.
【解析】解:∵α为锐角,若sin(α﹣)=,
∴cos(α﹣)=,
∴sin=[sin(α﹣)+cos(α﹣)]=,
∴cos2α=1﹣2sin2α=﹣.
故答案为:﹣.
【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.
15.【答案】1.
【解析】解:f(0)=0﹣1=﹣1,
f[f(0)]=f(﹣1)=2﹣1=1,
故答案为:1.
【点评】本题考查了分段函数的简单应用.
16.【答案】
【解析】
因为在上恒成立,所以,解得
答案:
17.【答案】
【解析】解:法1:取A1C1的中点D,连接DM,
则DM∥C1B1,
在在直三棱柱中,∠ACB=90°,
∴DM⊥平面AA1C1C,
则∠MAD是AM与平面AA1C1C所的成角,
则DM=,AD===,
则tan∠MAD=.
法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,
则∵AC=BC=1,侧棱AA
=,M为A1B1的中点,
1
∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量
设AM与平面AA1C1C所成角为θ,
则sinθ=||=
则tanθ=
故选:A
【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.
18.【答案】=.
【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c,
∵已知sinAsinB+sinBsinC+cos2B=1,
∴sinAsinB+sinBsinC=2sin2B.
再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列.
C=,由a,b,c成等差数列可得c=2b﹣a,
由余弦定理可得(2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab.
化简可得5ab=3b2,∴=.
故答案为:.
【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.
三、解答题
19.【答案】
【解析】【知识点】空间的角利用直线方向向量与平面法向量解决计算问题垂直
【试题解析】(Ⅰ)是等边三角形,为的中点,
平面平面,是交线,平面
平面.
(Ⅱ)取的中点,底面是正方形,,两两垂直.分别以的方向为轴、轴、轴的正方向建立空间直角坐标系,
则,
,,
设平面的法向量为,,
,,
平面的法向量即为平面的法向量.
由图形可知所求二面角为锐角,
(Ⅲ)设在线段上存在点,,
使线段与所在平面成角,
平面的法向量为,,
,解得,适合
在线段上存在点,当线段时,与所在平面成角.
20.【答案】
【解析】【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
21.【答案】
【解析】解:(Ⅰ)∵a=0,∴f(x)=(x﹣1)e x,f′(x)=e x+(x﹣1)e x=xe x,
∴曲线f(x)在点(1,f(1))处的切线斜率为k=f(1)=e.
又∵f(1)=0,∴所求切线方程为y=e(x﹣1),
即.ex﹣y﹣4=0
(Ⅱ)f′(x)=(2ax+1)e x+(ax2+x﹣1)e x=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x,
①若a=﹣,f′(x)=﹣x2e x≤0,∴f(x)的单调递减区间为(﹣∞,+∞),
②若a <﹣,当x <﹣或x >0时,f ′(x )<0;
当﹣
<x <0时,f ′(x )>0.
∴f (x )的单调递减区间为(﹣∞,﹣],[0,+∞);单调递增区间为[﹣,0]. (Ⅲ)当a=﹣1时,由(Ⅱ)③知,f (x )=(﹣x 2+x ﹣1)e x
在(﹣∞,﹣1)上单调递减,
在[﹣1,0]单调递增,在[0,+∞)上单调递减,
∴f (x )在x=﹣1处取得极小值f (﹣1)=﹣,在x=0处取得极大值f (0)=﹣1,

,得g ′(x )=2x 2
+2x .
当x <﹣1或x >0时,g ′(x )>0;当﹣1<x <0时,g ′(x )<0.
∴g (x )在(﹣∞,﹣1]上单调递增,在[﹣1,0]单调递减,在[0,+∞)上单调递增.
故g (x )在x=﹣1处取得极大值,
在x=0处取得极小值g (0)=m ,
∵数f (x )与函数g (x )的图象仅有1个公共点,
∴g (﹣1)<f (﹣1)或g (0)>f (0),即.

【点评】本题考查了曲线的切线方程问题,考查函数的单调性、极值问题,考查导数的应用,是一道中档题.
22.【答案】(1)3cos 2sin x y θ
θ=⎧⎨=⎩
(为参数);(2【解析】

题解析: (1)将曲线1cos :sin x C y α
α
=⎧⎨
=⎩(α为参数),化为
221x y +=,由伸缩变换32x x y y '=⎧⎨'=⎩化为1312
x x y y ⎧'=⎪⎪⎨⎪'
=⎪⎩, 代入圆的方程2
11132x y ⎛⎫⎛⎫
''+= ⎪ ⎪⎝⎭⎝⎭
,得到()()2
2
2:
194x y C ''+=, 可得参数方程为3cos 2sin x y α
α
=⎧⎨=⎩;
考点:坐标系与参数方程.
23.【答案】(1)有95%的把握认为孩子的幸福感强与是否留守儿童有关;(2)35
.
【解析】
∴2
40(67918)4 3.84115252416
K ⨯⨯-⨯=
=>⨯⨯⨯.
∴有95%的把握认为孩子的幸福感强与是否留守儿童有关.
(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:1a ,2a ;幸福感强的孩子3人,记作:1b ,2b ,
3b .
“抽取2人”包含的基本事件有12(,)a a ,11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b ,12(,)b b ,
13(,)b b ,23(,)b b 共10个.
事件A :“恰有一人幸福感强”包含的基本事件有11(,)a b ,12(,)a b ,13(,)a b ,21(,)a b ,22(,)a b ,23(,)a b 共6个. 故63()105
P A =
=. 考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式. 24.【答案】
【解析】【知识点】导数的综合运用利用导数研究函数的单调性 【试题解析】(Ⅰ)对求导,得,
所以,解得,
所以. (Ⅱ)由,得

因为,
所以对于任意,都有

设,则 .

,解得

当x 变化时,

的变化情况如下表:
所以当
时,

因为对于任意,都有成立,
所以 . 所以的最小值为.
(Ⅲ)证明:“函数的图象在直线的下方”
等价于“”,
即要证

所以只要证.
由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.
设,
所以,
令,解得.
由,得,所以在上为增函数.
所以,即.
所以.
故函数的图象在直线的下方.。

相关文档
最新文档