(完整word版)No.31全国高中数学联合竞赛模拟试题.doc
高中数学竞赛模拟题(十六套)
模拟试题一 2010年全国高中数学联赛模拟试题一 试一、填空题(每小题8分,共64分)1.方程错误!未找到引用源。
2.如图,在错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
,则m+2n 的值为错误!未找到引用源。
3.错误!未找到引用源。
4.单位正方体错误!未找到引用源。
错误!未找到引用源。
这八个面截这个单位正方体,则含正方体中心的那一部分的体积为 .5.设数列错误!未找到引用源。
6.已知实数x ,y ,z 满足xyz=32,x+y+z=4,则|x|+|y|+|z|的最小值为错误!未找到引用源。
7.若错误!未找到引用源。
8.空间有100个点,任4点不共面,用若干条线段连结这些点,如果不存在三角形,最多可连错误!未找到引用源。
条线段. 二、解答题(共56分) 9.(16分)设错误!未找到引用源。
错误!未找到引用源。
之和为21,第2项、第3项、第4项之和为33.(1)求数列错误!未找到引用源。
的通项公式; (2)设集合错误!未找到引用源。
错误!未找到引用源。
, 求证:错误!未找到引用源。
. 10.(20分)过抛物线错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
的距离均不为整数.11.(20分)已知二次函数错误!未找到引用源。
有两个非整数实根,且两根不在相邻两整数之间.试求a , b 满足的条件,使得一定存在整数k ,有错误!未找到引用源。
成立.二 试一.(40分)如图,已知错误!未找到引用源。
错误!未找到引用源。
求证:错误!未找到引用源。
N DCAMBPEFA二.(40分)设错误!未找到引用源。
.三. (50分)已知n 个四元集合错误!未找到引用源。
错误!未找到引用源。
,试求n 的最大值.这里错误!未找到引用源。
四.(50分)设错误!未找到引用源。
为正整数错误!未找到引用源。
的二进制表示数的各位数字之和,错误!未找到引用源。
为数列错误!未找到引用源。
的前n 项和. 若存在无穷多个正整数n ,满足错误!未找到引用源。
全国高中数学联赛模拟试题及参考答案
全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
高中理科数学复习试题选编31:双曲线(教师版)
理科数学复习试题选编31:双曲线一、选择题1 .(六校联盟高三回头联考理科数学试题)已知F 1和F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 是双曲线左支的一点,1PF ⊥2PF ,1PF =C ,则该双曲线的离心率为( )A 1B .12C 1D .12【答案】C2 .(绍兴市高三教学质量调测数学(理)试题(word 版) )已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,O 为坐标原点,以OF为直径的圆与双曲线的一条渐近线相交于O ,A 两点.若△AOF 的面积为b ,则双曲线的离心率等于 ( )A .3B .5C .D .【答案】D3 .(高考模拟冲刺(提优)测试二数学(理)试题)直线过点(2,1)P 与曲线1422=-y x 恰有一个公共点,则满足条件的直线的条数为 ( )A .1B .2C .3D .4【答案】B 解:因为点(2,1)P 在渐近线上,故旋转直线一周只有2条符合条件.4 .(杭州高中高三第六次月考数学(理)试题)设双曲线C :22221x y a b -=(a >0,b >0)的右焦点为F ,左,右顶点分别为A 1,A 2.过F 且与双曲线C 的一条渐近线平行的直线l 与另一条渐近线相交于P ,若P 恰好在以A 1A 2为直径的圆上,则双曲线C 的离心率为 ( )AB .2C D .3【答案】A5 .(高考模拟冲刺(提优)测试一数学(理)试题)已知1F ,2F 分别是双曲线)0,0(12222>>=-b a by ax 的左、右焦点,过点2F 与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段21F F 为直径的圆外,则双曲线离心率的取值范围是 ( )A .)2,1(B .)3,2(C .)2,3(D .),2(∞+【答案】D6 .(嘉兴市高三上学期基础测试数学(理)试题)已知焦点在y 轴上的双曲线的渐近线过椭圆221416x x +=和椭圆2231164x y +=的交点,则双曲线的离心率是( )A .233B .2C .5D .52【答案】B7 .(杭州市第一次高考科目教学质量检测理科数学试题)设双曲线22143x y -=的左,右焦点分别为12,F F ,过1F 的直线交双曲线左支于,A B 两点,则22BF AF +的最小值为 ( )A .192B .11C .12D .16【答案】B 解:由题意,得:21221121248824AF AF a BF AF AF BF AB BF BF a ⎧-==⎪⇒+=++=+⎨-==⎪⎩ 显然,AB 最短即通径,2min23b AB a=⋅=,故()22min11BF AF +=8 .(温岭中学高三高考提优冲刺考试(三)数学(理)试题 )已知21F F 、分别是双曲线:C 12222=-by a x 的左、右焦点,若2F 关于渐近线的对称点恰落在以1F 为圆心,||1OF 为半径的圆上,则C 的离心率为: ( )A .3B .3C .2D .2【答案】D解析:方法一:设),(y x P 为2F 关于渐近线x aby l =:的对称点,则有: ⎪⎩⎪⎨⎧+⋅=-=-2)2c x a b y b a c x y (,解得:⎪⎪⎩⎪⎪⎨⎧+=+-=2222222)(b a abc y b a b a c x , 由⋅1=0可得:0222=++y cx x ,将上式代入化简可得:0))((2)(2222222=+-++b a b a b a ,即223a b =,即224a c =,即2==ace ,故选 D .方法二:如图:设2F 关于其渐近线的对称点为P ,连接PO ﹑1PF ,由于点P 恰落在以1F 为圆心,||1OF 为半径的圆上,故有11PF PO OF c ===,易得02160PF =∠F ,01230PF =∠F 故12PF PF ⊥,又2OH PF ⊥,故0260OHF ∠=,即3600==tan a b ,即2==ace .故选 D .9 .(嘉兴市高三第二次模拟考试理科数学试卷)设m 是平面α内的一条定直线,P 是平面α外的一个定点,动直线n 经过点P 且与m 成︒30角,则直线n 与平面α的交点Q 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线【答案】C :动直线n 的轨迹是以点P 为顶点、以平行于m 的直线为轴的两个圆锥面,而点Q 的轨迹就是这两个圆锥面与平面α的交线.10.(【解析】镇海中学高三5月模拟数学(理)试题)已知双曲线方程为22221(0,0)x y a b a b-=>>,离心率为2,12,F F 分别是它的左、右焦点,A 是它的右顶点,过1F 作一条斜率为(0)k k ≠的直线与双曲线交于两个点,M N ,则MAN ∠为 ( )A .锐角B .直角C .钝角D .锐角、直角、钝角都有可能【答案】答案:B 解析:由离心率为2,可得2c a =,223b a =,则双曲线方程为22233xy a -=.设1122(,),(,)M x y N x y ,因直线MN 的斜率不为零,则可设其方程为2x my a =-,与双曲线方程联立得222(31)1290m y amy a --+=,从而有2310m -≠,1221231amy y m +=-,且11.(温岭中学高三高考提优冲刺考试(五)数学(理)试题)已知F 1、F 2是双曲线C :)0(12222>>=-b a by a x的两个焦点,过曲线C 的左焦点F 1(-c ,0)和虚轴端点B(0,b )作直线l 交曲线C 左支于A 点,右支与D 点,连接AO 、DF 2,AO∥DF 2 ,则双曲线的离心率为 ( ) A .3B .6C .36+D .25+【答案】C 提示 联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=1)(2222b y ax c x c b y 削去x 得02322=+-b y c by 221221,2b y y b c y y =⋅=+(*),由题意的2212y y =代入(*)中,得到⎪⎩⎪⎨⎧==2222223by b c y ,削去y 得4489c b =,可以解得2692+=e .12.(考试院高三上学期测试数学(理)试题)如图,F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的左、右焦A ,B 两点.若 | AB | : | BF 2 | : | AF 2 |=3:4 : 5,( ).13.15 C .2D .3【答案】A13.(“六市六校”联盟高三下学期第一次联考数学(理)试题)设F 1,F 2 是双曲线)0,(1x 2222>=-b a by a 的左、右焦点,若双曲线右支上存在一点P 满足212F F PF =,且54cos 21=∠F PF ,则双曲线的渐近线方程为( )A .043=±y xB .053=±y xC .034=±y xD .045=±y x 【答案】C14.(海宁市高三2月期初测试数学(理)试题)已知点P 是双曲线C :)0,0(12222>>=-b a b y a x 左支上一点,F 1,F 2是双曲线的左、右两个焦点,且PF 1⊥PF 2,PF 2与两条渐近线相交于M ,N 两点(如图),点N 恰好xy OA B F 1F 2平分线段PF 2,则双曲线的离心率是( )5B .2C .3D .215.(普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23D .26 【答案】D16.(宁波市高三第一学期期末考试理科数学试卷)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=4:3:2, 则曲线C 的离心率等于 ( )A .2332或B .23或2 C .12或2 D .1322或【答案】D17.(嘉兴市第一中学高三一模数学(理)试题)已知双曲线c : )0(12222>>=-b a b y a x ,以右焦点F为圆心,|OF |为半径的圆交双曲线两渐近线于点M 、N (异于原点O),若|MN|=a 32,则双曲线C的离心率 是( )A 2B .3C .2D .13+【答案】COxyA BF 1F 2xyOM NP 1F 2F18.(黄岩中学高三5月适应性考试数学(理)试卷 )已知A ,B ,P 是双曲线12222=-by a x (0>a ,0>b )上不同的三点,且A ,B 连线经过坐标原点O ,若直线PA ,PB 的斜率乘积3=⋅PB PA k k ,则双曲线的离心率为 ( )A .2B .3C .2D .5【答案】C19.(温州中学高三第三次模拟考试数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>,12A A 、是实轴顶点,F 是右焦点,()0,B b 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点(1,2)i p i =,使得12(1,2)i P A A i ∆=构成以12A A 为斜边的直角三角形,则双曲线离心率e 的取值范围是 ( )A .)+∞B .1,)2+∞C .1(1,)2D .1)2【答案】D .20.(湖州市高三第二次教学质量检测数学(理)试题(word 版) )已知A B P ,,是双曲线()2222100y x a b a b -=>>,上不同的三点,且A B ,连线经过坐标原点O ,若直线PA PB ,的斜率乘积3PA PB k k ⋅=,则双曲线的离心率为 ( )AB C .2D【答案】C21.(温州市高三第三次适应性测试数学(理)试题(word 版) )已知是双曲线14222=-y ax 的左焦点,双曲线右支上一动点P ,且x PD ⊥轴,D 为垂足,若线段PD FP -的最小值为52,则双曲线的离心率为 ( )A .53B .52C .25D .5【答案】A22.(杭州市高三第二次教学质检检测数学(理)试题)已知双曲线2222:1(0,0)y x C a b a b ,A ,B 是双曲线的两个顶点.P 是双曲线上的一点,且与点B 在双曲线的同一支上.P 关于y 轴的对称点是Q 若直线AP ,BQ 的斜率分别是k 1,k 2,且k 1·k 2=45,则双曲线的离心率是 ( )A .355 B .94C .32D .95【答案】C23.(温州市十校联合体高三上学期期末联考理科数学试卷)已知抛物线()022>=p px y 与双曲线()0,012222>>=-b a by a x 有相同的焦点F ,点A 是两曲线的交点,且x AF ⊥轴,则双曲线的离心率为 ( )A .12+B .13+C .215+ D .2122+【答案】A24.(名校新高考研究联盟高三第一次联考数学(理)试题)已知P 为双曲线C :221916x y -=上的点,点M满足1OM =,且0OM PM ⋅=,则当PM 取得最小值时的点P 到双曲线C 的渐近线的距离为 ( )A .95B .125C .4D .5【答案】B 二、填空题25.(永康市高考适应性考试数学理试题 )已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于A ,B 两点,且与其中一条渐近线垂直,若FB AF 4=,则该双曲线的离心率为____;【答案】210526.(乐清市普通高中高三上学期期末教学质量检测数学(理)试题)设O 为坐标原点,B A ,是双曲线1322=-y x 的渐近线上异于O 的两点,且2||||==OB OA ,则→→⋅OB OA =_______.【答案】2±,-4 27.(金丽衢十二校高三第二次联合考试理科数学试卷)我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“黄金搭档”.已知1F 、2F 是一对“黄金搭档”的焦点,P 是它们在第一象限的交点,当6021=∠PF F 时,这一对“黄金搭档”中双曲线的离心率是_______【答案】328.(温州市高三第二次模拟考试数学(理)试题)己知F 1,F 2分别是双曲线1222=-b y x 的左、右焦点,A 是双曲线上在第一象限内的点,若 |AF 2|=2且∠F 1AF 2=450.廷长AF 2交双曲线右支于点B ,则ΔF 1AB 及的面积等于___【答案】429.(建人高复高三第五次月考数学(理)试题)已知A 、B 分别是双曲线22:4C x y -=的左、右顶点,则P 是双曲线上在第一象限内的任一点,则PBA PAB ∠-∠=__________.【答案】略30.(五校联盟高三下学期第一次联考数学(理)试题)设双曲线2222:1(0)x y C a b a b-=>>的右焦点为F ,左右顶点分别为12,A A ,过F 且与双曲线C 的一条渐近线平行的直线l 与另一条渐近线相交于P ,若P 恰好在以12A A 为直径的圆上,则双曲线的离心率为______________.【答案】231.(宁波市高三第一学期期末考试理科数学试卷)如果双曲我的两个焦点分别为12(0,3)(0,3)F F 和,其中一条渐近线的方程是22y x =,则双曲线的实轴长为______. 【答案】2332.(诸暨中学高三上学期期中考试数学(理)试题)设双曲线22221(0,0)x y a b a b-=>>的右顶点A ,x 轴上有一点(2,0)Q a ,若双曲线上存在点P ,使AP PQ ⊥,则双曲线的离心率的取值范围是____________【答案】33.(温州市高三第一次适应性测试理科数学试题)已知双曲线22221x ya b-=的一条渐近线方程为2y x=,则其离心率为____【答案】34.(五校联盟高三下学期第二次联考数学(理)试题)已知双曲线22221(0,0)x ya ba b-=>>的渐近线与圆22420x y x+-+=有交点,则该双曲线的离心率的取值范围是___________.【答案】。
高中数学竞赛模拟试题二
高中数学竞赛模拟试题二一、选择题:1.设a 、b 、c 为实数,0,024<++>+-c b a c b a ,则下列四个结论中正确的是 ( D ) (A )ac b ≤2(B )ac b >2(C )ac b >2且0>a (D )ac b >2且0<a提示:若0=a ,则0≠b ,则02=>ac b .若0≠a ,则对于二次函数c bx ax x f +-=2)(,由0)1(,0)2(<->f f 可得结论.2.在△ABC 中,若a BC AB A ===∠,2,450,则2=a 是△ABC 只有一解的 ( A )(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分又不必要条件3.已知向量)1,sin 42cos 3(),1sin 22cos ,(-+-=-+=x x x x m ,定义函数x f ⋅=)(.若对任意的]2,0[π∈x ,不等式0)(>x f 恒成立,则m 的取值范围是 ( A ) (A )),81(+∞(B ))81,0[(C ))2,81((D )),2(+∞4.设E 、F 、G 分别是正四面体ABCD 的棱AB 、BC 、CD 的中点,则二面角C —FG —E 的大小是 ( D ) (A )36arcsin (B )33arccos 2+π(C )2arctan 2-π(D )22cot arc -π5.把数列}12{+n 依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为 ( A ) (A )1992 (B )1990 (C )1873 (D )18916.设n i n x i ,,2,1},,,2,1{ =∈,满足2)1(1+=∑=n n x ni i ,!21n x x x n =⋅⋅⋅ ,使1x ,2x ,…,n x 一定是n ,,2,1 的一个排列的最大数n 是 ( C )(A )4 (B )6 (C )8 (D )9二、填空题:7. 若实数x 、y 满足条件122=-y x ,则x yx 212+的取值范围是___________________. 【答案】)2,2(-.提示:令ααtan ,sec ==y x .8. 对于给定的正整数4≥n ,等式423n m C C =成立,则所有的m 一定形如_____________.(用n 的组合数表示)【答案】21-=n C m (4≥n ).提示:由423n m C C =得222)13()12(+-=-n n m ,从而21-=n C m (4≥n ).9. 一个盒中有9个正品和3个废品,每次取一个产品,取出后不在放回,在取得正品前已取出的废品数ξ的数学期望ξE =_________________.【答案】3.0 提示: ξ取值为0,1,2,3,且有43)0(11219===C C P ξ,4492)1(2121913===C C C P ξ,22092)2(3121923===C C C P ξ,22012)3(4121933===C C C P ξ. 3.022013220924491430=⨯+⨯+⨯+⨯=∴ξE . 10. 设点F 1、F 2分别为椭圆E 的左、右焦点,抛物线C 以F 1为顶点、以F 2为焦点。
全国高中数学联赛模拟试卷试题.doc
全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。
2023全国高中数学竞赛试题
2023全国高中数学竞赛试题全文共四篇示例,供读者参考第一篇示例:2023全国高中数学竞赛试题2023年全国高中数学竞赛将于下个月举行,为了更好地帮助同学们备战竞赛,我们特为大家准备了一份模拟试题。
以下是一部分试题,希望大家认真思考,尽力做出最好的成绩。
题一:已知a、b、c、d为正整数且a+b+c+d=20,求a、b、c、d的可能取值组合数。
题二:已知正整数m,n,且m/n为一个最简分式,满足m+n=2023,求m和n的取值。
题三:已知函数f(x)=x^3+ax^2+bx+c,且f(1)=9,f(2)=21,求a、b、c的值。
题四:在平面直角坐标系内,已知直线l1与直线l2分别过点A(2,4)、B(3,5),且l1:l2=1:2,求l1、l2的方程。
题五:已知数列{an}满足an=3n^2+5n+7,求数列{an}的前10项和。
题七:已知圆心为O的圆C1方程为x^2+y^2=25,点A(3,4)在圆C1上,求点A与圆心O之间的距离。
题九:已知集合A={x|0<x<2π},集合B={y|y=2sinx+cosx},求B的最大值和最小值。
题十:已知三角形ABC中,角A=60°,角B=45°,AB=3,BC=4,求AC的长度。
以上是部分模拟试题,希望同学们认真对待每一道题目,并在竞赛中取得优异的成绩。
祝愿大家取得理想的成绩,加油!第二篇示例:2023全国高中数学竞赛试题第一部分:选择题1. 若直线5x+12y=23 在x 轴上的截距为a,在y 轴上的截距为b,则a+b=A. 23/5B. 23/12C. 5/23D. 12/232. 若集合A=\{x | -3<x<5\}, 集合B=\{y | 2\leq y\leq7\},则A \cap B =A. \{2,3,4\}B. \{2,3,4,5\}C. \{3,4\}D. \{4\}3. 若函数f(x)=x^3-3x^2+2x-5 上任意两点x_1,x_2 处的切线斜率之差为9,则f(x) 在x=1 处的导数为A. -3B. -5C. 1D. 34. 若\triangle ABC 中,\angle A=60^{\circ},\angleB=45^{\circ},AB=2,则\sin C =A. 1/\sqrt{2}B. \sqrt{3}/2C. 1/2D. 2/\sqrt{3}5. 若函数f(x)=ax^2+bx+c,且f(0)=5,f(1)=1,f(2)=7,则a+b+c=A. 3B. -3C. 4D. -46. 若a,b,c 是等比数列,且a=2,c=32,则b=\underline{\hskip 2cm}.7. 设A,B 为两线性无关的2\times2 矩阵,则cA + dB = I的条件是c= \underline{\hskip 2cm},d= \underline{\hskip 2cm}.9. 已知函数f(x)=x^3+2x^2-3x+1,求f(x) 的增减性和极值点.10. 设P 是椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 上一点,F_1(-c,0),F_2(c,0) 是椭圆的两个焦点,PF_1+PF_2 的最小值为多少?第三篇示例:2023全国高中数学竞赛试题在数学领域,竞赛是提高学生数学能力的一种重要方式。
高中数学竞赛试题汇总
高中数学竞赛模拟试题一一 试(考试时间:80分钟 满分100分)一、填空题(共8小题,5678=⨯分)1、已知,点(,)x y 在直线23x y += 上移动,当24x y +取最小值时,点(,)x y 与原点的距离是。
2、设()f n 为正整数n (十进制)的各数位上的数字的平方之和,比如()22212312314f =++=。
记1()()f n f n =,1()(())k k f n f f n +=,1,2,3...k =,则=)2010(2010f。
3、如图,正方体1111D C B A ABCD -中,二面角11A BD A --的度数是 。
4、在2010,,2,1 中随机选取三个数,能构成递增等差数列的概率是 。
5、若正数cb a ,,满足ba cc a b c b a +-+=+,则ca b +的最大值是 。
6、在平面直角坐标系xoy 中,给定两点(1,2)M -和(1,4)N ,点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标是 。
7、已知数列...,,...,,,210n a a a a 满足关系式18)6)(3(1=+-+n n a a 且30=a ,则∑=ni ia 01的值是 。
8、函数sin cos tan cot sin cos tan cot ()sin tan cos tan cos cot sin cot x x x x x x x x f x x xx xx xx x++++=+++++++在(,)2x o π∈时的最小值为 。
二、解答题(共3题,分44151514=++)9、设数列}{n a 满足条件:2,121==a a ,且 ,3,2,1(12=+=++n a a a n n n )求证:对于任何正整数n ,都有:n nn n a a 111+≥+10、已知曲线m y x M =-22:,0>x ,m 为正常数.直线l 与曲线M 的实轴不垂直,且依次交直线x y =、曲线M 、直线x y -=于A 、B 、C 、D 4个点,O 为坐标原点。
高中数学竞赛模拟试题
阀 一 j — l
从而k k 寺, 合 . ‘ = 不 题意
( )当 直 线 MN 的 斜 率 存 在 时 , lN Y= 2 设 M:
+b M( Y ) N( 2Y ) 联 立方 程 , x , , x ,2 ,
整得m + 考 √ “+. 理 > 2x 孝 √ + 一Y x Y
设 t +上 则 t 2 要使 m > = 1 > .
,
1 _ 等 1 ,
得 ( +3 +6 b 1 k) kx+3 一3= 6 0,
一
对
所有 t ≥2恒 成 立 , m >—== — 则 因为
2 < m <2 +
令、
= ( > ) 即 3 t+ , £t 0 , k = 8 可得
加
综 上所 述 , 存在 正 数 m ∈( , ) 得 2一 2+ 使 对 于任 意 正数 , Y可使 口 b c为 三角 形 的 3条 边. ,,
试
一
、
设 A , , E为直线 z , c D, 上顺次排列 的 5 个点 , = C F为直线 z 的一点 , 历 B 外 联结 F c并延长至点 G ,
.
1 设AO1, , 0 (, 点M N . )
大 值.
x+2 I 且直线A 直 N的 之积为 > ̄ M 面积的 y= 上, M与 线A 斜率 ÷,.A N - J  ̄ 最
1. 1 已知 > , > , = y b o y o 0 + , = ,= , c m 问是否存在正数 m使得对于任意正数 , 可使 Y a bc ,, 为三角形的 3条边构成三角形. 如果存在 , 求出 m的值 ; 如果不存在 , 请说 明理 由.
全国高中数学联赛省级预赛模拟试题
全国高中数学联赛省级预赛模拟试题第Ⅰ卷(选择题 共60分)参考公式1.三角函数的积化和差公式sinα•cosβ=[sin(α+β)+sin(α-β)],cosα•sinβ=[sin(α+β)-sin(α-β)],cosα•cosβ=[cos(α+β)+cos(α-β)],sinα•sinβ=[cos(α+β)-cos(α-β)].2.球的体积公式V球=πR3(R为球的半径)。
一、选择题(每小题5分,共60分)1.设在xOy平面上,0<y≤x2,0≤x≤1所围成图形的面积为。
则集合M={(x,y)|x≤|y|}, N={(x,y)|x≥y2|的交集M∩N所表示的图形面积为A. B. C.1 D.2.在四面体ABCD中,设AB=1,CD=,直线AB与直线CD的距离为2,夹角为。
则四面体ABCD的体积等于A. B. C. D.3.有10个不同的球,其中,2个红球、5个黄球、3个白球。
若取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A.90 B.100 C.110 D.1204.在ΔABC中,若(sinA+sinB)(cosA+cosB)=2sinC,则A.ΔABC是等腰三角形,但不一定是直角三角形B.ΔABC是直角三角形,但不一定是等腰三角形C.ΔABC既不是等腰三角形,也不是直角三角形D.ΔABC既是等腰三角形,也是直角三角形5.已知f(x)=3x2-x+4, f(g(x))=3x4+18x3+50x2+69x+48.那么,整系数多项式函数g(x)的各项系数和为A.8 B.9 C.10 D.116.设0<x<1, a,b为正常数。
则的最小值是A.4ab B.(a+b)2 C.(a-b)2 D.2(a2+b2)7.设a,b>0,且a2008+b2008=a2006+b2006。
则a2+b2的最大值是A.1 B.2 C.2006 D.20088.如图1所示,设P为ΔABC所在平面内一点,并且AP=AB+AC。
2021年全国高中数学联赛试卷及答案(Word可编辑版)
2021年全国高中数学联赛试卷及答案(最新版)-Word文档,下载后可任意编辑和处理-2021年全国高中数学联合竞赛试卷得分评卷人一.选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A、B、C、D四个结论,其中有且仅有一个是正确的,请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分)。
1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列,这个新数列的第2021项是A.2046B.2047 C.2048 D.2049 答()2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab 的图形是A B C D答()3.过抛物线y2=8(x+2)的焦点F作倾斜角为60o的直线,若此直线与抛物线交于A、B两点,弦AB的中垂线与x轴交于P点,则线段PF的长等于A.B.C. D.答()4.若,则的最大值是A.B.C. D.答()5.已知x,y都在区间(-2,2)内,且xy=-1,则函数的最小值是A.B.C. D.答()6.在四面体ABCD中,设AB=1,CD=,直线AB与CD的距离为2,夹角为,则四面体ABCD的体积等于A. B.C.D.答()得分评卷人二.填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
7.不等式 x 3-2x2-4 x +3 < 0 的解集是____________________.8.设F1,F2是椭圆的两个焦点,P是椭圆上的点,且PF1 : PF2=2 : 1,则三角形PF1F2的面积等于______________.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)+5≤0,x∈R},若AB,则实数a的取值范围是___________________.10.已知a,b,c,d均为正整数,且,若a-c=9,则b-d =________.11.将8个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于______________.12.设M n ={(十进制)n位纯小数|ai只取0或1(i=1,2,…,n-1,an=1},Tn是Mn中元素的个数,Sn是Mn中所有元素的和,则=_______.得分评卷人三.解答题(本题满分60分,每小题20分)13.设≤x≤5,证明不等式.14.设A,B,C分别是复数Z0=ai,Z1=+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点,证明:曲线Z=Z0cos4t+2Z1cos2t sin2t+Z2sin4t (t∈R)与ABC中平行于AC的中位线只有一个公共点,并求出此点.15. 一张纸上画有半径为R的圆O和圆内一定点A,且OA=a. 拆叠纸片,使圆周上某一点A/ 刚好与A点重合,这样的每一种拆法,都留下一条直线折痕,当A/取遍圆周上所有点时,求所有折痕所在直线上点的集合.2021年全国高中数学联合竞赛加试试卷得分评卷人一.(本题满分50分)过圆外一点P作圆的两条切线和一条割线,切点为A,B所作割线交圆于C,D两点,C在P,D之间,在弦CD上取一点Q,使∠DAQ=∠PBC.求证:∠DBQ=∠PAC.得分评卷人二.(本题满分50分)设三角形的三边分别是整数l,m,n,且l >m>n,已知,其中{x}=x-[x],而[x]表示不超过x的最大整数.求这种三角形周长的最小值.得分评卷人三.(本题满分50分)由n个点和这些点之间的t条连线段组成一个空间图形,其中n=q2+q+1,t≥,q≥2,q∈N,已知此图中任圆点不共面,每点至少有一条连线段,存在一点至少有q+2条连线段,证明:图中必存在一个空间四边形(即由四点A,B,C,D和四条连线段AB,BC,CD,DA组成的图形).2021年全国高中数学联合竞赛试卷试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两;其它各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时可参照本评分标准当划分档次评分,5分为一个档次。
2022-2023学年原创全国名校高中数学真题模拟专题训练- 不等式
2022-2023学年届全国名校高三数学模拟试题分类汇编(上) 06 不等式 一、选择题1、(河南省实验中学2022-2023学年-2022-2023学年学年高三第二次月考)对任意实数x , 若不等式k x x >+++|1||2|恒成立, 则实数k 的取值范围是 A .k >1 B k=1 C .k ≤ 1 D .k<1 答案:D2、(河南省实验中学2022-2023学年-2022-2023学年学年高三第二次月考)命题p :若a 、b ∈R ,则|a |+|b |>1是|a +b |>1的充分而不必要条件; 命题q :函数y =2|1|--x 的定义域是(-∞,-1]∪[3,+∞),则A “p 或q ”为假B “p 且q ”为真C p 真q 假D p假q 真 答案:D3、(湖南省长郡中学2022-2023学年届高三第二次月考)函数∑=-=20071)(n n x x f 的最小值为( )A. 1003×1004B. 1004×1005C. 2006×2007D. 2005×2006答案:A4、(湖南省长郡中学2022-2023学年届高三第二次月考)若实数z y x ,,满足1222=++z y x ,则zx yz xy ++的取值范围是( )(A )]1,1[- (B )]21,21[- (C )]21,1[- (D )]1,21[- 答案:D5、(江西省南昌二中2022-2023学年~2022-2023学年学年度第一轮第二次段考)1)(2-+=ax ax x f 在R 上恒满足0)(<x f ,则a 的取值范围是( )A .0≤aB .4-<aC .04<<-aD .04≤<-a 答案:D6、(江西省南昌二中2022-2023学年~2022-2023学年学年度第一轮第二次段考)设a 、b 、c 都是正数,那么三个数ba 1+、c b 1+、ac 1+( )A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个不小于2答案:D7、(江西省南昌二中2022-2023学年~2022-2023学年学年度第一轮第二次段考)已知d c b a 、、、均为正数,bd c da d c c db a bc b a a s +++++++++++=,则有( )A .20<<sB .21<<sC .32<<sD .43<<s 答案:B8、(2022-2023学年年重庆一中高2022-2023学年级第一次月考)若()sin f x x x λ=+是区间[1,1]-上的减函数,且2()1f x t t λ≤++在[1,1]x ∈-上恒成立,求实数t 的取值范围( )A .12t <-B .1t ≤-C .1t >-D .2t ≥- 答案:B9、(湖北黄陂一中2022-2023学年届高三数学综合检测试题)已知120a a >>,则使得2(1)1i a x -<(1,2)i =都成立的x 范围的充要条件是A .2222(,)a a - B .12(0,)a C .1122(,)a a -D.22(0,)a答案:B10、(湖北黄陂一中2022-2023学年届高三数学综合检测试题)设函数lg ||(0)()21(0)xx x f x x <⎧=⎨-≥⎩ ,若0()0f x >,则0x 的取值范围是A.(,1)(1,)-∞-+∞B.(,1)(0,)-∞-+∞C.(1,0)(0,1)-D.(1,0)(0,)-+∞答案:B11、(湖北黄陂一中2022-2023学年届高三数学综合检测试题)关于x 的不等式22cos lg(9)cos lg(9)x xx x +-<+-的解集为A.(- B .(3,3)- C.(3,(22,3)--D .()(,22)22ππ--答案:D12、(安徽省潜山县三环中学2022-2023学年届高三上学期第三次联考)不等式04)2(2)2(2<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是( )A .)2,2(-B .]2,2(-C .]2,(-∞D .)2,(--∞答案:B13、(安徽省潜山县三环中学2022-2023学年届高三上学期第三次联考)设奇函数()f x 在(0,+∞)上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集是 ( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(,1)(1,)-∞-+∞ D .(1,0)(0,1)- 答案:D14、(甘肃省兰州一中2022-2023学年—2022-2023学年高三上学期第三次月考)设2)(,2),1(log ,2,2)(231>⎪⎩⎪⎨⎧≥-<=-x f x x x e x f x 则不等式的解集为 ( ) A .),3()2,1(+∞⋃ B .),10(+∞C .),10()2,1(+∞⋃D .(1,2)答案:C15、(甘肃省兰州一中2022-2023学年—2022-2023学年高三上学期第三次月考)对于满足40≤≤p 的所有实数p ,使不等式x p x px x 都成立的342-+>+的取值范围( )A .13-<>x x 或B .13-≤≥x x 或C .31<<-xD .31≤≤-x答案:A16、(广东省深圳中学2022-2023学年—2022-2023学年学年度高三第一学段考试)设a>1,若对于任意的]2,[a a x ∈,都有],[2a a y ∈满足方程,3log log =+y x a a 这时a 的取值集合为()A .}21|{≤<a aB .}2|{≥a aC .}32|{≤≤a aD .}3,2{答案:B17、(河北省衡水中学2022-2023学年—2022-2023学年学年度第一学期期中考试)设b ,a 是两个实数,且b a ≠在①2223b ab a >+;②322355b a b a b a +>+;③)1(222--≥+b a b a ;④2>+abb a 这四个式子中,恒成立的有A.1个B.2个C.3个 D 4.个 答案:A18、(河北省衡水中学2022-2023学年—2022-2023学年学年度第一学期期中考试)已知函数)0(18),20(cos 4cos ),0(42321>+=<<+=≠+=x x xy x x x y x x x y π)20)(tan 221)(cot 1(4π<<++=x x x y ,其中以4为最小值的函数个数是A.0B.1C.2D.3 答案:A19、(河北省衡水中学2022-2023学年—2022-2023学年学年度第一学期期中考试)若不等式0lg ])1[(<--x x t x 对任意的正整数t 恒成立,则实数x 的取值范围是A.}1|{>x xB.}210|{<<x x C.}1210|{><<x x x 或 D.}1310|{><<x x x 或 答案:C20、(四川省成都市高2022-2023学年届高中毕业班第一次诊断性检测)下列四个命题中正确的是A 、若a 、b ∈R ,则|a |-|b |<|a +b |B 、若a 、b ∈R ,则|a -b |<|a |+|b |C 、若实数a 、b 满足|a -b |=|a |+|b |,则ab ≤0D 、若实数a 、b 满足|a |-|b |<|a +b |,则ab <0 答案:C21、(湖南省衡阳市八中2022-2023学年届高三第三次月考试题)设函数()sin ,[,]22f x x x x ππ=∈-,若12()()f x f x >,则下列不等式必定成立的是( ). A .120x x +>B .2212x x >C .12x x >D . 12x x <答案:B22、(江西省崇仁一中2022-2023学年届高三第四次月考)若a 、b 、c 为实数,则下列命题正确的是( )A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2>ab >b 2C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab答案:B23、(江西省崇仁一中2022-2023学年届高三第四次月考)已知函数f (x )满足条件①f (x )>0;②对任意x 、y ∈R ,都有f (x +y )=f (x )·f (y );③x >0时,0<f (x )<1.则不等式f -1(x 2-4x +3)>f-1(3)的解集为()A .(-∞,0)∪(4,+∞)B .(0,4)C .(0,1)∪(3,4)D .(-∞,0)∪(3,4)答案:C24、(揭阳市云路中学2022-2023学年届高三数学第六次测试)不等式3112x x-≥-的解集是( )A .324x x ⎧⎫≤≤⎨⎬⎩⎭B .324x x ⎧⎫≤<⎨⎬⎩⎭C .324x x x ⎧⎫>≤⎨⎬⎩⎭或 D .{}2x x <答案:B .原不等式等价于(43)(2)020x x x --≤-≠且25、(山东省平邑第一中学2022-2023学年届高三元旦竞赛试题)“0,0x y ><”是“222x y xy+≤-”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件答案:A26、(山东省平邑第一中学2022-2023学年届高三元旦竞赛试题)已知p>0,q>0,p,q 的等差中项是12,x=p+,1,1q q y p +=则x+y 的最小值为( )A. 6B. 5 C 4 D 3 答案:B27、(山东省德州市宁津高中2022-2023学年-2022-2023学年学年高三第一次月考)若011<<ba ,则下列结论不正确...的是 A .||||||b a b a -=-B .22b a < C .2>+baa b D .2b ab < 答案:A28、(山东省德州市宁津高中2022-2023学年-2022-2023学年学年高三第一次月考)已知函数11()()12x f x xa =-+(a >0),若()f x ≤0恒成立,则a 的取值范围是A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞) 答案:D29、(陕西省西安铁一中2022-2023学年届高三12月月考)若不等式na n n1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是 ( )A .)23,2[-B .]23,2(-C .)23,3[-D .)23,3(-答案:A30、(上海市张堰中学高2022-2023学年届第一学期期中考试)设z y x >>,N n ∈,且zx nz y y x -≥-+-11恒成立,则n 的最大值为 ( )A 、2B 、3C 、4D 、5答案:C31、(西南师大附中高2022-2023学年级第三次月考)已知4a b ab +=,a 、b 均为正数,则使a b m +>恒成立的m 的取值范围是( )A .m < 9B .9m ≤C .m < 8D .8m ≤答案:A32、(福建省福州三中高三年级第二次月考)设|13|)(-=x x f ,a b c <<且)()()(b f a f c f >>,则下列关系中一定成立的是( )A .b c 33>B .a b 33>C .233>+a cD .233<+a c答案:D33、(福建省福州三中高三年级第二次月考)已知()()()1f x x a x b =--+,n m ,是方程0)(=x f 的两根,且a <b ,m <n ,则a .b .m .n 的大小关系是( ) A .m <a <b <n B .a <m <n <bC .a <m <b <nD .m <a <n <b答案:B34、(福建省南安一中、安溪一中、养正中学2022-2023学年届高三期中联考)给出以下4个结论,其中正确的个数为( ) A .0 B .1 C.2 D.3 ①函数2log (sin cos )y x x =-不是周期函数; ②函数5sin(3)2y x π=+既不是奇函数也不是偶函数; ③已知4个数a 、b 、c 、d ,满足ad bc =,则a 、b 、c 、d 成等比数列; ④1023101(12)1222212⋅-+++++=-.答案:A35、(福建省南安一中、安溪一中、养正中学2022-2023学年届高三期中联考)关于210,x ax ax x R -+>∈的不等式对恒成立的充要条件是( )A .0<a <4B .a =0或4 C.0≤a ≤4 D.0≤a <4 答案:D36、(福建省南安一中、安溪一中、养正中学2022-2023学年届高三期中联考)已知实数对2222(,)326(,)2346x y x y x f x y x y x y +==+--满足,则的取值范围是( ) A .55[22-+ B .[5,10] C.1,1]D.[7-+答案:A37、(广东省高明一中2022-2023学年届高三上学期第四次月考)同时满足条件:①函数图象成中心对称图形;②对任意,[0,1]a b ∈,若b a ≠,有)2(2)()(ba fb f a f +<+的函数是( ) A .||log x y a = B .x y 2cos =C .)3tan(π-=x yD .3x y =答案:C天天向上独家原创11 / 11 38、(黑龙江省双鸭山一中2022-2023学年-2022-2023学年学年上学期期中考试)-1()f x 是函数+1()=2x f x 的反函数,若-1-1()+()=0f a f b ,则a+b 的最小值是( )A.1B. 2C.答案:D。
2021届广东省普通高等学校招生全国统一考试模拟测试数学试题(一)(word版,含官方答案)
★启用前注意保密2021年普通高等学校招生全国统一考试模拟测试(一)数学本试卷共5页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的市(县、区)、学校、班级、姓名、考场号、座位号和考生号填写在答题卡上。
将条形码横贴在每张答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写 上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合M={x|-7<3x-1<2},N={x|x+1>0},则M ∪N=A.(-2,+∞)B. (-1,1)C.(-∞,1)D.(-1,+∞) 2.若复数z 满足(z-1)(1+i)=2-2i,则|z|=3.已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则f(2e)= A. 2e 2 B. 2e C. 1+ln2 D. 21n 24.函数f(x)=cos 2x+6cos(2π-x)(x ∈[0, 2π])的最大值为 A.4 B.5 C.6 D.75.已知数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前10项和等于 A. 1023 B.55 C.45 D.356.已知a,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是A. ab 的最小值是1B.ab 的最大值是1C. 11a b +的最小值是92D. 11a b +的最大值是927.《算数书》是我国现存最早的系统性数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V 的近似公式V≈2136L h .用该术可求得圆率π的近似值。
全国高中数学联合竞赛一试模拟试题
中国化学会全国高中学生化学竞赛(省级赛区)试题第1题(12分)通常,硅不与水反应,然而,弱碱性水溶液能使一定量的硅溶解,生成Si(OH)4。
1-1已知反应分两步进行,试用化学方程式表示上述溶解过程。
早在上世纪50年代就发现了CH5+的存在,人们曾提出该离子结构的多种假设,然而,直至1999年,才在低温下获得该离子的振动-转动光谱,并由此提出该离子的如下结构模型:氢原子围绕着碳原子快速转动;所有C-H键的键长相等。
1-2该离子的结构能否用经典的共价键理论说明?简述理由。
1-3该离子是A.质子酸 B.路易斯酸 C.自由基 D.亲核试剂2003年5月报道,在石油中发现了一种新的烷烃分子,因其结构类似于金刚石,被称为“分子钻石”,若能合成,有可能用做合成纳米材料的理想模板。
该分子的结构简图如下:1-4该分子的分子式为;1-5该分子有无对称中心?1-6该分子有几种不同级的碳原子?1-7该分子有无手性碳原子?1-8该分子有无手性?第2题(5分)羟胺和用同位素标记氮原子(N﹡)的亚硝酸在不同介质中发生反应,方程式如下:NH2OH+HN﹡O2→ A+H2ONH2OH+HN﹡O2→ B+H2OA、B脱水都能形成N2O,由A得到N﹡NO和NN﹡O,而由B只得到NN﹡O。
请分别写出A和B的路易斯结构式。
第3题(8分)X-射线衍射实验表明,某无水MgCl2晶体属三方晶系,呈层形结构,氯离子采取立方最密堆积(ccp),镁离子填满同层的八面体空隙;晶体沿垂直于氯离子密置层的投影图如下。
该晶体的六方晶胞的参数:a=363.63pm,c=1766.63pm;p=2.53g·cm-3。
3-1 以“”表示空层,A、B、C表示Cl-离子层,a、b、c表示Mg2+离子层,给出三方层型结构的堆积方式。
3-2计算一个六方晶胞中“MgCl2”的单元数。
3-3 假定将该晶体中所有八面体空隙皆填满Mg2+离子,将是哪种晶体结构类型?第4题(7分)化合物A是一种热稳定性较差的无水的弱酸钠盐。
高中数学模拟试题50篇
班级 __________ 姓名 __________ 分数 __________高中数学模拟试题一一、 填空题:本大题共8小题,每题5分,共40分.1. 给出以下结论:① 命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ② “x =4”是“x 2-3x -4=0”的充分条件;③ 命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④ 命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”. 则其中错误的是________.(填序号)2. 已知函数f (x )=⎩⎨⎧sin 5πx 2,x ≤0,16-log 3x ,x >0,则f (f (33))=________. 3. 连续抛掷两枚骰子分别得到的点数是a ,b ,则函数f (x )=ax 2-bx 在x =1处取得最值的概率是________.4. 设S n 为正项等比数列{a n }的前n 项和.若a 4·a 8=2a 10,则S 3的最小值为________.5. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0,若直线y =k (x +1)上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的取值范围是____________.(第6题) 6. 如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.7. 已知a >0,b >0,则a 2a +b +2b 2b +a的最大值为________. 8. 已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一的零点,则a =________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,已知M ,N 分别为线段BB 1,A 1C 的中点,MN 与AA 1所成角的大小为90°,且MA 1=MC . 求证:(1) 平面A 1MC ⊥平面A 1ACC 1;(2) MN ∥平面ABC .已知向量m =(cos α,-1),n =(2,sin α),其中α∈(0,π2),且m ⊥n . (1) 求cos 2α的值;(2) 若sin(α-β)=1010,且β∈(0,π2),求角β的值.设椭圆C :x 22+y 2=1的右焦点为F ,过点F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1) 当l 与x 轴垂直时,求直线AM 的方程;(2) 设O 为坐标原点,求证:∠OMA =∠OMB .已知等差数列{a n}的前n项和为S n,且满足S4=24,S7=63.(1) 求数列{a n}的通项公式;(2) 若b n=2a n+(-1)n·a n,求数列{b n}的前n项和T n.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题二一、 填空题:本大题共8小题,每题5分,共40分.1. 已知复数z 满足(z -2)i =1+i(i 为虚数单位),则复数z 的共轭复数z 在复平面内对应的点位于第________象限.2. 设集合A ={x |y =ln(x 2-3x )},B ={y |y =2x ,x ∈R },则A ∪B =____________.3. 若θ∈(0,π4),且sin 2θ=14,则sin(θ-π4)=________. 4. 已知一个正方体的外接球体积为V 1,其内切球体积为V 2,则V 1V 2的值为________. 5. 记等差数列{a n }的前n 项和为S n .已知a 1=3,且数列{S n }也为等差数列,则a 11=________.6. 在▱ABCD 中,∠BAD =60°,E 是CD 上一点,且AE →=12AB →+BC →,|AB →|=λ|AD →|.若AC →·EB →=12AD → 2,则λ=________. 7. 设函数f (x )=ln x +m x,m ∈R ,若对任意x 2>x 1>0,f (x 2)-f (x 1)<x 2-x 1恒成立,则实数m 的取值范围是__________.8. 已知实数x ,y 满足x 2+y 2=1,则1(x -y )2+1(x +y )2的最小值为________. 二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1) 求cos ∠ADB 的值;(2) 若DC =22,求BC 的值.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(点E 与点A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1) EF∥平面ABC;(2) AD⊥AC.如图所示的某种容器的体积为90πcm3,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为r cm.圆锥的高为h1 cm,母线与底面所成的角为45°;圆柱的高为h2 cm.已知圆柱底面造价为2a元/cm2,圆柱侧面造价为a元/cm2,圆锥侧面造价为2a元/cm2.(1) 将圆柱的高h2表示为底面圆半径r的函数,并求出定义域;(2) 当容器造价最低时,圆柱的底面圆半径r为多少?已知等比数列{a n}的前n项和为S n,且2n+1,S n,a成等差数列(n∈N*).(1) 求a的值及数列{a n}的通项公式;(2) 若b n=(2n-1)a n,求数列{b n}的前n项和T n.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题三一、 填空题:本大题共8小题,每题5分,共40分.1. 设集合A =⎩⎨⎧⎭⎬⎫x |14≤2x ≤64,x ∈N ,B ={x |y =ln(x 2-3x )},则A ∩B 的子集的个数是________.2. 设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的__________条件. 3. 已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则双曲线C 的焦距为________.4. 已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n .若对任意的n ∈N *,总有S n T n=3n +14,则a 3b 3=________. 5. 已知在平行四边形ABCD 中,∠BAD =120°,AB =1,AD =2,P 是线段BC 上的一个动点,则AP →·DP →的取值范围是________.(第7题)6. 已知函数f (x )=sin x (x ∈[0,π])和函数g (x )=12tan x 的图象交于A ,B ,C 三点,则△ABC 的面积为________.7. 如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2 的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________. 8. 已知函数f (x )=⎩⎪⎨⎪⎧x 3+x 2+m ,0≤x ≤1,mx +2,x >1,若函数f (x )有且只有两个零点,则实数m 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1) 若a ∥b ,求x 的值;(2) 记f (x )=a·b ,求f (x )的最大值和最小值以及对应的x 的值.10. (本小题满分14分)在平面直角坐标系xOy 中,圆O :x 2+y 2=4,直线l :4x +3y -20=0.A (45,35)为圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P .(1) 若MN ∥l ,求△PMN 的面积;(2) 判断直线PM 与圆O 的位置关系,并证明.某农场有一块农田,如图,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B 均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1) 用θ分别表示矩形ABCD和△CDP的面积,并确定sin θ的取值范围;(2) 若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1) 求数列{b n }的通项公式;(2) 令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .班级 __________ 姓名 __________ 分数 __________高中数学模拟试题四一、 填空题:本大题共8小题,每题5分,共40分.1. 已知集合A ={x |2≤x <4},B ={x |x >a },若A ∩B ={x |3<x <4},则实数a =________.2. 已知f (x )=ax 5+bx 3+sin x -8,且f (-2)=10,那么f (2)=________.3. 已知sin θ-cos θ=43,θ∈(3π4,π),则s in(π-θ)-cos (π-θ)=________. 4. 记函数f (x )=3-2x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.5. 在三棱锥ABCD 中,E 是AC 的中点,F 在AD 上,且2AF =FD .若三棱锥ABEF 的体积为2,则四棱锥BECDF 的体积为________.6. 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4.若等边三角形P AB 的一边AB 为圆C 的一条弦,则PC 的最大值为________.7. 设数列{a n }满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则k =1100(a k a k +1)的值为________. 8. 已知函数f(x)=⎩⎪⎨⎪⎧x 2,0<x ≤1,|ln (x -1)|,x >1.若方程f(x)=kx -2有两个不相等的实数根,则实数k 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,a =7,b =8,cos B =-17. (1) 求A 的值;(2) 求边AC 上的高.如图,在四棱锥PABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1) 求证:平面PAB ⊥平面PAD ;(2) 若PA =PD =AB =DC ,∠APD =90°,且四棱锥PABCD 的体积为83,求该四棱锥的侧面积.已知函数f(x)=1x-x +a ln x. (1) 讨论f(x)的单调性;(2) 若f(x)存在两个极值点x 1,x 2,求证:f (x 1)-f (x 2)x 1-x 2<a -2.设数列{a n}的前n项和为S n,已知a1=1,S n+1=2S n+n+1(n∈N*).(1) 求数列{a n}的通项公式;(2) 若b n=na n+1-a n,数列{b n}的前n项和为T n,n∈N*,求证:T n<2.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题五一、 填空题:本大题共8小题,每题5分,共40分.1. 欧拉公式e x i =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e -3i 表示的复数在复平面中位于第________象限.2. 某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,则甲、乙不在同一兴趣小组的概率为________.3. 在矩形ABCD 中,AB =2BC =2,现向矩形ABCD 内随机投掷质点P ,则满足P A →·PB→≥0的概率是________.4. 已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b|的最大值与最小值的和为________.(第5题)5. 已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象如图所示,则该函数的解析式是______________.6. 若抛物线x 2=4y 的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为________.7. 已知数列{a n }满足a 1=0,数列{b n }为等差数列,且a n +1=a n +b n ,b 15+b 16=15,则a 31=________.8. 已知函数f (x )=x (a -1ex ),曲线y =f (x )上存在两个不同的点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是__________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos(B -π6). (1) 求角B 的大小;(2) 设a =2,c =3,求b 和sin(2A -B )的值.如图,在直三棱柱ABCA1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.求证:(1) B1C1∥平面A1DE;(2) 平面A1DE⊥平面ACC1A1.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30,0<x ≤30,2x +1 800x -90,30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟.试根据上述分析结果回答下列问题:(1) 当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2) 求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1) 求椭圆E 的标准方程;(2) 若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题六一、 填空题:本大题共8小题,每题5分,共40分. 1. 若A ={x ||x |<3},B ={x |2x >1},则A ∩B =________. 2. 电视台组织的中学生知识竞赛,共设有5个版块的试题,主题分别是“立德树人”“社会主义核心价值观”“依法治国理念”“中国优秀传统文化”“创新能力”.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是________.3. 将函数y =3sin(2x -π6)的图象向左平移π4个单位长度,所得图象对应的函数解析式为____________.4. 已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则y +1x的取值范围是________.(第5题)5. 如图,从热气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时热气球的高度是60 m ,则河流的宽度BC =________.6. 已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________.7. 已知 O 为矩形 P 1P 2P 3P 4内的一点,满足OP 1=4,OP 3=5,P 1P 3=7,则OP 2→·OP 4→=________.8. 已知函数f (x )=⎩⎨⎧1-(x -1)2,0≤x <2,f (x -2),x ≥2.若对于正数k n (n ∈N *),直线y =k n x 与函数y =f (x )的图象恰有(2n +1)个不同的交点,则数列{k 2n }的前n 项和为________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1.求证: (1) AB ∥平面A 1B 1C ;(2) 平面ABB 1A 1⊥平面A 1BC .已知△ABC的内角A,B,C的对边分别为a,b,c,且c tan C=3(a cos B+b cos A).(1) 求角C;(2) 若c=23,求△ABC面积的最大值.某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)P (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0<x ≤5,14.7-9x -3,x >5.(1) 该厂至少生产多少套此款式服装才可以不亏本?(2) 试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (0,1).(1) 求椭圆C 的方程;(2) 不经过点A 的直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ →=0,求证:直线l 过定点.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题七一、 填空题:本大题共8小题,每题5分,共40分.1. 已知集合A ={x |x 2-x -2≤0},集合B ={x |1<x ≤3},则A ∪B =____________.2. 已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________.3. 已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤1,11-x,x >1,则f (f (-2))=________.4. 已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn=________.5. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思如下:有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了________.6. 已知sin α=3sin(α+π6),则tan(α+π12)=________.7. 已知经过点P (1,32)的两个圆C 1,C 2都与直线l 1:y =12x ,l 2:y =2x 相切,则这两圆的圆心距C 1C 2等于________.8. 已知函数f (x )=log 2(ax 2+2x +3),若对于任意实数k ,总存在实数x 0,使得f (x 0)=k 成立,则实数a 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在长方体ABCDA 1B 1C 1D 1中,AB =BC =EC =12AA 1.求证:(1) AC 1∥平面BDE ; (2) A 1E ⊥平面BDE .已知数列{a n}是公差不为0的等差数列,a2=3,且a3,a5,a8成等比数列.(1) 求数列{a n}的通项公式;(2) 设b n=a n cos a nπ2,求数列{b n}的前2 018项和.为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD 建成生态休闲园,园区内有一景观湖EFG (图中阴影部分).以AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系xOy (如图).景观湖的边界曲线符合函数y =x +1x(x >0)模型.园区服务中心P 在x 轴正半轴上,PO =43百米.(1) 若在点O 和景观湖边界曲线上一点M 之间修建一条休闲长廊OM ,求OM 的最短长度;(2) 若在线段DE 上设置一园区出口Q ,试确定Q 的位置,使通道PQ 最短.如图,在平面直角坐标系xOy中,已知F1,F2分别为椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1) 求椭圆的方程;(2) 过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA.若MF1⊥BF2,求直线l的斜率.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题八高中数学模拟试题八一、 填空题:本大题共8小题,每题5分,共40分.1. 若向量a =(cos 10°,sin 10°),b =(cos 70°,sin 70°),则|a -2b|=________.2. 在同一平面直角坐标系中,函数y =sin(x +π3)(x ∈[0,2π))的图象和直线y =12的交点的个数是________.3. 由命题“存在x 0∈R ,使得e|x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是________.4. 已知圆柱M 的底面圆半径为2,高为6,圆锥N 的底面圆直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为________.5. 在平面直角坐标系xOy 中,双曲线x 23-y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是________.6. 设定义在R 上的偶函数f (x )在区间(-∞,0]上单调递减.若f (1-m )<f (m ),则实数m 的取值范围是________.7. 设S n 为数列{a n }的前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,则k 的值为________.8. 已知直线y =kx +2-2k 与曲线y =2x -3x -2交于A ,B 两点,平面上的动点P 满足|P A →+PB→|≤2,则|PO →|的最大值为________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在正四棱锥VABCD 中,E ,F 分别为棱VA ,VC 的中点.求证: (1) EF ∥平面ABCD ; (2) 平面VBD ⊥平面BEF .10. (本小题满分14分)如图,某公园有三条观光大道AB ,BC ,AC 围成直角三角形,其中直角边BC =200 m ,斜边AB =400 m .现有甲、乙、丙三位小朋友分别在AB ,BC ,AC 大道上嬉戏,所在位置分别记为点D ,E ,F .(1) 若甲、乙都以每分钟100 m 的速度从点B 出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲、乙两人之间的距离;(2) 设∠CEF =θ,乙、丙之间的距离是甲、乙之间距离的2倍,且∠DEF =π3,请将甲、乙之间的距离y m 表示为θ的函数,并求甲、乙之间的最小距离.如图,在平面直角坐标系xOy 中,设P 为圆O :x 2+y 2=2上的动点,过点P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2MQ →.(1) 求证:当点P 运动时,点M 始终在一个确定的椭圆上;(2) 过点T (-2,t )(t ∈R )作圆O 的两条切线,切点分别为A ,B .① 求证:直线AB 过定点(与t 无关);② 设直线AB 与(1)中的椭圆交于C ,D 两点,求证:AB CD ≤ 2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x +t ,x <0,x +ln x ,x >0,其中t 是实数.设A ,B 为该函数图象上的两点,横坐标分别为x 1,x 2,且x 1<x 2.(1) 求f (x )的单调区间和极值;(2) 若x 2<0,函数f (x )的图象在点A ,B 处的切线互相垂直,求x 1-x 2的最大值.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题九高中数学模拟试题九一、 填空题:本大题共8小题,每题5分,共40分.1. 已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是________.3. 如图,在△ABC 中,已知AN →=12AC →,P 是BN 上一点.若AP →=mAB →+14AC →,则实数m 的值是________.(第2题)(第3题)(第4题)4. 如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1DEF 的体积为________.5. 已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +y -4≥0,x ≤3,则2x 3+y 3x 2y 的取值范围是________. 6. 若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.7. 若数列⎩⎨⎧⎭⎬⎫2n (2n -1)(2n +1-1)的前k 项的和不小于2 0182 019,则k 的最小值为________. 8. 在平面直角坐标系 xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若P A →·PB→≤20,则点P 的横坐标的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b sin 2C =c sin B .(1) 求角C ;π3)=35,求sin A的值.(2) 若sin(B-在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.(1) 当a=90时,求纸盒侧面积的最大值;(2) 试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1) 求证:k <-12; (2) 设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.求证:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.设等差数列{a n}是无穷数列,且各项均为互不相同的正整数.(1) 设数列{a n}的前n项和为S n,b n=S na n-1,n∈N*.①若a2=5,S5=40,求b2的值;②若数列{b n}为等差数列,求b n.(2) 求证:数列{a n}中存在三项(按原来的顺序)成等比数列.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十高中数学模拟试题十一、 填空题:本大题共8小题,每题5分,共40分.1. 若复数(a -i)(1-i)(a ∈R )的实部与虚部相等,则实数a =________.2. 在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为________.3. 执行下面的流程图,输出的T =________.4. 已知正项等比数列{a n }的前n 项和为S n ,且4a 2=a 4,则S 4a 2+a 5=________. 5. 已知点P (1,22)在角θ的终边上,则sin(2θ+π2)+sin(2θ+2π)=________. 6. 从x 2m -y 2n=1(其中m ,n ∈{-1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为________.7. 在平面直角坐标系xOy 中,若直线l :x +2y =0与圆C :(x -a )2+(y -b )2=5相切,且圆心C 在直线l 的上方,则ab 的最大值为________.8. 设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤0,e x -1,x >0,若函数y =f (x )-2x +t 有两个零点,则实数t 的取值范围是______________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1) 求cos 2α的值;(2) 求tan(α-β)的值.如图,在一条海防警戒线上的点A,B,C处各有一个水声监测点,B,C两点到点A的距离分别为20 km和50 km.某时刻,B收到发自静止目标P的一个声波信号,8 s后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5 km/s.(1) 设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2) 求P到海防警戒线AC的距离.如图,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方).(1) 若QF =2FP ,求直线l 的方程;(2) 设直线AP ,BQ 的斜率分别为k 1,k 2.是否存在常数λ,使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由.12. (本小题满分16分)已知函数f(x)=e x-ax2.(1) 若a=1,求证:当x≥0时,f(x)≥1;(2) 若f(x)在(0,+∞)上只有一个零点,求实数a的值.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十一高中数学模拟试题十一一、 填空题:本大题共8小题,每题5分,共40分.1. 若集合A ={x ∈Z |x 2+x -12<0},B ={x |x <sin 5π},则A ∩B 中元素的个数为________.2. 根据如图所示的伪代码,可知输出的结果S 是________.i ←1While i <6i ←i +2S ←2i +3End WhilePrint S3. 已知首项为负数的等差数列{a n }中,a 5a 4<-1,若S n 取到最小正数,则此时的n =________.4. 在平面直角坐标系xOy 中,双曲线x 2-y 24=1的一条渐近线与准线的交点到另一条渐近线的距离为________.5. 已知约束条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y +3≥0,x ≤a表示的可行域为D ,其中a >1,点(x 0,y 0)∈D ,点(m ,n )∈D .若3x 0-y 0与n +1m的最小值相等,则实数a =________. 6. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线l 恰好是曲线y =x 3-3x 2+22x 在原点处的切线,左顶点到一条渐近线的距离为263,则双曲线的标准方程为__________. 7. 将函数y =3sin(π4x )的图象向左平移3个单位长度,得函数y =3sin(π4x +φ)(|φ|<π)的图象(如图),点M ,N 分别是函数f (x )图象上y 轴两侧相邻的最高点和最低点.设∠MON =θ,则tan(φ-θ)的值为________.8. 已知函数f (x )=x 3-2x +e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2 )≤0,则实数a 的取值范围是________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1) 求BC 的长;(2) 求tan 2B的值.10. (本小题满分14分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1) 求{a n}的通项公式;(2) 求S n,并求S n的最小值.曲线f (x )=x 2-a 2ln x 在点(12,f (12))处的切线斜率为0. (1) 讨论函数f (x )的单调性;(2) 若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,求实数m 的取值范围.如图,圆柱体木材的横截面半径为1 dm,从该木材中截取一段圆柱体,再加工制作成直四棱柱A1B1C1D1ABCD,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O在梯形ABCD内部,AB∥CD,∠DAB=60°,AA1=AD,设∠DAO =θ.(1) 求梯形ABCD的面积;(2) 当sin θ取何值时,四棱柱A1B1C1D1ABCD的体积最大?并求出最大值.(注:木材的长度足够长)班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十二高中数学模拟试题十二一、 填空题:本大题共8小题,每题5分,共40分.1. 已知集合A ={x ∈R |log 12(x -2)≥-1},B =⎩⎨⎧⎭⎬⎫x ∈R |2x +63-x ≥1,则A ∩B =________. 2. 设向量a =(2,m ),b =(1,-1),若b ⊥(a +2b ),则实数m =________.3. 已知正五边形ABCDE 的边长为23,则AC →·AE →的值为________.4. 正方形铁片的边长为8 cm ,以它的一个顶点为圆心,一边长为半径画弧,剪下一个顶角为π4的扇形,用这块扇形铁片围成一个圆锥形容器,则这个圆锥形容器的容积等于________cm 3.5. 等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________. 6. 已知sin α=55,α∈(0,π2),tan β=13,则tan(α+2β)=________. 7. 已知a >0,函数f (x )=x (x -a )2和g (x )=-x 2+(a -1)x +a 存在相同的极值点,则a =________.8. 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x <a ,-2x ,x ≥a ,若关于x 的不等式f (x )>4a 在实数集R 上有解,则实数a 的取值范围是____________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为a 23sin A. (1) 求sin B sin C 的值;(2) 若6cos B cos C =1,a =3,求△ABC 的周长.如图,在四棱锥P ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD, AC交BD于点O,锐角三角形P AD所在平面P AD⊥底面ABCD,P A⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1) P A∥平面QBD;(2) BD⊥AD.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为53,点A 的坐标为(b ,0),且FB ·AB =6 2.(1) 求椭圆的方程;(2) 设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AQ PQ =524sin ∠AOQ (O 为原点),求k 的值.如图,半圆AOB 是某爱国主义教育基地一景点的平面示意图,半径OA 的长为1百米.为了保护景点,基地管理部门从道路l 上选取一点C ,修建参观线路CDEF ,且CD ,DE ,EF 均与半圆相切,四边形CDEF 是等腰梯形.设DE =t 百米,记修建每1百米参观线路的费用为f (t )万元,经测算f (t )=⎩⎨⎧5,0<t ≤13,8-1t ,13<t <2.(1) 用t 表示线段EF 的长;(2) 求修建该参观线路的最低费用.班级 __________ 姓名 __________ 分数 __________高中数学模拟试题十三高中数学模拟试题十三一、 填空题:本大题共8小题,每题5分,共40分.(第3题) 1. 已知复数z =2+i 1-i(i 为虚数单位),那么z 的共轭复数为________. 2. 若tan(α-π4)=16,则tan α=________. 3. 执行如图所示的程序框图,若a =2 018,则输出的S =________.4. 设等边三角形ABC 的边长为1,t 为任意的实数,则|AB →+tAC →|的最小值为________.5. 已知函数f (x )=2sin x +1(x ∈[0,2π]),设h (x )=|f (x )|-a ,则当1<a <3时,函数h (x )的零点个数为________.6. 已知函数f (x )=(x 2-2x )sin(x -1)+x +1在x ∈[-1,3]上的最大值为M ,最小值为m ,则M +m =________.7. 已知x >y >0,且x +y ≤2,则4x +3y +1x -y的最小值为________. 8. 设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.若椭圆上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是______________.二、 解答题:本大题共4小题,共60分.解答时应写出必要的文字说明、证明过程或演算步骤.9. (本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,过AD 的平面分别与PB ,PC 交于点E ,F .求证:(1) 平面PBC ⊥平面PCD ;(2) AD ∥EF .。
(2021年整理)No.49全国高中数学联合竞赛模拟试题
(完整)No.49全国高中数学联合竞赛模拟试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)No.49全国高中数学联合竞赛模拟试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)No.49全国高中数学联合竞赛模拟试题的全部内容。
2011年全国高中数学联赛模拟题1一试考试时间上午8:00~9:20,共80分钟,满分120分一、填空题(共8题,每题8分,64分)1、已知函数)0(1222<+++=b x cbx x y 的值域为]3,1[,则=+c b 2、已知,R a ∈并且a x x a +>-222)0(>a ,则a 的取值范围是 3、设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为4、3322)(22+-+-=x x x x x f 的最小值为5、已知复数ααsin cos i z +=,ββsin cos i u +=,且i u z 5354+=+。
则)tan(βα+= 6、过椭圆C:12322=+y x 上任一点P ,作椭圆C 的右准线的垂线PH(H 为垂足),延长PH 到点Q ,使|HQ|=λ|PH |(λ≥1).当点P 在椭圆C 上运动时,点Q 的轨迹的离心率的取值范围为 7、设][x 表示不超过x 的最大整数,则=++++]500[log ]3[log ]2[log ]1[log 33338、设p 是给定的奇质数,正整数k 也是一个正整数,则k=____________ 二、解答题(共3题,共56分)9、(本题16分) 在△ABC 中,A ,B,C 所对边分别为c b a ,,,且34cos cos ,10===a b B A c ,P 为△ABC 的内切圆上的动点,求点P 到A,B,C 的距离的平方和的最大值和最小值10、(本题20分)数列}{n a 中,2,841==a a 且满足)(212+++∈-=N n a a a n n n (1)求数列}{n a 的通项公式;(2)设)(,)12(121+∈++=-=N n b b b T a n b n n n n ,是否存在最大的正整数m ,使得对于任意的+∈N n ,均有32mT n >成立?若存在,求出m 的值;若不存在,请说明理由。
高中数学竞赛模拟试题 1
全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2kk e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O A B C 中,若点O 处的三条棱两两垂直,且长度均为,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由A B C ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将A B C ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以F A 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:F M F N F A +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a b b b b b b ++=++,且123m in{,,}a a a 123min{,,}b b b ≤,求证:123m ax{,,}a a a 123m ax{,,}b b b ≤.第二试一、设圆的内接四边形A B C D 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且A B C ∠与A D C ∠的平分线交于点E ,求证:点E 在A C 上的充要条件是PR QR =.二、已知周长为1的i i i A B C ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a b c =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.。
2020年全国高中数学联赛安徽赛区初赛试题Word版含答案
2020年全国高中数学联赛安徽赛区初赛试题第Ⅰ卷(共64分)一、填空题(每题8分,满分64分,将答案填在答题纸上)1.设三个复数1,i ,z 在复平面上对应的三点共线,且5z =,则z = .2.设n 是正整数,且满足5438427732293n =,则n = .3.函数()()()()sin 2sin 3sin 4f x x x x =++的最小正周期= .4.设点P ,Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值= .5.从1,2,,10中随机抽取三个各不相同的数字,其样本方差21s ≤的概率= .6.在边长为1的正方体1111ABCD A B C D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值= .7.设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cos AHB ∠= .8.把21,2,,n 按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n .例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.设2018在100T 的第i 行第j 列,则(),i j = .第Ⅱ卷(共86分)二、解答题 (本大题共4小题,共86分.解答应写出文字说明、证明过程或演算步骤.)9. 如图所示,设ABCD 是矩形,点E ,F 分别是线段AD ,BC 的中点,点G 在线段EF 上,点D ,H 关于线段AG 的垂直平分线l 对称.求证:3HAB GAB ∠=∠.10. 设O 是坐标原点,双曲线2222:1x y C a b-=上动点M 处的切线交C 的两条渐近线于A ,B 两点.(1)求证:AOB ∆的面积S 是定值;(2)求AOB ∆的外心P 的轨迹方程.11. (1)求证:对于任意实数x ,y ,z 都有)22223x y z xy yz zx ++≥++.(2)是否存在实数k >x ,y ,z 下式恒成立?()22223x y z k xy yz zx ++≥++试证明你的结论.12. 在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.2020年全国高中数学联赛安徽赛区初赛试题参考答案一、填空题1.43i -或34i -+2.2133.2π4.()1ln ln 22ln 2+ 5.115 6.465- 7.66- 8.()34,95二、解答题9.解:由E ,F 分别是AD ,BC 的中点,得//EF AB AD ⊥.设P 是E 关于l 的对称点,则//EP AG l ⊥,故四边形AEPG 是等腰梯形. 进而PAG EGA GAB ∠=∠=∠,APG GEA ∠=∠,从而AP HG ⊥.再由HP DE EA PG ===,得HAP PAG GAB ∠=∠=∠.因此3HAB GAB ∠=∠.10.解:(1)()00,M x y 处的切线方程00221x x y y a b -=. 与渐近线方程联立,得()110000,,a b A x y x y x y a b a b ⎛⎫ ⎪= ⎪ ⎪++⎝⎭,()220000,,a b B x y x y x y a b a b ⎛⎫ ⎪-= ⎪ ⎪--⎝⎭. 从而,122112S x y x y ab =-=是定值. (2)由(1)可设(),A a b λλ,,a b B λλ⎛⎫- ⎪⎝⎭,(),P x y ,λ为非零常数.由PA PO PB ==,得()()222222a b x a y b x y x y λλλλ⎛⎫⎛⎫-+-=+=-++ ⎪ ⎪⎝⎭⎝⎭. 从而有()222ax by a b λ+=+,()2212ax by a b λ-=+. 上述两式相乘,得P 的轨迹方程为()222222214a xb y a b -=+.11.解:(1)由均值不等式,221322x y +≥,221322x z +≥,221322y z +≥.故)22223x y z xy yz zx ++≥++.(2)()222222222232322442k k k k k x y z k xy yz zx x y z y z k yz ⎛⎫⎛⎫⎛⎫⎛⎫++-++=--+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭上式0≥恒成立当且仅当2204k -≥且2222423244k k k k ⎛⎫⎛⎫⎛⎫-≤-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.化简得k ≤326240k k -+≥.显然,2k =>. 12.设N 是此图形中三边颜色都相同的三角形数目,M 是此图形中三边颜色不全相同的三角形数目,i x 是以第i 个顶点为端点的红色线段数目,则有32018M N C +=,()2018120172i ii x x M =-=∑. 当且仅当每个1008i x =或1009时,N 取得最小值32320181009100910082C C -⨯=.310092N C =是可以取到的,例如把线段()mod201812018,1504i i j i j →±≤≤≤≤染成红色,其它线段染成蓝色.。
全国高中数学联赛一试模拟试题一
全国高中数学联赛一试模拟试题一一、填空题1.已知sin αcos β=1,则cos(α+β)= .2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = .4.已知3x +19x -1=13-31-x,则实数x = .5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 . 6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = . 二、解答题11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.EBCD ABCDAPQ R2009年全国高中数学联赛江苏赛区初赛(2009年5月3日8∶00-10∶00)一、填空题(每小题7分,共70分)1.已知sin αcos β=1,则cos(α+β)= . 填0.解:由于|sin α|≤1,|cos β|≤1,现sin αcos β=1,故sin α=1,cos β=1或sin α=-1,cos β=-1,∴ α=2kπ+π2,β=2lπ或α=2kπ-π2,β=2lπ+π⇒α+β=2(k +l )π+π2(k ,l ∈Z ).∴ cos(α+β)=0.2.已知等差数列{a n }的前11项的和为55,去掉一项a k 后,余下10项的算术平均值为4.若a 1=-5,则k = .填11.解:设公差为d ,则得55=-5×11+12×11×10d ⇒55d =110⇒d =2.a k =55-4×10=15=-5+2(k -1)⇒k =11.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e = . 填-1+52.解:由(2b )2=2c ×2a ⇒a 2-c 2=ac ⇒e 2+e -1=0⇒e =-1+52.4.已知3x +19x -1=13-31-x ,则实数x = .填1.解:即13x -1=3x3(3x -1)⇒32x -4×3x +3=0⇒3x =1(舍去),3x =3⇒x =1.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD .R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为 .填14. 解:A 、B 到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高.故其比值等于这两个三棱锥的体积比.V APQR =12V APQD =12×13V APCD =12×13×13V ABCD =118V ABCD ;又,S BPQ =S BCD -S BDQ -S CPQ =(1-13-23×13)S BCD =49S BCD ,V RBPQ =49V RBCD =12×49V ABCD =418V ABCD .∴ A 、B 到平面PQR 的距离的比=1∶4.又,可以求出平面PQR 与AB 的交点来求此比值:在面BCD 内,延长PQ 、BD 交于点M ,则M 为面PQR 与棱BD 的交点.由Menelaus 定理知,BM MD ·DQ QC ·CP PB =1,而DQ QC =12,CP PB =12,故BMMD =4.在面ABD 内,作射线MR 交AB 于点N ,则N 为面PQR 与AB 的交点. 由Menelaus 定理知,BM MD ·DR RA ·AN NB =1,而BM MD =4,DR RA =1,故AN NB =14.∴ A 、B 到平面PQR 的距离的比=1∶4.6.设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是 .填[3,4].解:定义域(0,4].在定义域内f (x )单调增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4]. 7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为3000cm 3的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm .若不计净水器中的存水,则净水水箱中最少可以存水 cm 3.填78000.解:设净水器的长、高分别为x ,y cm ,则 xy =300,V =30(20+x )(60+y )=30(1200+60x +20y +xy )≥30(1200+260x ×20y +300)=30(1500+1200)=30×2700.∴ 至少可以存水78000cm 3.8.设点O 是△ABC 的外心,AB =13,AC =12,则→BC ·→AO = . 填-252.解:设|→AO |=|→BO |=|→OC |=R .则→BC ·→AO =(→BO +→OC )·→AO =→BO ·→AO +→OC ·→AO =R 2cos(π-2C )+R 2cos2B=R 2(2sin 2C -2sin 2B )=12(2R sin B )2-12(2R sin C )2=12(122-132)=-252.9.设数列{a n }满足:a n +1a n =2a n +1-2(n =1,2,…),a 2009=2,则此数列的前2009项的和为 .填2008+2.解:若a n +1≠0,则a n =2-2a n +1,故a 2008=2-2,a 2007=2-22-2=-2,a 2006=2+2,a 2005=2.一般的,若a n ≠0,1,2,则a n =2-2a n +1,则a n -1=a n +1-2a n +1-1,a n -2=22-a n +1,a n -3=a n +1,故a n -4=a n .于是,Σk =12009a n=502(a 1+a 2+a 3+a 4)+a2009=502(a 2005+a 2006+a 2007+a 2008)+a 2009=2008+2.10.设a 是整数,0≤b <1.若a 2=2b (a +b ),则b = .BCDAP QR BMNR Q PA DC B填0,3-12,3-1.解:若a 为负整数,则a 2>0,2b (a +b )<0,不可能,故a ≥0.于是a 2=2b (a +b )<2(a +1)⇒a 2-2a -2<0⇒0≤a <1+3⇒a =0,1,2. a =0时,b =0;a =1时,2b 2+2b -1=0⇒b =3-12;a =2时,b 2+2b -2=0⇒b =3-1.说明:本题也可以这样说:求实数x ,使[x ]2=2{x }x . 二、解答题(本大题共4小题,每小题20分,共80分)11.在直角坐标系xOy 中,直线x -2y +4=0与椭圆x 29+y 24=1交于A ,B 两点,F 是椭圆的左焦点.求以O ,F ,A ,B 为顶点的四边形的面积.解:取方程组⎩⎨⎧4x 2+9y 2=36,x =2y -4.代入得,25y 2-64y +28=0.此方程的解为y =2,y =1425.即得B (0,2),A (-7225,1425),又左焦点F 1(-5,0).连OA 把四边形AFOB 分成两个三角形. 得,S =12×2×7225+12×5×1425=125(72+75).也可以这样计算面积:直线与x 轴交于点C (-4,0).所求面积=12×4×2-12×(4-5)×1425=125(72+75).也可以这样计算面积:所求面积=12(0×2-0×0+0×1425-(-7225)×2+(-7225)×0-(-5)×1425+(-5)×0-0×0)=12(14425+14255)=125(72+75). 12.如图,设D 、E 是△ABC 的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12.求BC .解:AD AC =ACAB⇒△ACD ∽△ABC ⇒∠ABC =∠ACD =∠BCE .∴ CE =BE =12.AE =AB -BE =16.∴ cos A =AC 2+AE 2-CE 22AC ·AE =142+162-1222·14·16=142+28·42·14·16=1116.∴ BC 2=AC 2+AB 2-2AC ·AB cos A =142+282-2·14·28·1116=72·9⇒BC =21.13.若不等式x +y ≤k 2x +y 对于任意正实数x ,y 成立,求k 的取值范围.解法一:显然k >0.(x +y )2≤k 2(2x +y )⇒(2k 2-1)x -2xy +(k 2-1)y ≥0对于x ,y >0恒成立.令t =xy>0,则得f (t )=(2k 2-1)t 2-2t +(k 2-1)≥0对一切t >0恒成立. 当2k 2-1≤0时,不等式不能恒成立,故2k 2-1>0.此时当t =12k 2-1时,f (t )取得最小值12k 2-1-22k 2-1+k 2-1=2k 4-3k 22k 2-1=k 2(2k 2-3)2k 2-1.当2k 2-1>0且2k 2-3≥0,即k ≥62时,不等式恒成立,且当x =4y >0时等号成立. ∴ k ∈[62,+∞). 解法二:显然k >0,故k 2≥(x +y )22x +y =x +2xy +y2x +y .令t =x y >0,则k 2≥t 2+2t +12t 2+1=12(1+4t +12t 2+1). 令u =4t +1>1,则t =u -14.只要求s (u )=8uu 2-2u +9的最大值.s (u )=8u +9u-2≤82u ·9u -2=2,于是,12(1+4t +12t 2+1)≤12(1+2)=32.∴k 2≥32,即k ≥62时,不等式恒成立(当x =4y >0时等号成立).又:令s (t )=4t +12t 2+1,则s '(t )=8t 2+4-4t (4t +1)(2t 2+1)2=-8t 2-4t +4(2t 2+1)2,t >0时有驻点t =12.且在0<t <12时,s '(t )>0,在t >12时,s '(t )<0,即s (t )在t =12时取得最大值2,此时有k 2≥12(1+s (12))=32.解法三:由Cauchy 不等式,(x +y )2≤(12+1)(2x +y ).即(x +y )≤622x +y 对一切正实数x ,y 成立. 当k <62时,取x =14,y =1,有x +y =32,而k 2x +y =k 62<62×62=32.即不等式不能恒成立.而当k ≥62时,由于对一切正实数x ,y ,都有x +y ≤622x +y ≤k 2x +y ,故不等式恒成立.∴ k ∈[62,+∞). 14.⑴ 写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;⑵ 是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.EBCDA解:对于任意n∈N*,n2≡0,1(mod 4).设a,b是两个不同的自然数,①若a≡0(mod 4)或b≡0(mod 4),或a≡b≡2(mod 4),均有ab≡0(mod 4),此时,ab+10≡2(mod 4),故ab+10不是完全平方数;②若a≡b≡1(mod 4),或a≡b≡3(mod 4),则ab≡1(mod 4),此时ab+10≡3(mod 4),故ab+10不是完全平方数.由此知,ab+10是完全平方数的必要不充分条件是a≡/b(mod 4)且a与b均不能被4整除.⑴由上可知,满足要求的三个自然数是可以存在的,例如取a=2,b=3,c=13,则2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是满足题意的一组自然数.⑵由上证可知不存在满足要求的四个不同自然数.这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加10后不是完全平方数.故证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No.31 高中数学联赛模拟试卷1、已知0 a b, x a b b, y b b a,则 x, y 的大小关系是.2、设a b c , n N ,且 1 1c n 恒成立,则 n 的最大值为a b b a c3、对于m 1 的一切实数 m ,使不等式 2 x 1 m(x2 1) 都成立的实数x 的取值范围是4 、已知 f x log sin x, 0, ,设 a f sin cos , b f sin cos ,2 2c f sin 2 ,那么 a、b、 c的大小关系是cossin5、不等式4x 2 2 3 x 2000.的解集是19996、函数f x x 2 2x2 2 x 1 的最小值为2x7、若a,b,n R ,且a b n ,则 1 1 1 1 的最小值是.a b8、若3x2 xy 3y 2 20 ,则 8x 2 23y 2的最大值是.9、设n N ,求 | n 1949 | | n 1950 | | n 2001 |的最小值.1 1L 110、求s 1 ,则 s 的整数部分2 3 10611、圆周上写着红蓝两色的数。
已知,每个红色数等于两侧相邻数之和,每个蓝色数等于两侧相邻数之和的一半。
证明,所有红色数之和等于0。
(俄罗斯)12、设a, b, c R ,求证:a2 b2 c2 a b c .b c c a a b 2(第二届“友谊杯”国际数学竞赛题)乌鲁木齐市高级中学数学竞赛培训题 2 参考答案1、解法 1xa bba , ybb aa .a bbbba0 a b,a b b b b a, x y .解法 2xa bbb b axybb aa b, a b b a,1, x y .by解法 31 111a bbbb axya bbbb aaaa bb a1 10, x y .=a0, xy解法 4 原问题等价于比较a bb a 与 2 b 的大小 . 由 x 2y 2 ( x y) 2 , 得2 ( a bba )2 2(ab b a)4b , a bb a 2 b .a bb a ,a b b a 2 b , x y .解法 5 如图 1,在函数 yx 的图象上取三个不同的yC点 A ( b a , b a )、B ( b , b )、C ( a b , a b ).B由图象,显然有 k BCk AB ,即 a bbb b a , A(a b) bb (b a)即 a b bb b a ,亦即 x y .Ob-abb+axa 图 1解法 6令 f (t)a tt , f (t )单a tt调递减,而 b b a ,f (b) f (b a) ,即 a bb bb a , xy .2、解法 1原式a c a c n . n a c a c.而ac a ca bb ca b b cminab b ca b b cb c a b 2 + bc a b 4 ,且当b c ab,即 a c2ba bb ca b b ca b b c时取等号.a c a c 4 . n 4.故选 C .a b b c min解法 2a b c , a b 0, b c 0,a c 0 ,已知不等式化为a 2a2 a c 2 a c 2nc.由c24 ,即4 ,a b b cb b ca b ba b bcacmin2故由已知得 n4,选 C .解 法 3由a b c,知 a b 0,b c 0, ac 0, 有na c1 1.又a b b cac11a bb c1111 24 ,a b b ca bb c即a c1 14 ,由题意, n4.故选 C .a b b cmin解法 4a b c , a b0, b c 0, a c 0 . 已知不等式可变形为a 2a c 2nc.记 k,a b b ca b bca b b c 22 a bb c 2则 k4 .由题意, n 4.故选 C .ab b ca b bc解法 5a b ca 1b 0, 1 0. 于是b c1 144 .比较得 n 4.故选 C .a bb ca bb cacx 2 1 0 x 2 1 0x 2 1 0x 21 0 3、解法 1 题设等价于m 2x 1 或 m2x 1 或2x,即 1 2x 1或x 2 1 x 2 11 0x 21x 2 1 0 x 2 1 0x 23 1 x 1或 x1 ,即 x( 31,2) .2x 1或1,所以 1或112xx 2解法 2已知不等式即 x21 m 2x 1 0 ,令 f (m)x 2 1 m2x 1 ,则当 x 2 1 0 ,即 x1 时, f (m) 是 m 的一次函数,因为 m 1 ,即 1 m 1 时不等 式 恒 成 立 , 所 以 f ( m) 在 1,1 上 的 图 象 恒 在 m 轴 的 下 方 , 故 有f ( 1)x 21 2 x 1 0x 2 2 x 2 03 1 x 2 ( x 1) .f (1) x 2,即x 2,解得 1 2x 12x又当 x1时, f (m) 1,适合题意,当x 1 时, f (m) 3 不合题意 .故 x 的取值范围是3 1 x2 .4、解法 1设 sinp , cos q . p q pq ,而 f x 是减函数,2fp q f pq ,即 a b . pq p qpq p qpq2,2,22 pq f2 pqf pq ,即 cb .故 a bc .p pq .pqq解法 2由题意,令,则 sin13sincos 1 3, cos 2 ,24 ,62sin cos43 , sin 2 2 sin cos33 , sin 10,1 ,f x2 sin cossin cos22是减函数,又 1 343 3 3 ,422f sincosfsin cosfsin sin 2 ,即 a b c .. 2cos解法 3、0,, sin0,1 , f x 是 单 调 减 函 数 , sin0 ,2cos0 .a bsin coslog sin sin coslog sin2sincos log sin2log sin 1 0, ab .又 bc log sin sin coscossinsin 2 log sinsin coslog sinsin coslog sin 1 0,即log sincos 2sin cos 2 sin cossinsin cosb c , a b c .5、解 设 y=4x2 23 x ,由4x 2 0 ,得定义域为 [ 1,3].3 x 0 2y 2 4x2 4(3 x)4 ( 4x 2)(3 x) 10 4 4 x 214x 6 10, y 1020001,3].1999即原不等式在定义域内恒成立,故所求解集为[29.71623题目改为 “ 4x2 23 x的解集是 ,结果一样。
5.2766、解法 1f x1 x 11. 因为两个互为倒数的数,在它们等于 1 时,其2 x 1和可以取到绝对值的最小值. 即当 x 11,即 x 2 或 x0 时, f x 的绝对值最小 . 又x 1 ,故 x 2 时, f x 的绝对值最小 . 又 f x0 ,f x minf 21.选B .解法 2 因为 x1,联想到 sec1 ,于是令 x sec2 ,0,,则 x 1 tan 2.2f xx 2 2x 2x 1 2 1 tan 2 1 1 tan 1 1 2 tan 1 12 x 12 x 1 2 tan 2 tan 2tan21 ,即 x2 时, f x min 1 .故选B .,当且仅当 tan2tan解法3设x x 2 2x2 x 1 , g x 2x 2 x 1 .x g x x 22x 2 2x 2 x 2 4 x 4x 2 20 ,x g x 0 .xfx1, fxmin1.故选 B .1 ,即g x解法 4f x x 2 2x2x 1 2 1 x 1 . 由此联想到万能公式:2x 22 x12tan1 tan 21sin2 ,故令 x 1 tan 20 ,则 f x g20 ,122 tansintan212sin 0 . 又 1 sin1, 0sin 1 , 即 f x1 . f xmin1.故选1,B .sinx 1x 1 0解法5,, f xx 1 2 1 x 1 1 2 x 111当且仅当 x11,即2 x 1 2 2 x 12 2 x 122 x 1x 2 时取等号 .f xmin1.故选 B .解法 6x 1 , f xx 22x 2x 2 22x 2 x 222x 22x 22x1 1 ,当 x 22时取等号 .故选 B .解法 7 由 yx 2 2x 2 去分母并整理,得 x 2 2 2y x 2 2 y0 . x R ,2x 22 2y 24 2 2 y 0 ,即 y 21 0 ,y1或 y 1 . x 1 ,y f xx 1 2 1 0 ,y 1 .当 y1时,由1x 22x2, 解 得2 x 12x2x 2 1, ,f x min1 .故选 B .1 47、证明a,b, n R , n a b 2 ab ,于是 ab n 2,11111 a b 11 n 11 4(n 1)n 2 abababn 2n2,当且仅当 a bn时取211n 2 2等号,1 1 的最小值是 .a b n推广 2 若 a 1 ,a 2 , , a n R ,且 a 1a 2a n 1 ,则1 1 1 1 L 1 1 的最小值是 (n 1) n.a 1 a 2 a n证明a 1 , a 2 , , a n R , a 1 a 2a n 1,11 a 1 a 1 a 2a n( n 1)n 1 a 1 a 1 a 2 a n.a 1a 1a 1同理 11 (n 1)n 1a 2a 1a 2 L a n , ,1 1(n 1)n 1 a n a 1a 2 L a n .故a 2 a 2L a na n1 111L1 1(n 1)n n 1 ( a 1a 2 L a n )(a 1a 2 L a n )nn,当且仅当a 1a 2 a na 1a 2 L a n(n1)a 1 a 2La n1 时取等号 .1 1 1 1 L 1 1 的最小值是 (n 1)n .na 1 a 2 a n若 k, m, a iR (i1,2,, n) ,且 nn1推广 3a im ,则1的最小值是i 1 a iki 1n k n1.mknn 1 nn n证明由均值不等式得,ni 1a i ma ii 11n1n1 kpn kppC n pp1p nkC n 1pL ,C n ( ) C n C n ( p ,n) 1 i 1 i 2 L i p na i k a i k L a i k i 1 a ii 1 a im k1,2,1 2 pn 11 1n11L1n 1从而a ika i ka i k a i ka i k a i k L a i ki 1a iki 1i 11 i 1 i2 n1 i 1 i2 Li n 1 n1212n 1nknk 2nk n 1nk nnk n12n 1n,1 C nmkC n mkL C nmkC n mk1mkm(in1n kn当且仅当 a i1,2, ,n) 时取等号 .故1 的最小值是 1.ni 1 akm ki8、解法 1引入参数 t,Q xytx y 1t 2 x2y 2 t 2x 212t2t 222t 2 y ,又 Q xy3x 2 3y 2 20 ,t 2 x 2 12 y 2 3x 2 3y 2 20,2 2t3 t 2x 231 y2 20.考虑到待求最值的二元式是8x223y 2 , 故 令22t 23 t 2 822, 解 得 t 2 4 或 t 2( 舍 去 ), 故 只 需 令 t2,即可得3 1 23232t 23 2 x 231y 2 20 .因此, 8x 2 23y 2160 ,当且仅当 2xy,即 y 4x 时取82等号 .8x 2 23y 2max160 .235 y 2x 1 y 20cos ,解法 2 已知条件式即x 1 y20 .令 63636335 y 20 sin,63x20 cos2 sin,即321代入待求式 ,并化简 ,y12sin .21得 8x 223y 222321128 sin 2 2232 1128 160 . 故 当且 仅当 y 4x 时,212121 218x 2 23y 2 有最大值 160.解法 3令 8x223y2 t2.从而有8x t cos,t cos , yt sin . 代即 x23yt sin,823入已知等式 ,得3t 2cos 2t 2 sin cos3t 2 sin 2 20 ,818423t 231 20 393 20 36820 368 160. 即2 sin 2sin 247cos 293 47cos2387368x 2 23y 2 160 .解法 4 Q xy 14x y 16x 2 y 2 ,而 xy 3x 23y 2 20,483x 23y 22016x 2 y 2, 即 8x 223y 2160 .8解法 5设 xm n, y m n, 代入条件得 5m 2 7n 220.令 202222m 2cos, nsin则8x23y8 m n23 m n7,31m 2 30mn 31n 262cos 2605sin 2 620 sin 21 744 376cos 27771744 376 160 .7解法 6 设 8x 2 23y 2 s,则s 3x2 xy 3y2 20 8x 2 23y2 ,即 3s 160 x 2 sxy 3s 460 y 2 0 ①.由题设x,y 不同时为 0,故不妨设y 0,则将①式x 2x两边同除以y2 ,得3s 160 s 3s 460 0. 当3s 160 0 时,y y由 = s2 4 3s 160 3s 460 0, 解得368 s 160 ;当3s 160 0 时,x45 .7 y 8综上 , 368 s 160 .故 8x 2 23y2max 160 .7解法 7 8x2 23y2 8 3x 2 xy 3y2 16x 2 8xy y 2 8 20 4x2y160 .故当 4x y 时, 8x 2 23y2 160 .max9.解可从绝对值的几何意义上去想,以| n 1 | | n 2 | | n 3 | | n 4 | 为例,如图: A B1 2 3 4所给的式子的几何意义是数轴上坐标为n 的点N与坐标为1、2、3、4的4个点的距离的和.显然,当 N 在线段 AB 之外时,和大于N 在线段 AB 上时的和;当N 在线段 AB 上时, N 接近AB 的中点,和就逐渐变小,N 重合于AB 的中点时,和达到最小.因为n N ,所以当 n 取2 或 3 时,| n 1| | n 2 | | n 3 | | n 4|最小.对于和式 S=| n 1949 | | n 1950 | | n 2001 | ,设数轴上的点A、B 分别表示1949、2001,则线段 AB 的中点的坐标是1949 2001 1975,2S最小 |1975 1949 | |1975 1950 ||1975 2001| (26 25 L 1) (1 2 L 26) 2 (26 1) 26 702 .2拓展运用同样的思想方法,可以得到下面的对于函数 f ( x) n| x a i |(a1 a n ) ,定理 1 a2i 1n 1若 n 是奇数,则当n 2x a n 1 时, f ( x) 取得最小值 a j a t ;2 j n3 t 12n若 n 是偶数,则当x [ a n ,a n ] 时, f ( x)取得最小值na j2a t1n2 2 j 1 t 1210、解若 { a n } 是等差数列, a n>0,则1 a n an 1 a nan 12,n N , d 是公差).由此,得a n an 1 a nan 1 d( ns 11 1L112 2L2122 3 106 2 2 3 3 106 106 2 12 21 21 1 13 2 106 10 6 1 2 1 3 2 10 6 10 6 1 1 2 2 1 3 2 L 106 106 1 1 2 1 106 1999 .又知 s 1 1 1 1 2 2 2= 2 3 10 6 2 1 3 2 10 6 10 61 12 1 106 1998. 1998 s 1999 ,s 1998,评析s 显然是数列 1 的前106 项的和,直接求和,无法可依.能否用裂项相消法将每一n项拆成异号的两项之和呢?考虑到n 1n 1n n 1 ,于是将 1 变为 2 ,n n n再放大为2 ,或缩小为 2 ,便使问题获解 .n n 1 n 1 n这是一道用“放缩法”求解不等式问题的好题目。