连云港七年级下册数学期末试卷章末练习卷(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连云港七年级下册数学期末试卷章末练习卷(Word 版 含解析)
一、解答题
1.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;
(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示);
(2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.
①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示);
②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数.
2.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .
(1)点M ,N 分别在射线QC ,QF 上(不与点Q 重合),当∠APM +∠QMN =90°时, ①试判断PM 与MN 的位置关系,并说明理由;
②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM 与∠QMN 的关系.(注:此题说理时不能使用没有学过的定理) 3.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.
(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;
(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.
4.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .
(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;
(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;
(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23
∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.
5.已知,//AB CD .点M 在AB 上,点N 在CD 上.
(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)
(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;
(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数.
二、解答题
6.如图1,由线段,,,AB AM CM CD 组成的图形像英文字母M ,称为“M 形BAMCD ”.
(1)如图1,M 形BAMCD 中,若//,50AB CD A C ∠+∠=︒,则M ∠=______; (2)如图2,连接M 形BAMCD 中,B D 两点,若150,B D AMC α∠+∠=︒∠=,试探求A ∠与C ∠的数量关系,并说明理由;
(3)如图3,在(2)的条件下,且AC 的延长线与BD 的延长线有交点,当点M 在线段BD 的延长线上从左向右移动的过程中,直接写出A ∠与C ∠所有可能的数量关系. 7.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.
(1)填空:BAN ∠=_________;
(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
8.问题情境
(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠ ︒;
问题迁移
(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.
①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;
②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.
9.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质来求∠APC .
(1)按小明的思路,易求得∠APC 的度数为 度;
(2)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β.试判断∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.
10.问题情境
(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得
BPC ∠=________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.
①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;
②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.
三、解答题
11.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;
②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .
(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.
12.Rt △ABC 中,∠C=90°,点D 、E 分别是△ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P 在线段AB 上,如图(1)所示,且∠α=50°,则∠1+∠2= °;
(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;
(3)若点P 运动到边AB 的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:. 13.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反
向延长线交于E、F,则∠EAF=;在△AEF中,如果有一个角是另一个角的3
2
倍,求∠ABO
的度数.
14.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=1
3
∠CAB,∠CDP=1
3
∠CDB,试问∠P与∠C、
∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.
15.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,
90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.
(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.
(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=
(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.
(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.
(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.
【参考答案】
一、解答题
1.(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义
解析:(1)1902a ︒- ;(2)①1454
a ︒+ ;②50︒ 【分析】
(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;
(2) ①由(1)知,1902
BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;
②由(1)知,∠BFE = 19012
EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到
''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解.
【详解】
解:(1)如图,由题意可知'//'A E B F ,
∴14a ∠=∠=,
∵//AD BC ,
∴4'B FC a ∠=∠=,
180BFB a '∴∠=︒-,
∴由折叠可知1129022
BFE BFB a '∠=∠=∠=︒-.
(2)①由题(1)可知1902BFE a ∠=︒- , ∵//'EF C G ,
1902
BFE C'GB a ∴∠=∠=︒-, 再由折叠可知:
113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝
⎭', 13454
HGC a ∴∠=∠=︒+;
②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,
由(1)知19012
BFE ∠=︒-∠, 11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝
⎭, 又3∠的度数比1∠的度数大20︒,
∴3=1+20∠∠︒,
()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,
''11402190B FC FGC +=∴∠+∠=∠︒-∠︒,
1=50∴∠︒.
【点睛】
此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
2.(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ ,再根据已知条
解析:(1)①PM ⊥MN ,理由见解析;②∠EPB 的度数为125°;(2)∠APM +∠QMN =90°或∠APM -∠QMN =90°.
【分析】
(1)①利用平行线的性质得到∠APM =∠PMQ ,再根据已知条件可得到PM ⊥MN ; ②过点N 作NH ∥CD ,利用角平分线的定义以及平行线的性质求得∠MNH =35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
3.(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G
解析:(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据
PQ∥CE,即可得出∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=1
2∠QCF+1
2
∠FCE=1
2
∠ECQ=40°;
(2)∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=55°,∠ECG=25°,
∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=1
2
(80°-50°)=15°,∵PQ∥CE,
∴∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,
则∠ECG=x,∠PCF=∠PCD=3
2 x,
∵∠ECD=80°,
∴x+x+3
2x+
3
2
x=80°,
解得x=16°,
∴∠CPQ=∠ECP=x+x+3
2
x=56°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,
解得x=20°,
∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,
∴∠PCQ=1
2
∠FCQ=60°,
∴∠CPQ=∠ECP=80°-60°=20°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
4.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠
解析:(1)80°;(2)∠AKC=1
2∠APC,理由见解析;(3)∠AKC=2
3
∠APC,理由见解
析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线
的定义,得出∠BAK+∠DCK=1
2∠BAP+1
2
∠DCP=1
2
(∠BAP+∠DCP)=1
2
∠APC,进而得
到∠AKC=1
2
∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣
∠DCK=2
3∠BAP﹣2
3
∠DCP=2
3
∠APC,进而得到∠BAK﹣∠DCK=2
3
∠APC.
【详解】
(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=1
2
∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK=1
2∠BAP+1
2
∠DCP=1
2
(∠BAP+∠DCP)=1
2
∠APC,
∴∠AKC=1
2
∠APC;
(3)∠AKC=2
3
∠APC
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAK=2
3∠BAP,∠DCK=2
3
∠DCP,
∴∠BAK﹣∠DCK=2
3∠BAP﹣2
3
∠DCP=2
3
(∠BAP﹣∠DCP)=
2
3
∠APC,
∴∠AKC=2
3
∠APC.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.
5.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EHAB,易得EHABCD,根据平行线的性质
解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EH//AB,易得EH//AB//CD,根据平行线的性质可求解;过F作FH//AB,易得FH//AB//CD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=
180°,可求解∠BMF=60°,进而可求解;
∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=1
2
【详解】
解:(1)过E作EH//AB,如图1,
∴∠BME=∠MEH,
∵AB//CD,
∴HE//CD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN−∠END.
如图2,过F作FH//AB,
∴∠BMF=∠MFK,
∵AB//CD,
∴FH//CD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF−∠FND=180°,
∴2∠BME+2∠END+∠BMF−∠FND=180°,
即2∠BMF+∠FND+∠BMF−∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=1
2∠MEN=1
2
(∠BME+∠END),∠ENP=1
2
∠END,
∵EQ//NP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN−∠NEQ=1
2(∠BME+∠END)−1
2
∠END=1
2
∠BME,
∵∠BME=60°,
∴∠FEQ=1
2
×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.
二、解答题
6.(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α
【分析】
(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.
(2)延长BA,DC交于E,
解析:(1)50°;(2)∠A+∠C=30°+α,理由见解析;(3)∠A-∠DCM=30°+α或30°-α【分析】
(1)过M作MN∥AB,由平行线的性质即可求得∠M的值.
(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题.
(3)分两种情形分别求解即可;
【详解】
解:(1)过M作MN∥AB,
∵AB∥CD,
∴AB∥MN∥CD,
∴∠1=∠A,∠2=∠C,
∴∠AMC=∠1+∠2=∠A+∠C=50°;
故答案为:50°;
(2)∠A+∠C=30°+α,
延长BA,DC交于E,
∵∠B+∠D=150°,
∴∠E=30°,
∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;
(3)①如下图所示:
延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,
∵∠B+∠D=150°,∠AMC=α,∴∠E=30°
由三角形的内外角之间的关系得:
∠1=30°+∠2
∠2=∠3+α
∴∠1=30°+∠3+α
∴∠1-∠3=30°+α
即:∠A-∠C=30°+α.
②如图所示,210-∠A=(180°-∠D CM)+α,即∠A-∠DCM=30°-α.
综上所述,∠A-∠DCM=30°+α或30°-α.
【点睛】
本题考查了平行线的性质.解答该题时,通过作辅助线准确作出辅助线l∥AB,利用平行线的性质(两直线平行内错角相等)将所求的角∠M与已知角∠A、∠C的数量关系联系起来,从而求得∠M的度数.
7.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,
解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【详解】
解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,
∴∠BAN=180°×2
=72°,
5
故答案为:72;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1•(30+t),
解得t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1•(30+t)+(2t-180)=180,
解得t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°-2t,
∴∠BAC=72°-(180°-2t)=2t-108°,
又∵∠ABC=108°-t,
∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,
∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点睛】
本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.8.(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠ 【分析】
(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;
(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;
②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α. 【详解】
解:(1)过点P 作PG ∥AB ,则PG ∥CD ,
由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°, 又∵∠PBA =125°,∠PCD =155°, ∴∠BPC =360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P 作FD 的平行线PQ , 则DF ∥PQ ∥AC ,
∴∠α=∠EPQ ,∠β=∠APQ , ∴∠APE =∠EPQ +∠APQ =∠α+∠β,
∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;
②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由: 过P 作PQ ∥DF ,
∵DF ∥CG ,
∴PQ∥CG,
∴∠β=∠QPA,∠α=∠QPE,
∴∠APE=∠APQ-∠EPQ=∠β-∠α.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
9.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β
【分析】
(1)过P作PE∥AB,通过平行线性质求∠A
解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,
∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β
【分析】
(1)过P作PE∥AB,通过平行线性质求∠APC即可;
(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
【详解】
解:(1)过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
故答案为110°;
(2)∠CPD=∠α+∠β,
理由是:如图3,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD =∠DPE +∠CPE =∠α+∠β;
(3)当P 在BA 延长线时,∠CPD =∠β-∠α,
理由是:如图4,过P 作PE ∥AD 交CD 于E ,
∵AD ∥BC ,
∴AD ∥PE ∥BC ,
∴∠α=∠DPE ,∠β=∠CPE ,
∴∠CPD =∠CPE-∠DPE =∠β-∠α;
当P 在AB 延长线时,∠CPD =∠α-∠β,
理由是:如图5,过P 作PE ∥AD 交CD 于E ,
∵AD ∥BC ,
∴AD ∥PE ∥BC ,
∴∠α=∠DPE ,∠β=∠CPE ,
∴∠CPD =∠DPE -∠CPE =∠α-∠β.
【点睛】
本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.
10.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即
解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)
1()2
ANE αβ∠=∠+∠ 【分析】
(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数;
(2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;
②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;
(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到
ANE ∠与α∠,β∠之间的数量关系为1()2
ANE αβ∠=∠+∠. 【详解】
解:(1)如图1,过点P 作//PG AB ,则//PG CD ,
由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,
又∵125PBA ︒∠=,155PCD ︒∠=,
∴36012515580BPC ︒︒︒︒∠=--=,
故答案为:80︒;
(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;
过点P 作PM ∥FD ,则PM ∥FD ∥CG ,
∵PM ∥FD ,
∴∠1=∠α,
∵PM ∥CG ,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:APE αβ∠=∠+∠,
②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:
过P 作//PQ DF ,
∵//DF CG ,
∴//PQ CG ,
∴QPA β∠=∠,QPE α∠=∠,
∴APE APQ EPQ βα∠=∠-∠=∠-∠;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN 平分∠DEP ,AN 平分∠PAC ,
∴∠3=12∠α,∠4=1
2∠β, ∴1()2
ANE αβ∠=∠+∠,
∴ANE ∠与α∠,β∠之间的数量关系为1()2
ANE αβ∠=∠+∠. 【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
三、解答题
11.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902
D A ∠=︒+∠;②360°;(4)124
E ∠=︒; =14
F ∠︒.
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1)D A B C ∠=∠+∠+∠.理由如下:
如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,
BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;
(2)A D B C ∠+∠=∠+∠.理由如下:
在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,
AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;
(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC
∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,
1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.
②连结BE .
∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;
(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,
26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902
GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,
3336064(2)644012422
E GAE AGD GDE CAE CD
F ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
12.(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.
【详解】
试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2
解析:(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.
【详解】
试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;
(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;
(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;
(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.
试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,
∵∠C=90°,∠α=50°,
∴∠1+∠2=140°,
故答案为140;
(2)由(1)得∠α+∠C=∠1+∠2,
∴∠1+∠2=90°+∠α.
故答案为∠1+∠2=90°+∠α.
(3)∠1=90°+∠2+∠α.理由如下:如图③,
设DP与BE的交点为M,
∵∠2+∠α=∠DME,∠DME+∠C=∠1,
∴∠1=∠C+∠2+∠α=90°+∠2+∠α.
(4)如图④,
设PE与AC的交点为F,
∵∠PFD=∠EFC,
∴180°-∠PFD=180°-∠EFC,
∴∠α+180°-∠1=∠C+180°-∠2,
∴∠2=90°+∠1-∠α.
故答案为∠2=90°+∠1-∠α
点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.
13.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得
到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=1
2∠PAB,∠ABC=1
2
∠ABM,
于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别
是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的3
2
倍
分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=1
2∠PAB,∠ABC=1
2
∠ABM,
∴∠BAC+∠ABC=1
2
(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=1
2∠BAO,∠FAO=1
2
∠GAO,
∴∠E=∠EOQ﹣∠EAO=1
2(∠BOQ﹣∠BAO)=1
2
∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=∠EAO+∠FAO=1
2
(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO= 1
2∠BAO,∠EOQ=1
2
∠BOQ,
∴∠E=∠EOQ-∠EAO=1
2(∠BOQ-∠BAO)=1
2
∠ABO,
∵有一个角是另一个角的3
2
倍,故有:
①∠EAF=3
2
∠F,∠E=30°,∠ABO=60°;
②∠F=3
2
∠E,∠E=36°,∠ABO=72°;
③∠EAF=3
2
∠E,∠E=60°,∠ABO=120°(舍去);
④∠E=3
2
∠F,∠E=54°,∠ABO=108°(舍去);
∴∠ABO为60°或72°.
【点睛】
本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.
14.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠
解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;
(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).
(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.
【详解】
解:(1)在图2中有3个以线段AC为边的“8字形”,
故答案为3;
(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为360°.
15.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°.
∴∠PDE=60°−45°=15°,
故答案为:15°;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,
∴∠LFA=∠BAC=45°,∠RHG=∠QGH,
∵FL∥MN,HR∥PQ,PQ∥MN,
∴FL∥PQ∥HR,
∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,
∴∠QGH=1
2∠FGQ,∠HFA=1
2
∠GFA,
∵∠DFE=30°,
∴∠GFA=180°−∠DFE=150°,
∴∠HFA=1
2
∠GFA=75°,
∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,
∴∠RHG=∠QGH=1
2∠FGQ=1
2
(180°−105°)=37.5°,
∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;
(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,
∴D′A=DF,DD′=EE′=AF=5cm,
∵DE+EF+DF=35cm,
∴DE+EF+D′A+AF+DD′=35+10=45(cm),
即四边形DEAD′的周长为45cm;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,
分三种情况:
BC∥DE时,如图5,此时AC∥DF,
∴∠CAE=∠DFE=30°,
∴3t=30,
解得:t=10;
BC∥EF时,如图6,
∵BC∥EF,
∴∠BAE=∠B=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°,
∴3t=90,
解得:t=30;
BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,
∵∠DRM=∠EAM+∠DFE=45°+30°=75°,
∴∠BKA=∠DRM=75°,
∵∠ACK=180°−∠ACB=90°,
∴∠CAK=90°−∠BKA=15°,
∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,
∴3t=120,
解得:t=40,
综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.
【点睛】
本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。