黑十字消光原理

合集下载

高分子物理第1、2章习题答案

高分子物理第1、2章习题答案

高分子物理答案详解(第三版)第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。

所谓构型(configuration),包括:旋光异构(全同、间同、无规立构),由不对称中心(或手性C原子)的存在而引起的;几何异构(顺、反异构),由主链上存在双键引起的;键接异构(头尾、头头、尾尾相连)。

聚氯丁二烯的各种可能构型有如下六种:2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答:(1)由于等规立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。

(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。

4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。

该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯腈与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。

聚合物球晶黑十字消光图像的计算机模拟

聚合物球晶黑十字消光图像的计算机模拟
镜 图像 。真 实聚 丙烯球 晶的黑 十字 消光 图像 中心 是
解 光 Klm 、 l 1ip 的分 解光 lo 通 过检 偏 镜 后 , s cs
此合 成波 的强 度为 :
, A s  ̄ i ( / ) = i 2 s n p n 82

() 3
亮 的带 状 区域 ,表 明其 球 晶 中心 处是 多层 片 晶形成 的捆 束状 结 构 J ,而 聚 乙 烯 球 晶 中 心 是 暗 区 ,偏 振光 不 能透过 ,表 明其 晶核并 非结 晶。 由图 2还可
验 。通过 观察 高聚物球 晶的形 态和尺 寸 ,能够加 深 对结 晶高 聚物 的微 观结构 与制备 方法 、宏 观 力学性 能相互 关 系的理解 。然而 ,限 于国 内高分 子物 理实 验 教学 条件 ,学生往 往没有 时 间制 备 出非常完 善 的
收 稿 日期 :2 1 0 0—1 0 2— 7
域 也是完 全黑 暗的 。 当入射 光经 过光 学各 向异性 的 晶体 时 ( 立 方 除 晶为 各 向同性体 外 ) ,发 生 双折 射 ,产 生 与 晶 体光
第 9卷
第 5期
翟俊学 ,等 :聚合物球 晶黑十字消光图像的计算机模拟
・ 7・ 4
轴平 行 和垂 直 的 两种 偏 振 光 、 ,而 且 由 于 折
时 ,由于其各 个方 向 的折射率 相 同 ,不 会发生 双折
射 ,不 会改变 人射光 的振 动方 向 ,因此 观察到 的视
作者简介 :翟俊 学( 9 6一) 17 ,男,博 士研 究 生,从 事高分
子 物 理 教 学/ 征 工 作 ,主要 研 究 方 向 为 高 分 子 表
结 构 与 性 能 的研 究 。
之 间的 相差 ,6:2r A A;d为 试 样 的厚 度 ;△为 , / r d

高分子物理课后习题答案(详解)

高分子物理课后习题答案(详解)

高分子物理答案详解(第三版)第1章高分子的链结构1.写出聚氯丁二烯的各种可能构型。

等。

2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。

(2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。

4.哪些参数可以表征高分子链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差;(2)特征比Cn,Cn值越小,链的柔顺性越好;(3)连段长度b,b值愈小,链愈柔顺。

5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。

该聚合物为什么室温下为塑料而不是橡胶?答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)无规立构聚丙烯与等规立构聚丙烯;(3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。

(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。

(1)线性高分子梯形高分子(2 非晶高分子结晶性高分子(3)柔性(4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。

高分子物理实验指导书详解

高分子物理实验指导书详解

高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。

二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。

球晶可以长得比较大,直径甚至可以达到厘米数量级。

球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。

因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。

偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。

球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。

光是电磁波,也就是横波,它的传播方向与振动方向垂直。

但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。

但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。

a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。

实验一 偏光显微镜法观察聚合物球晶形态

实验一 偏光显微镜法观察聚合物球晶形态

=0.64,根据 [] K M求 出
。M
29
高分子材料专业实验
六、回答问题及讨论
• 1.乌贝路德粘度计中支管C有何作用?除去支管C是 否可测定粘度?
• 2.粘度计的毛管太粗或太细有什么缺点? • 3.用乌氏粘度计测量溶液的流出时间时,为什么要
打开C管的夹子使毛细管末端通大气?如果不打开, 对流出时间测定会有什么影响?影响流出时间测定 准确性的因素有哪些? • 4.利用粘度法测定高聚物分子量的局限性如何?适 用的分子量范围是多大?
高分子材料专业实验
四、实验步骤
• 3.聚丙烯的结晶形态观察 • 将制备好的样品放在载物台上,在正交偏
振条件下观察球晶形态,读出相邻两球晶 中心连线在分度尺上所占的格数,将格数 乘以mm/格(已经过显微尺标定)即可估算 出球晶直径。
高分子材料专业实验
四、实验步骤
聚丙烯颗粒
以45°斜角 盖上另外一 片载玻片
30
高分子材料专业实验
实验三 GPC法测聚合物的分子量 及分布
一、实验目的 二、实验原理 三、仪器与试剂 四、实验步骤 五、数据处理 六、回答问题及讨论
高分子材料专业实验
一、实验目的
• 1. 了解凝胶渗透色谱法(GPC)的基本原理。 • 2. 掌握GPC法测定聚合物的分子量及分子
量分布的实验技术及数据处理。
26
高分子材料专业实验
四、实验步骤
• 5.整理工作 • 倒出粘度计中的溶液,倒入纯溶剂,将其吸
至a线上方小球的一半清洗毛细管,反复几 次,倒挂毛细管粘度计以待后用。
27
高分子材料专业实验
五、数据处理
l.测得数据记入下表
记录 t0
t
r

消光黑十字

消光黑十字

球晶具有双折射性并呈现特殊的Maltese黑十字(Maltese cross)学名“十字消光”,因而很容易在偏光显微镜下观测到。

有时还可以观察到具有一系列同心环消光的球晶(bended spherulite),这是由于球晶中径向发射的晶片协同扭曲而造成的。

球晶有正负光学性质之分,当径向的折射率大于切向的折射率进为正光性球晶(positivespherulite),反之为负光性球晶(negative spherulite)。

球晶是聚合物最常见的、最重要的一类结晶形态。

当聚合物从浓溶液中析出或从熔体中冷却结晶时,并且在不存在应力或流动的情况下,会形成外观几何形状为球体的结晶形态——球晶。

球晶是一种多晶,其最基本结构单元是折叠链晶片。

这些小晶片由于聚合物熔体迅速冷却或者其它条件的限制来不及进行规则生长,因而不能按照最理想的方式生长成单晶。

但是为了减少表面能,它们往往以某些晶核为中心放射生长,结晶成球晶正交偏光100倍放大球晶单偏光100倍放大球状的多晶聚集体——球晶。

1.解释出现黑十字和一系列同心圆环的结晶光学原理。

答:当偏振光照射到各向异性的晶体表面时,会发生双折射现象,即原来的一束偏正光会分解为振动平面互相垂直的光线,由于两束光线在两个方向上的折射率不同,从而光线通过样品时的速度也不同,这样两束光就就会产生一定的相位差,发生干涉现象,这样有些光线可以通过检偏器,而有些光线不能通过检偏器,在照片上就形成了明暗的区域,即所谓的黑十字现象、又由于球晶中各个径向发射堆砌的条状晶片有时按照一定的周期规则的螺旋形扭转,使得球晶在偏振显微镜中呈现出一系列的消光同心圆环。

2.在生产中如何控制球晶的形态?答:可以通过控制球晶的生成条件,即:结晶温度、溶剂类型、溶液浓度、冷却速度等。

3.制样时,应注意哪些环节?答:(1)在制备显微镜样品时,首先要将已洗干净的载玻片、盖玻片以及专用的砝码放在恒温箱中保温5min,温度控制在比Tm高约30℃。

实验

实验
介质中的原子、分子等在三维空间完全无规排列时,对于任何入射方向和偏振方向的光线的折射率都是相等的,称为光学各向同性体。
双折射体
对不同振动方向的偏振光有不同的折射率,这样的物体称为双折射体。
线性双折射体
对光线没有吸收的双折射体。这种物体对任意方向进入的光线一般都会分解成振动面互相垂直的两个偏振光,并具有不同的折射率。
偏光显微镜的最佳分辨率为200 nM,有效放大倍数越过500—1000倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。
球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。
光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波.即偏振光。一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。
(1)
两个偏振光合成为具有δ相位差,振动方向互相垂直的光线。
平行光束的偏光干涉
在光路中放置两个互相垂直的偏振片P(起偏镜)和A(检偏镜),在两者之间放置一片双折射平板M,其光轴和偏振光片的偏振方向成45°,则由于偏光干涉作用,有光线通过检偏镜A,透射光强为
(2)
其中I0为起始透过光强。
偏光观察的意义:求得光程差Δ,然后——①由Δ和M的厚度即可以求得双折射率;②已知双折射率而求得平板的厚度。

实验六偏光显微镜研究聚合物的晶态结构讲述

实验六偏光显微镜研究聚合物的晶态结构讲述

实验六偏光显微镜研究聚合物的晶态结构用偏光显微镜研究聚合物的结晶形态是目前实验室中较为简便而实用的方法。

众所周知,随着结晶条件的不用,聚合物的结晶可以具有不同的形态,如:单晶、树枝晶、球晶、纤维晶及伸直链晶体等。

在从浓溶液中析出或熔体冷却结晶时,聚合物倾向于生成这种比单晶复杂的多晶聚集体,通常呈球形,故称为“球晶”。

球晶可以长得很大。

对于几微米以上的球晶,用普通的偏光显微镜就可以进行观察;对小于几微米的球晶,则用电子显微镜或小角激光光散射法进行研究。

聚合物制品的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态,晶粒大小及完善程度有着密切的联系,因此,对聚合物结晶形态等的研究具有重要的理论和实际意义。

一、目的要求1.了解偏光显微镜的结构及使用方法。

2.观察聚合物的结晶形态,估算聚丙烯球晶大小。

二、基本原理球晶的基本结构单元具有折叠链结构的片晶(晶片厚度在10mm左右)。

许多这样的晶片从一个中心(晶核)向四面八方生长,发展成为一个球状聚集体。

根据振动的特点不同,光有自然光和偏振光之分。

自然光的光振动(电场强度E的振动)均匀地分布在垂直于光波传播方向的平面内如图6-1所示;自然光经过反射、折射、双折射或选择吸收等作用后,可以转变为只在一个固定方向上振动的光波。

这种光称为平面偏光,或偏振光如图6-1(2)所示。

偏振光振动方向与传播方向所构成的平面叫做振动面。

如果沿着同一方向有两个具有相同波长并在同一振动平面内的光传播,则二者相互起作用而发生干涉。

由起偏振物质产生的偏振光的振动方向,称为该物质的偏振轴,偏振轴并不是单独一条直线,而是表示一种方向。

如图6-1(2)所示。

自然光经过第一偏振片后,变成图6-1偏振光,如果第二个偏振片的偏振轴与第一片平行,则偏振光能继续透过第二个偏振片;如果将其中任意一片偏振片的偏振轴旋转90°,使它们的偏振轴相互垂直。

这样的组合,便变成光的不透明体,这时两偏振片处于正交。

高分子物理实验-结晶聚合物的结晶熔融行为

高分子物理实验-结晶聚合物的结晶熔融行为

第二部分
偏光显微镜观察聚合物结晶形态
指导教师:张萍 程俊梅 实 验 室: 高分子学院3-319 课 时:3学时
引言
聚合物结晶后其光学性能会发生各向异性 变化,因而可用偏光显微镜观察较大尺寸晶体 的结晶形态。由于结晶聚合物材料的实际使用 性能与材料内部的结晶形态、晶体大小密切相 关,所以对聚合物结晶形态的研究具有重要的 理论和实际意义。
二、实验原理
双折射现象
双折射(double refraction):
光束在非晶体光轴方向上入射时, 入射光分解为两束光而沿不同方 向折射的现象。它们为振动方向 互相垂直的线偏振光。
二、实验原理
平面/线偏振光(polarized light)
光是一种电磁波,电磁波是横波; 振动面:光波前进方向和振动方向构成的平面; 自然光:振动面在各个方向上均匀分布的光。 平面/线偏振光:振动面只限于某一固定方向的光。
即仪器常数K的标定
ΔH=KA
热量标定:
K—仪器常数,
K= ΔH标/ΔH测。
(K等于标准物的标准熔融
热ΔH标与测得的标准物
熔融热ΔH测之比)
DSC实验影响因素
仪器影响因素 实验影响因素
样品因素
气氛的影响
升温速率的影响 试样量的影响 试样的粒度的影响 装填方式的影响
实验步骤
制样
开机
打印 结果
数据 处理
四、实验要求
1. 预习报告
认真预习偏光显微镜工作原理;黑十字及消光环的 成因;制样方法。
2.实验步骤:
放置载玻片,接通制样台电源,压片法制样,样品冷却; 调节显微镜,观察样品结晶形态,切断电源。
3.注意事项
样品尺寸:为绿豆粒大小即可; 如果是粉料,取放时应防止其撒开,导致样 品中有气泡。

_高分子物理课后习题答案(详解)

_高分子物理课后习题答案(详解)

_⾼分⼦物理课后习题答案(详解)⾼分⼦物理答案详解(第三版)第1章⾼分⼦的链结构1.写出聚氯丁⼆烯的各种可能构型。

等。

2.构象与构型有何区别?聚丙烯分⼦链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同⽴构聚丙烯变为间同⽴构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转⽽产⽣的分⼦中原⼦在空间位置上的变化,⽽构型则是分⼦中由化学键所固定的原⼦在空间的排列;构象的改变不需打破化学键,⽽构型的改变必须断裂化学键。

(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,⽽全同⽴构聚丙烯与间同⽴构聚丙烯是不同的构型。

3.为什么等规⽴构聚苯⼄烯分⼦链在晶体中呈31螺旋构象,⽽间规⽴构聚氯⼄烯分⼦链在晶体中呈平⾯锯齿构象?答(1)由于等归⽴构聚苯⼄烯的两个苯环距离⽐其范德华半径总和⼩,产⽣排斥作⽤,使平⾯锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满⾜晶体分⼦链构象能最低原则。

(2)由于间规聚氯⼄烯的氯取代基分得较开,相互间距离⽐范德华半径⼤,所以平⾯锯齿形构象是能量最低的构象。

4.哪些参数可以表征⾼分⼦链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因⼦)σ,σ值愈⼤,柔顺性愈差;(2)特征⽐Cn,Cn值越⼩,链的柔顺性越好;(3)连段长度b,b值愈⼩,链愈柔顺。

5.聚⼄烯分⼦链上没有侧基,内旋转位能不⼤,柔顺性好。

该聚合物为什么室温下为塑料⽽不是橡胶?答:这是由于聚⼄烯分⼦对称性好,容易结晶,从⽽失去弹性,因⽽在室温下为塑料⽽不是橡胶。

8.某单烯类聚合物的聚合度为104,试估算分⼦链完全伸展时的长度是其均⽅根末端距的多少倍?(假定该分⼦链为⾃由旋转链。

)答:81.6倍9.⽆规聚丙烯在环⼰烷或甲苯中、30℃时测得的空间位阻参数(即刚性因⼦)δ=1.76,试计算其等效⾃由连接链长度b(已知碳—碳键长为0.154nm,键⾓为109.5°)。

消光粉的消光原理

消光粉的消光原理

消光粉的消光原理消光粉是一种具有特殊光学特性的材料,它可以吸收或散射入射光,从而降低或消除光的反射和透射。

消光粉的消光原理主要包括吸收、散射和多重反射等过程。

首先,消光粉通过吸收入射光来实现消光。

当光线照射到消光粉表面时,其表面化学成分会吸收光能,将其转化为热能。

这种吸收光能的过程会导致光的能量减弱,从而降低光线的亮度和反射率。

消光粉通常包括一些具有吸收能力的物质,如金属酞菁和碳黑等,它们可以吸收特定波长的光线,将其能量转化为热能。

其次,消光粉还通过散射入射光来实现消光。

散射是指光线在物质内部或表面碰撞并改变方向分散的现象。

与吸收相比,散射会改变入射光的传播路径,并将部分光线散射回原来的方向。

消光粉的微观结构中通常含有许多细小的颗粒或晶体,这些颗粒或晶体具有与入射光波长相当的尺寸。

当入射光线与这些微观结构相互作用时,光线会被散射到各个方向上,从而降低光线的亮度和反射率。

此外,消光粉的多重反射也是实现消光的一种重要原理。

当光线穿过消光粉层时,它会发生多次反射,从而减弱光线的亮度。

消光粉常常被应用在一些光学材料的表面上,例如在显示器和相机镜头的屏幕上。

通过在光线入射路径中引入消光粉,可以使光线多次在粉末颗粒之间发生反射,从而降低光线的透射和反射,实现对周围环境光线的消光。

除了吸收、散射和多重反射,消光粉还可能通过其他机制实现消光,如光学相位的相互干涉等。

不同的消光粉材料和应用场合,其消光原理可能有所不同。

总结起来,消光粉通过吸收入射光、散射入射光和多重反射等过程来实现消光。

这些原理的不同组合使得消光粉具有降低或消除光的反射和透射的能力。

消光粉的应用范围广泛,例如在电子设备中用于消除反射,以及在照明系统中用于减少眩光等。

随着科学技术的不断发展,消光粉的研究和应用将会得到更广泛的关注和应用。

实验20 粘度法测定聚合物的分子量

实验20  粘度法测定聚合物的分子量

实验20 粘度法测定聚合物的分子量一、试验目的1. 了解粘度法测定聚合物平均分子量的原理。

2. 掌握粘度法测定的实验技术和数据处理方法。

3. 掌握一点法测定聚乙烯醇分子量的方法。

二、实验原理本实验采用乌氏粘度计测定聚乙烯醇稀水溶液的粘度,进而求出聚乙烯醇试样的分子量,对于浓溶液与聚合物的熔体粘度行为,因为很难找出准确的分子量,在此不作讨论。

某一溶剂在一定的温度下溶入聚合物,其粘度大大增加,而粘度的增加与聚合物的分子量有密切关系,从而利用这个性质在适当的条件下测定聚合物的分子量。

试验证明,许多聚合物溶液不是理想溶液,称为非牛顿流体,其流动规律不服从牛顿流体规律,但对于一般柔性链聚合物在切变速度较低且分子量适中时,其稀溶液可按牛顿流体处理。

聚合物稀溶液的粘度主要反应了三种内摩擦:○1 溶剂间流动时产生的内摩擦 ○2 高分子间的内摩擦 ○3 高分子与溶剂间的内摩擦 这三者的总和表现为聚合物稀溶液的粘度,记为η1,而由溶剂表现的粘度即纯溶剂粘度为η0。

特性粘数[η]是几种粘度中最重要的一种粘度,其数学式为:ln lim lim []00sp rC C C Cηηη==→→ (20-1)它为无限稀释的高分子溶液的比浓粘度,这时溶液所呈现的粘度行为主要反映了高分子与溶剂间的内摩擦。

特性粘度已不再与溶液的浓度有关,它表示单个分子对溶液粘度的贡献。

外推法求特性粘度[]η是较常用的方法,即在各种不同的浓度下求得sp η或r η,然后作C sp η—C 图或Crηln —C 图再外推到0C →时其截距即为[]η。

测得特性粘度之后,即可用下式求得分子量:[]KM αη= (20-2) 式中:M 为聚合物的平均分子量;[]η为特性粘度,其单位是浓度的倒数;α为与溶液中聚合物分子形态有关的指数项。

K 和α是两个常数,其数值可以从有关手册查到,查找时要注意这两个常数的测定条件,如使用的温度、溶剂、适用的分子量范围、单位以及校正方法。

结构与性能(聚合物部分)习题

结构与性能(聚合物部分)习题

一:高聚物的分子结构结晶度:结晶部分在总体中所占的含量,分为重量结晶度和体积结晶度。

大分子:是由大量原子组成的,具有相对高的分子质量或分子重量。

聚合物分子:也叫高聚物分子,通常简称为高分子。

就字面上它是一个由许多部分组成的分子,然而它的确包含多重重复之意。

它意味着:(1) 这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节); (2) 并且只有一种或少数几种链节;(3) 这些需要的链节多重重复重现。

星形大分子:若从一个公共的核伸出三个或多个支链,则称为星型高分子。

据文献报导,从不同单体已经合成了每个核具有128个臂的星型高分子。

假如所有的臂都是等长的,这样的星型高分子称做是规整的。

在臂的末端带有多官能度的星型高分子还可以再加其他的单体,生成的高分子做为二级支化的星型高分子,如果所有支化点具有同样的官能度和支化点间链段是等长的,则叫做树枝链共聚物:由两种或两种以上不同单体经聚合反应而得的聚合物。

根据各种单体在共聚物分子链中排列方式,可分为无规共聚物、交替共聚物、嵌段共聚物和接枝共聚物。

构造;一个分子的构造是指分子中原子和键的序列而不考虑其空间排列。

例如:高分子单体、单体单元和键接结构;分子链的共聚序列(无规共聚物,交替共聚物,梯度共聚物,嵌段共聚物)。

构型(configuration): 是指分子中通过化学键所固定的原子的空间排列。

例如:要改变分子的构造和构型必须经过化学键的断裂和重组。

构象(conformation);空间中的原子或原子团排列在一个具有一定构型的分子的单键上,称为构象。

“构象”是有机化学的名词,表示在单键周围的原子和原子基团的旋转产生的空间排列。

链段(macromolecular segments);高分子链的柔性(flexibility of polymer chain), 分子链能够改变其构象的性质聚合度(degree of polymerization); 大分子、低聚物分子、嵌段或分子链中单体单元的数目。

消光剂的消光原理

消光剂的消光原理

消光剂的消光原理嘿,朋友们!今天咱来聊聊消光剂的消光原理,这可真是个有意思的事儿呢!你看啊,这消光剂就像是给光线这个调皮小鬼戴上了一顶特殊的帽子。

它能让原本亮晶晶、晃眼睛的表面变得柔和起来,就好像是把刺眼的太阳光变成了温暖的烛光。

咱可以想象一下,一个光滑如镜的表面,光线照上去就跟个小弹球似的,到处乱蹦,特别刺眼。

可消光剂一来,就好像给这些小弹球铺上了一层软软的垫子,让它们蹦跶不起来啦,光线也就变得柔和多了。

消光剂是怎么做到的呢?这就好比是在一个热闹的舞会上,大家都在疯狂跳舞,场面乱糟糟的。

这时候来了一群“安静使者”,他们把大家隔开,让场面不再那么混乱。

消光剂就像是这些“安静使者”,它在材料的表面形成了一个个小小的凸起或者微孔,这些凸起和微孔就把光线给分散了,不再直直地射过来,而是变得七拐八弯的,这样我们的眼睛就不会被刺得难受啦。

而且啊,不同的消光剂就像是不同性格的“安静使者”。

有些特别厉害,能一下子就让场面安静下来;有些呢,则比较温和,慢慢地发挥作用。

它们在不同的材料里施展着自己的“魔法”,让这些材料变得更适合我们的需求。

比如说在涂料里加了消光剂,刷出来的墙面就不会亮得反光,看起来特别舒服;在塑料里加了消光剂,做出来的塑料制品就不会有那种刺眼的感觉,摸起来也更有质感。

消光剂的种类也是五花八门的呀!有矿物质的,有合成的,各有各的本事。

就像不同的武林高手,都有自己独特的武功秘籍。

它们在各自的领域里大显身手,为我们创造出各种美妙的效果。

想想看,如果没有消光剂,这个世界会变得多么刺眼啊!到处都是亮晶晶的,我们的眼睛可怎么受得了。

还好有消光剂这个小宝贝,让我们的生活变得更加美好。

所以啊,消光剂的消光原理虽然看起来很复杂,但其实也不难理解嘛。

它就像是一个神奇的魔术师,把那些刺眼的光线变得温柔可爱。

让我们一起为消光剂点赞,感谢它给我们带来的舒适和美好吧!。

望远镜物镜消光原理

望远镜物镜消光原理

望远镜物镜消光原理
从物理角度来看,物镜消光原理涉及到光的衍射和干涉现象。

当光线通过物镜时,会发生衍射现象,即光线会在物镜的边缘或孔径边缘发生弯曲和扩散。

这些衍射光线会与主光轴上的光线干涉,产生干扰,降低成像质量。

通过在物镜上设计消光孔或者消光罩,可以有效地减少非主光轴上的衍射光线的干扰,提高成像的清晰度和对比度。

总的来说,物镜消光原理是通过光学设计和物理现象相结合的方式,减少非主光轴上的光线干扰,提高望远镜成像质量的原理和方法。

这些措施可以有效地提高望远镜的观测性能,使得观测到的目标更加清晰和真实。

第六讲 黑十字消光与结晶模型

第六讲 黑十字消光与结晶模型

缨状胶束模型 * 模型简介
1. 晶 区 与 非 晶 区 互 相穿插,同时存在。 2. 一 根 分 子 链 可 以 同时穿过几个晶区和 非晶区。
适用范围
1. 结晶高分子的宏观 密度比按晶胞推算的密 度小。 2. 聚合物拉伸后,X射 线衍射图上出现分裂的 圆弧形斑点。 …………
* Oppenlander,G.C. Structure and Properties of Crystalline Polymers. Science, 1968, 159, 1311.
▲图2-30 PE球晶扭转晶片模型
及PE螺旋状球晶的电镜照片
◀图2-31
PE球晶内部晶片协同 周期性扭曲结构的电镜照片
3.(3) 球晶的特征
E. 透明性(指含有球晶的聚合物) 一般不透明,呈半透明或乳白色 因为 球晶尺寸(>入射光波长的1/2)较大,晶区和非 晶区折光指数不同,出现光的折射、散射 例外: a. 聚-4-甲基-1-戊烯不管球晶多大,都透明 因为晶区与非晶区的密度、折光指数相近 b. ABS 属于非晶高分子材料,但不透明 因为 是多组分多相高分子材料
单晶发现的重要意义
发现了折叠链结构

分子链通过晶区和非晶区的方式——折叠
发现了晶片结构

明确了晶体的形状为片状
明确了晶粒尺寸为100A的是晶片的厚度
结晶条件对晶体形态与结构的影响如何? 没有说明!
Keller的近邻折叠链模型
1. 某些高分子单晶表面非常松散。 2. 单晶密度值远小于理想晶体的密度值。 …………
折叠链模型的提出直接导致了高分子结晶动力学理论的兴起和发展, zzzzzzzzz 并成为了现今最流行的高分子结晶理论 * Keller, A. A Note On Single Crystals in Polymers: Evidence for a Folded Chain Configuration. Philos. Mag. 1957,2,1171.

黑十字消光原理

黑十字消光原理

晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶。

球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。

结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系,如较小的球晶可以提高冲击强度及断裂伸长率。

例如球晶尺寸对于聚合物材料的透明度影响更为显著,由于聚合物晶区的折光指数大于非晶区,因此球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对于聚合物球晶的形态与尺寸等的研究具有重要的理论和实际意义。

球晶是以晶核为中心对称向外生长而成的。

在生长过程中不遇到阻碍时形成球形晶体;如在生长过程中球晶之间因不断生长而相碰则在相遇处形成界面而成为多面体,在二度空间下观察为多边体结构。

由分子链构成晶胞,晶胞的堆积构成晶片,晶片迭合构成微纤束,微纤束沿半径方向增长构成球晶。

晶片间存在着结晶缺陷,微纤束之间存在着无定形夹杂物。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对于更小的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

一、实验目的和要求了解偏光显微镜的原理、结构及使用方法。

了解双折射体在偏光场中的光学效应及球晶黑十字消光图案的形成原理。

涂料消光原理及其应用

涂料消光原理及其应用

消光剂相关根据用途有时需要半光或无光的粉末涂料。

为了降低涂膜光泽,常用的消光剂有超细二氧化硅、滑石粉、硬脂酸铝、硬脂酸钙、低分子热塑性树脂等。

要得到消光效果,可以采用如下方法:a、将固化速度不同的粉末涂料,用干混合法进行混合,那么所得涂膜的光泽明显下降,起到消光作用。

由于反应活性高的粉末涂料迅速固化,使连续相的固化较慢的树脂流平和反应受到阻碍,最终固化涂膜失去光泽。

虽然这种方法有效,但增加制造工序和成本。

b、添加热塑性树脂。

在环氧粉末涂料中添加醋酸纤维素,在聚酯粉末涂料中添加细粉末状低分子量聚乙烯、聚丙烯树脂可以得到消光粉末涂料。

涂膜光泽受制造条件的影响。

因为热塑性树脂的添加,将影响粉末涂料的贮存稳定性,所以添加量限于树脂量的2—3%。

c、用有消光作用的特殊固化剂。

d、添加有消光作用的填料。

添加超细二氧化硅、滑石粉等填料使光泽显著下降。

特别是填料的粒度对涂膜光泽有很大影响。

粒度越大光泽越低。

要注意的是增加填料的用量,会使涂膜的平整性和机械强度下降。

在环氧粉末涂料中,碳酸钙粒度对涂膜光泽的影响见表。

在丙烯酸、聚酯粉末涂料中添加超细二氧化硅和高岭土能得到消光涂料。

除此之外,添加聚乙烯石蜡、氢化蓖麻油等蜡状物也能得到消光涂料。

涂料消光原理及其应用近几年以来,我国的涂料工业方兴未艾,涂料总产量也跃居世界的前列,形成了一个与此相关的产业群体,积极推动着传统涂装领域的技术革命和发展。

在这期间高光泽的亮光涂料以其色泽鲜艳、明亮等优点深受消费者的喜爱,并在相当长的时间内一统着涂料市场。

但是,随着人们生活水平的不断提高,一方面消费者感觉到了高光泽的亮光涂料成膜后反光比较严重,对人的眼睛有害;另一方面消费者的审美观念越来越倾向于休闲、时尚和个性化。

再加上我国汽车和家电行业蓬勃发展的需求。

这些因素就导致了人们对具有柔和外观的低光泽涂料的需求急剧增加。

同时,也使得如何生产具有消光性能的涂料成为涂料设计师们必须考虑的问题。

郡士消光成分

郡士消光成分

郡士消光成分
郡士消光成分,是一种具有神奇功效的草药,被广泛应用于医疗和保健领域。

它是由多种珍贵草本植物精心制成,经过独特的提取工艺,获得其独特的药效。

郡士消光成分具有抗炎、抗氧化、镇静、抗菌等多种作用。

它可以有效缓解疼痛、减轻炎症反应,对于关节炎、肌肉疼痛等疾病有着显著的疗效。

此外,郡士消光成分还可以改善睡眠质量,促进身体的新陈代谢,提高免疫力。

在医疗领域中,郡士消光成分广泛应用于中药领域。

许多中药制剂中都含有郡士消光成分,用于治疗各种疾病。

例如,郡士消光成分可以用于制作消炎药膏,涂抹在患处可以有效缓解疼痛和炎症。

此外,郡士消光成分还可以制作口服药剂,用于治疗内部炎症和感染等疾病。

除了医疗领域,郡士消光成分还被广泛应用于保健领域。

许多保健品中都添加了郡士消光成分,以增强身体的抵抗力和免疫功能。

郡士消光成分可以促进细胞的新陈代谢,清除自由基,延缓衰老过程。

同时,它还可以稳定情绪,缓解压力,提高睡眠质量,使人保持良好的身心健康。

郡士消光成分的应用范围广泛,但是在使用过程中也需要注意一些事项。

首先,应该按照医生或专业人士的建议使用,不宜过量或长
期使用。

其次,对于过敏体质的人群,应该进行过敏测试后再使用。

最后,应该注意存放方式,避免阳光直射或潮湿环境,以免影响药效。

总的来说,郡士消光成分是一种非常宝贵的草药,具有广泛的应用价值。

它的独特药效使其成为医疗和保健领域的重要组成部分。

通过合理、科学地利用郡士消光成分,我们可以更好地促进人们的健康和幸福。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。

聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶。

球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。

结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系,如较小的球晶可以提高冲击强度及断裂伸长率。

例如球晶尺寸对于聚合物材料的透明度影响更为显著,由于聚合物晶区的折光指数大于非晶区,因此球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,当球晶尺寸小到与光的波长相当时可以得到透明的材料。

因此,对于聚合物球晶的形态与尺寸等的研究具有重要的理论和实际意义。

球晶是以晶核为中心对称向外生长而成的。

在生长过程中不遇到阻碍时形成球形晶体;如在生长过程中球晶之间因不断生长而相碰则在相遇处形成界面而成为多面体,在二度空间下观察为多边体结构。

由分子链构成晶胞,晶胞的堆积构成晶片,晶片迭合构成微纤束,微纤束沿半径方向增长构成球晶。

晶片间存在着结晶缺陷,微纤束之间存在着无定形夹杂物。

球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。

球晶尺寸主要受冷却速度、结晶温度及成核剂等因素影响。

球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察,该法最为直观,且制样方便、仪器简单。

聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。

有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。

对于更小的球晶则可用电子显微镜进行观察或采用激光小角散射法等进行研究。

一、实验目的和要求了解偏光显微镜的原理、结构及使用方法。

了解双折射体在偏光场中的光学效应及球晶黑十字消光图案的形成原理。

观察聚丙烯熔体与浓溶液结晶生成的球晶形态,测定溶液结晶的球晶尺寸,判断球晶的正负性。

二、实验内容和原理球晶结晶与性能结晶聚合物材料的性能(如光学性能、冲击强度等)与球晶的结晶形态、尺寸及完善程度有密切的关系。

较小的球晶可以提高冲击强度及断裂伸长率。

一般球晶的存在将产生光的散射而使透明度下降,球晶越小则透明度越高,直至其尺寸与光的波长相当则得到完全透明的材料。

球晶的形成球晶是聚合物中最常见的结晶形态,大部分由聚合物熔体和浓溶液生成的结晶形态都是球晶。

球晶是以核为中心对称向外生长而成的。

在生长过程中不遇到阻碍时可形成球形晶体;如在生长过程中球晶之间相碰则在相遇处形成界面而成为多面体(二维空间观察为多边形)。

影响球晶尺寸的因素冷却速度、结晶温度、成核剂等因素。

偏光显微镜原理偏振光和双折射表1偏振光和双折射的相关概念名称意义天然光天然光可分解为与传播方向垂直的所有方向上的振动的矢量,并且各方向上的振幅相等。

偏振光偏振光是指矢量的振动方向有一定规律的光线。

光矢量在一个平面内振动的光线称为线性偏振光,该平面称为振动面,可由天然光通过偏振器(如偏振片)获得。

光学各向同性体介质中的原子、分子等在三维空间完全无规排列时,对于任何入射方向和偏振方向的光线的折射率都是相等的,称为光学各向同性体。

双折射体对不同振动方向的偏振光有不同的折射率,这样的物体称为双折射体。

线性双折射体对光线没有吸收的双折射体。

这种物体对任意方向进入的光线一般都会分解成振动面互相垂直的两个偏振光,并具有不同的折射率。

光率体表2 光率体的相关概念光率体双折射体的几何模型,是由确定的三轴椭球体,nx、ny、nz称为主折射率。

运用光率体可采用几何作图来确定双折射体的各种光学性质。

光轴当入射光方向与光轴一致时,不改变光的振动方向,也不会发生双折射。

对光率体做切面时,可得两个包含y轴且与x轴和y轴对称的圆形,这两个切面的垂直方向即为光轴。

二轴双折射体具有两条光轴的物体称为二轴双折射体。

单轴双折射体光率体中有两个主折射率相等,则称为单轴双折射体。

当双轴性双折射体的两个主折射率较接近时也可当做单轴体处理(如聚乙烯)。

正常波(O波)任意方向的入射光都可分解为振动面与主切面垂直的偏振光以及振动面在主切面上的偏振光。

振动面与主切面垂直的光波称为正常波,其速度是恒定的,折射率为常数,记为no。

异常波(E波)振动面处于与主切面内的光波称为异常波,其速度和折射率随入射光的方向而改变,其折射率记为ne。

正的双折射体当光波垂直于光轴射入时,正常波的折射率仍为no,异常波的折射率为ne=nz,当no<nz时,正常波的速度大于异常波,称为正的双折射体,其光率体呈瘦长形。

负的双折射体当no>nz时,正常波的速度小于异常波,称为负的双折射体,其光率体呈扁平形。

图1 光率体与光轴(nx<ny<nz)图2 正的单轴光率体及光的振动方向双折射体的光学效应线性偏振光对双折射的透射入射线性偏振光PA与光轴成一定角度,于是入射光波分解为平行于光轴振动的异常波和与之垂直的正常波两个偏振光,分别以折射率ne,no传播。

设平板的厚度为d,则正常波与异常波在板中的光程分别为nod和ned,光线穿过平板时两波的光程差为Δ=(ne- no) d,变换成相位差为(1)两个偏振光合成为具有δ相位差,振动方向互相垂直的光线。

平行光束的偏光干涉在光路中放置两个互相垂直的偏振片P(起偏镜)和A(检偏镜),在两者之间放置一片双折射平板M,其光轴和偏振光片的偏振方向成45°,则由于偏光干涉作用,有光线通过检偏镜A,透射光强为(2)其中I0为起始透过光强。

偏光观察的意义:求得光程差Δ,然后——①由Δ和M的厚度即可以求得双折射率;②已知双折射率而求得平板的厚度。

光程差的测量:直接法——在白色照明光下进行偏光干涉,由式(2)可知,对于给定的Δ,不同波长的光有不同的透过强度。

例如当Δ=540nm时,根据上式此时波长为540nm黄绿色的光都过为零,视野呈紫红色;相反可以通过透过光的颜色确定光程差,光程差在500~600nm附近变化时颜色变化最为显著,540nm 最为敏感,称为敏锐色,可以认为是显微观察中的标准波长。

球晶的光学效应黑十字消光球晶在偏光显微镜下可以看到黑十字消光图案。

球晶是由放射形的微纤束组成,这些微纤束为片晶,具有折叠链结构,其晶轴成螺旋取向。

高聚物球晶在偏光显微镜下可以看到黑十字消光图案(Maltese Cross)。

在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。

球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。

而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。

黑十字消光图象是高聚物球晶的双折射性质和对称性的反映。

一束自然光通过起偏器后,变成平面偏振光,其振动方向都在单一方向上。

一束偏振光通过高分子球晶时,发生双折射,分成两束电矢量相互垂直的偏振光,它们的电矢量分别平行和垂直于球晶的半径方向,由于这两个方向上折射率不同,这两束光通过样品的速度是不等的,必然要产生一定的相位差而发生干涉现象,结果使通过球晶的一部分区域的光可以通过与起偏器处在正交位置的检偏器。

而另一部分区域不能,最后分别形成球晶照片上的亮暗区域。

黑十字消光原理:如图3所示,pp为通过其偏镜后的光线的偏振方向,aa为检偏镜的偏振方向。

在球晶中,b轴为半径方向,c轴为光轴,当c轴与光波方向传播方向一致时,光率体切面为一个圆,当c轴与光率体切面相交时为一椭圆。

在正交偏光片之间,光线通过检偏镜后只存在pp方向上的偏振光,当这一偏振光进入球晶后,由于在pp和aa方向上的晶体光率体切面的两个轴分别平行于pp和aa方向,光线通过球晶后不改变振动方向,因此通过球晶后不改变振动方向,因此不能通过检偏镜,呈黑暗。

而介于pp和aa之间的区域由于光率体切面的两个轴与pp和aa方向斜交,pp振动方向的光进入球晶后由于光振动在aa方向上的分量,因此这四个区域变得明亮,聚乙烯球晶在偏光显微镜下还呈现一系列的同心消光圆环,这是由于在聚乙烯球晶中晶片是螺旋形的.即a轴与c轴在与b轴垂直的方向上转动,而c轴又是光轴,即使在四个明亮区域中的光率体切面也周期性地呈现圆形而造成消光。

图3 正交偏光场中球晶的偏光干涉球晶的正负我们用半径方向上的折光指数nr和垂直于半径方向(切线方向)的折光指数ni来描述球晶的正负性,如果nr>ni,则此球晶为正球晶,反之则称为负球晶。

nr和ni是由微晶的三个方向(a,b,c)上的折光指数na,nb,n c决定的。

正负球晶的判断:在正交偏振镜间插入一块补色器就可以从图像中观察到的干涉色来判断球晶的正负性。

补色器是具有固定光程差的双折射平板。

补色器是与正交偏振镜的偏振方向成45°插入的,当球晶为正时,Ⅰ,Ⅲ象限中光率体切面的长轴与补色器中的光率体椭圆切面的长轴一致,光程差增加,干涉色为蓝色;而Ⅱ,Ⅳ象限中的球晶光率体椭圆切面的长轴与补色器中的长轴不一致是,光程差减小,干涉色为黄色。

如为负球晶则正好相反。

三、主要仪器设备仪器偏光显微镜(配有显微摄影仪,并与计算机相联接),如图4所示。

图4实验用偏光显微镜实物图试样①全同聚丙烯熔体结晶试样(慢冷);②全同聚丙烯浓溶液结晶得到的球晶悬浮液(慢冷,溶剂为十氢萘);③全同聚丙烯浓溶液结晶得到的球晶悬浮液(自然冷,溶剂为十氢萘)。

四、操作方法和实验步骤球晶的制备1) 熔体结晶将加热台的温度调整到230℃左右,在加热台上放上载玻片,并将一小颗聚丙烯试样放在载玻片上,盖上盖玻片,熔融后用镊子小心地压成薄膜状。

做两块同样的试样,做好后保温片刻,将其中的一片取出放在石棉板上以较快的速度冷却,另一片放在已升温至230℃左右的烘箱内并关掉加热电源,以较慢的速度冷却待用。

2) 浓溶液结晶取聚丙烯数颗置于标记好的三只25ml磨口三角烧瓶中,加入适量的十氢萘并加热溶解,然后分别置于冷水中、空气中及已加热到150℃的烘箱中(放入后关掉电源自然冷却)以显著不同的冷却速率合三只样品分别冷却结晶,后者由于冷却速度很慢,可预先制样。

根据实验时间的安排,样品制备可由老师预先完成。

偏光显微观察在显微镜上装上物镜和目镜,打开照明电源,推入检偏镜,调整起偏镜角度至正交位置。

在试板孔插入1λ石膏试板,观察干涉色。

取少量溶液结晶生成的球晶悬浮液(慢冷)滴于载玻片上,并盖上盖玻片。

将试样置于载物台中心,调焦至图像清晰。

取少量溶液结晶生成的悬浮液(自然冷)制样观察。

熔体结晶的样品进行同样观察。

球晶直径的测量用物镜测微尺对目镜测微尺进行校正。

将物镜测微尺放在载物台上,采用与观察试样时相同的物镜与目镜进行调焦观察,并将物镜测微尺与目镜测微尺在视野中调至平行或重叠,如测得目镜测微尺的N格与物镜测微尺的X格重合,则目镜测微尺上每格代表的真正长度D为:D =0.01X / N (mm) (3)移动视野,选择球晶形状较规则,数量较多的区域进行测量,然后寻找另一个视野,重复测量。

相关文档
最新文档