北师大版九年级数学下册弧长及扇形的面积同步练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C O
A '
B '
C '
3.9 弧长及扇形的面积
1.在半径为4
π
的圆中,45°的圆心角所对的弧长等于 .
2. 已知扇形的弧长为6πcm ,圆心角为60°,则扇形的面积为_________. 3.母线长为2,底面圆的半径为1的圆锥的侧面积为__________.
4.一个圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则此圆锥的底面半径为 . 5.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( )
A..5π B .4π C .3π D .2π
6、如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.那么剪
下的扇形ABC (阴影部分)的面积为 ; 用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .
7.如图(2),将ABC △绕点B 逆时针旋转到A BC ''△使A 、B 、C’在同一直线上,若
90BCA ∠=°,304cm BAC AB ∠==°,,则图中阴影部分面积为 cm 2.
8、如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转
90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是 .
9、如图,将半径为1、圆心角为︒60的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至
′
扇形B O A '''处,则顶点O 经过的路线总长为
10、如图,半圆的直径AB=10,P 为AB 上一点,点C\D 为半圆的三等分点,求得阴影部分的面积为
11、如图,AC 是汽车挡风玻璃前的刮雨刷.如果AO=65,CO=15,当AC 绕点O 旋转90°
时,则刮雨刷AC 扫过的面积为 cm 2.
12、如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为12A A A →→,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为_________cm.
13.图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一 部分,其展开图是矩形.图2是车棚顶部截面的示意图,AB 所在圆的圆心为O .车棚顶部是
A O
′
C A ′
A
B
E B
D
C
A O
用一种帆布覆盖的,求覆盖棚顶的帆布的面积
14、一位小朋友在粗糙不打滑的“Z ”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与C D 是水平的,BC 与水平面的夹角为600,其中AB=60cm ,CD=40cm ,BC=40cm ,请你作出该小朋友将园盘从A 点滚动到D 点其圆心所经过的路线的示意图,并求出此路线的长度。
15. 如图,在⊙O 中,弦BC 垂直于半径OA ,垂足为E ,D 是优弧 ⌒BC 上一点,连接BD ,AD ,OC ,∠ ADB =30°.
(1)求∠AOC 的度数;
(2)若弦BC =6cm ,求图中阴影部分的面积.
16. 如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD=120,四边形ABCD 的周长为15.(1)求此圆的半径;(2)求图中阴影部分的面积。
17.如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°.
(1)求证:CD 是O ⊙的切线;
(2)若O ⊙的半径为2,求图中阴影部分的面积.
北师大版九年级数学上册期中测试题
一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12
C.13
D.14
2. 关于方程x 2-2=0的理解错误的是
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
A.这个方程是一元二次方程
B.方
C.这个方程可以化成一元二次方程的一般形式
D.这个方程可以用公式法求解 3.下列说法正确的个数是
①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;
③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形
⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.不能确定
5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________
………………………密………………………………….封……………………….线…………………………………………………………………………..
0.620.其中合理的是
A.①②
B.②③
C.①③
D.①②③
6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是
7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是
A.2
3 B.1
2
C.1
3
D.4
9
8.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE ⊥BC垂足为E,则AE的长为
A.8
B.60
13 C.120
13
D.240
13
9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.
34
2
D.34
10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =
72
5
,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个
二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
________.
12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.
13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________.
14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1)
15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的2
7
,若设个位数字为x ,则列出的方程为________.
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.
三、解答题(本题共7小题,共66分) 17.(8分)解方程:
(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12
18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转
(1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜
若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________
………………………密………………………………….封……………………….线…………………………………………………………………………..
胜.问他们两人谁获胜的概率大?请分析说明
19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?
(2)商场平均每天可能盈利1700元吗?请说明理由.
20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形;
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..
(2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,
乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..
试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。