GFP融合蛋白进行蛋白质的亚细胞定位解析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GFP的改进
除去GFP基因中隐蔽型内含子 消除编码蛋白的积累 将GFP定位到特定细胞器中 改变碱基组分 更换GFP生色团氨基酸 插入植物内含子 增加增强子和更换强启动子
GFP的应用
蛋白质定位 作为报告基因 药物筛选 融合抗体 生物传感器 其他方面
GFP融合蛋白的构建
应用亚克隆技术,将目的基因与GFP基因构成 融合基因,通过愈伤组织转化法、基因枪、显 微注射、电激转化等方法转化到合适的细胞, 利用目的基因的基因表达调控机制,如启动子 和信号序列来控制融合基因的表达,最终得到 融合蛋白,可以研究目的蛋白的定位。
注意事项:
两个基因之间用Linker连接。 在两个基因交接处可以增加一段核苷酸(3的倍数) ,
如增加几个为甘氨酸或赖氨酸等编码的三核苷酸。目 的是使得两个基因的蛋白产物的空间结构相互影响较 小,有利于GFP发光。 前一基因必须要有起始密码,而不能带有终止密码; 后一基因要保证有终止密码。
蛋白质定位
蛋白质的亚细胞定位常用方法:
蔗糖密度梯度离心;免疫胶体金标记;免疫荧 光;与GFP构建融合基因表达融合蛋白;多糖 序列分析等。
绿色荧光蛋白 (green fluorescent protein,GFP)
2008年诺贝尔化学奖 GFP的结构特点 GFP的发光机理 GFP的荧光特性 GFP的优点 GFP的改进 GFP的应用
GFP的发光机理
GFP的生色团是GFP发出荧光的物质基础。
实质:由第65、66、67位的丝氨酸—脱水酪氨酸—甘氨酸
形成对羟苯甲基咪唑环酮
GFP的荧光特性
Biblioteka Baidu
GFP的最大吸收峰为 395nm(紫外),并有一个 479nm的副峰(蓝光);发 射光谱最大峰值为 509nm(绿光)
尽管450~490nm(蓝光) 是GFP的副吸收峰,但 由于长波能量低,细胞 忍受能力强,因此更适 合于活体检测。
脱氢酪氨酸、甘氨酸,为构成GFP生色团的核 心
GFP的结构特点
晶体结构
空间结构特点:
由 11 条β桶状结构(β- barrel) 绕成的一个圆柱体,直径约 3nm,长约4nm。
一条α螺旋缠绕在圆柱体的 轴位置
生色团附着在α螺旋上,几 乎完美地包埋于圆柱体中心
这种方式被称为β罐 (β-can)
马丁·查尔菲 :证明了GFP作为多种生物学现 象的发光遗传标记的价值,这一技术被广泛运 用于生理学和医学等领域。
钱永健:让人们理解了GFP发出荧光的机制。 同时拓展出绿色之外的可用于标记的其他颜色, 使得同一时刻跟踪多个不同的生物学过程成为 现实。
GFP的结构特点
一级结构
GFP由238个氨基酸残基组成 ,分子量为26.9kD GFP的生色团位于氨基酸序列64~69位 GFP的第65、66、67位氨基酸分别是丝氨酸、
395 471-490
513 385 385 488
发射峰
509 502-511
527 445 510 507
GFP的优点
易于检测 荧光稳定 无毒害 通用性 易于构建载体 可进行活细胞定时定位观察 易于得到突变体
GFP的改进
尽管GFP作为报告基因或分子探针有许多无可 比拟的优点,但是野生型GFP(wt GFP)具有 一定的缺点: GFP有两个激发峰影响了其特异性,并且长波 激发峰强度较小,不易观察 GFP合成及折叠产生荧光的过程慢,蛋白质折 叠受温度影响大,表达量较低 GFP在某些植物细胞中并不表达
GFP的荧光特性
GFP的光谱特性与荧光素异硫氰酸盐(FITC)很相似, 因此为荧光素FITC设计的荧光显微镜滤光片组合同样 适用于GFP观察。
GFP荧光极其稳定,在激发光照射下的抗光漂白能力 比荧光素强,特别在450~490nm蓝光波长下更稳定。
GFP需要在氧化状态下产生荧光,强还原剂能使GFP 转变为非荧光形式,但一旦重新暴露在空气或氧气中, GFP荧光便立即得到恢复。而一些弱还原剂并不影响 GFP荧光。中度氧化剂对GFP荧光影响也不大,如生 物材料的固定、脱水剂戊二酸或甲醛等。
真核细胞除叶绿体,线粒体能少量合成蛋白外,绝大 部分蛋白是在胞浆或糙面内质网合成,最终运至不同 地点,形成成熟的蛋白质并行使功能。
译产物中很大一部分是以前体蛋白形式存在,往往有 蛋白分子定位信号,可引导蛋白质在胞内定位。
蛋白质在细胞内的定位问题,是细胞生物学研究的中 心问题,也是分子生物学研究的热门话题。理解某些 蛋白质的定位从而分析探索其生物学功能,意义重大。
目的基因 gfp 基因
融合基因
转化
表达
检测
GFP融合蛋白的构建
最关键的就是:要尽可能的不影响目的蛋白的定 位和功能。具体蛋白要具体分析。
将目的基因与gfp基因融合有以下几种方式: 将gfp置于目的基因后面,即目的基因-gfp 将gfp置于目的基因前面,即gfp-目的基因。
GFP融合蛋白的构建
第三章 蛋白质定位的 方法
第二节 利用绿色荧光蛋白融合蛋 白法定位蛋白质的方法
学生姓名:刘栋 导师:陈育新
本节课的主要内容
蛋白质定位 绿色荧光蛋白 绿色荧光蛋白融合蛋白的构建 绿色荧光蛋白融合蛋白的检测 其它荧光蛋白简介
蛋白质定位
真核细胞具有复杂的亚细胞结构。每种细胞器都有一 组特定的蛋白。
2008年诺贝尔化学奖
日裔美国科学家 下村修 美国科学家 马丁·查尔非 美国华裔科学家 钱永健
诺贝尔奖委员会将化学奖授予美籍日裔科学家下村修、美国科学家马丁·沙 尔菲和美籍华裔科学家钱永健三人,以表彰他们发现和发展了绿色荧光蛋 白质技术。
2008年诺贝尔化学奖
下村修:于1962年在水母Aequorea victoria发现 并分离得到GFP,并发现该蛋白在紫外线下会 发出明亮的绿色。
GFP的荧光特性
通过对GFP的结构和生化特性进行改造,已获得许多 具有不同发射峰和激发峰的突变体,使GFP的荧光强 度和作为报告基因的检测灵敏度大大提高。
GFP及其主要突变体的荧光特征 nm
项目
激发峰
野生型(wt-GFP) 红移突变体RSGFP 黄绿突变体YGFP
蓝色突变体BFP 增强型突变体OGFP 半衰期短的突变体