2020-2021初中数学图形的平移,对称与旋转的难题汇编含答案解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学图形的平移,对称与旋转的难题汇编含答案解析(1)
一、选择题
1.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
2.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,
使点C落在C′的位置,C′D交AB于点Q,则BQ
AQ
的值为()
A2B3C.
2
2
D
3
【答案】A
【解析】
【分析】
根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度
数,求出其他角的度数,可得AQ=AC,将BQ
AQ
转化为
BQ
AC
,再由相似三角形和等腰直角
三角形的边角关系得出答案.
【详解】
解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,
∴△ADE是等腰直角三角形,即AE=DE=
2
2
AD,
在Rt△ABC中,
∵∠BAC=90°,AD是△ABC的中线,
∴AD =CD =BD ,
由折叠得:AC =AC ′,∠ADC =∠ADC ′=45°,CD =C ′D ,
∴∠CDC ′=45°+45°=90°,
∴∠DAC =∠DCA =(180°﹣45°)÷2=67.5°=∠C ′AD ,
∴∠B =90°﹣∠C =∠CAE =22.5°,∠BQD =90°﹣∠B =∠C ′QA =67.5°,
∴AC ′=AQ =AC ,
由△AEC ∽△BDQ 得:BQ AC =BD AE , ∴BQ AQ =BQ AC =AD AE =2AE AE
=2. 故选:A .
【点睛】
考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.
3.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )
A .(8,4)-
B .(8,0)-
C .(2,4)-
D .(2,0)-
【答案】A
【解析】
【分析】
根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.
【详解】
∵点P (-5,2),
∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),
即(-8,4),
故选:A .
【点睛】
此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.
4.如图,在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,AD 是斜边BC 上的中线,将△ACD 沿AD 对折,使点C 落在点F 处,线段DF 与AB 相交于点E ,则∠BED 等于( )
A .120°
B .108°
C .72°
D .36° 【答案】B
【解析】
【分析】 根据三角形内角和定理求出C 90B 54∠∠=︒-=︒.由直角三角形斜边上的中线的性质得出AD =BD =CD ,利用等腰三角形的性质求出BAD B 36∠∠==︒,
DAC C 54∠∠==︒,利用三角形内角和定理求出
ADC 180DAC C 72∠∠∠=︒--=︒.再根据折叠的性质得出
ADF ADC 72∠∠==︒,然后根据三角形外角的性质得出
BED BAD ADF 108∠∠∠=+=︒.
【详解】
∵在Rt ABC V 中,BAC 90∠=︒,B 36∠=︒,
∴C 90B 54∠∠=︒-=︒.
∵AD 是斜边BC 上的中线,
∴AD BD CD ==,
∴BAD B 36∠∠==︒,DAC C 54∠∠==︒,
∴ADC=180DAC C 72∠∠∠︒--=︒.
∵将△ACD 沿AD 对折,使点C 落在点F 处,
∴ADF ADC 72∠∠==︒,
∴BED BAD ADF 108∠∠∠=+=︒.
故选B .
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
5.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.
下列说法中错误的是( )
A .勒洛三角形是轴对称图形
B .图1中,点A 到¶BC
上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.
【详解】
鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;
点A 到¶BC
上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;
鲁列斯曲边三角形的周长=3×
60180DE DE ππ⨯=⨯ ,圆的周长=22
DE DE ππ⨯=⨯ ,故说法正确.
故选C.
【点睛】
主要考察轴对称图形,弧长的求法即对于新概念的理解.
6.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )
A .(5,3)
B .(﹣1,﹣2)
C .(﹣1,﹣1)
D .(0,﹣1)
【答案】C
【解析】
【分析】
根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.
【详解】
∵A(1,3)的对应点的坐标为(﹣2,1),
∴平移规律为横坐标减3,纵坐标减2,
∵点B(2,1)的对应点的坐标为(﹣1,﹣1),
故选C.
【点睛】
本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.
7.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.
【答案】D
【解析】
【分析】
根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.
【详解】
A、不能通过平移得到,故不符合题意;
B、不能通过平移得到,故不符合题意;
C、不能通过平移得到,故不符合题意;
D、能够通过平移得到,故符合题意,
故选D.
【点睛】
本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.
8.下列图形中,不是中心对称图形的是()
A.平行四边形B.圆C.等边三角形D.正六边形
【答案】C
【解析】
【分析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
9.下列四个交通标志图中,是轴对称图形的是( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断后利用排除法求解.
【详解】
A 、不是轴对称图形,故本选项错误;
B 、是轴对称图形,故本选项正确;
C 、不是轴对称图形,故本选项错误;
D 、不是轴对称图形,故本选项错误.
故选B .
【点睛】
本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
10.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )
A .()5,2
B .()2,5
C .()2,5-
D .()5,2-
【答案】A
【解析】
【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.
【详解】
作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,
则OD=A′D′,AD=OD′,OA=OA′,
△OAD≌△A′OD′(SSS),
∵A(-2,5),
∴OD=2,AD=5,
∴点A′的坐标为(5,2),
故选:A.
【点睛】
此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
故选:D.
12.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()
A.3 B.4 C.5 D.6
【答案】C
【解析】
【分析】
先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF 的最小值,再根据菱形的性质求出E′F的长度即可.
【详解】
解:如图
∵四边形ABCD 是菱形,对角线AC=6,BD=8,
∴AB=2234+=5, 作E 关于AC 的对称点E′,连接E′F ,则E′F 即为PE+PF 的最小值,
∵AC 是∠DAB 的平分线,E 是AB 的中点,
∴E ′在AD 上,且E′是AD 的中点,
∵AD=AB ,
∴AE=AE ′,
∵F 是BC 的中点,
∴E ′F=AB=5.
故选C .
13.观察下列图形,其中既是轴对称又是中心对称图形的是( )
A .
B .
C .
D .
【答案】D
【解析】
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
A. 是中心对称图形,不是轴对称图形,选项不符合题意;
B. 是轴对称图形,不是中心对称图形,选项不符合题意;
C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;
D. 是中心对称图形,也是轴对称图形,选项符合题意,
故选D.
【点睛】
本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.
14.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )
A .()2,10
B .()2,0-
C .()2,10或()2,0-
D .()10, 2或()2,0-
【答案】C
【解析】
【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.
【详解】
Q 四边形OABC 是正方形,(5,3)D
5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒
由题意,分以下两种情况:
(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限
由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒
10OB OC B C ''∴=+=
∴点D ¢的坐标为(2,10)
(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上
由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒
∴点D ''的坐标为(2,0)-
综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-
故选:C .
【点睛】
本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.
15.下列所给图形是中心对称图形但不是轴对称图形的是()
A.B.C.D.
【答案】D
【解析】
A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;
C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.
D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;
故选D.
16.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;
④若B、D是对称点,则PB=PD.其中正确的结论有( )
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
【详解】
由轴对称的性质知,①②③④都正确.
故选D.
17.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()
A.21:10 B.10:21
C.10:51 D.12:01
【答案】C
【解析】
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,
故选C.
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
18.斐波那契螺旋线也称为“黄金螺旋线”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线图案.下列斐波那契螺旋线图案中属于轴对称图形的是()
A.B.C.D.
【答案】A
【解析】
【分析】
如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【详解】
根据轴对称图形的定义,只有选项A是轴对称图形,其他不是.
故选:A
【点睛】
考核知识点:轴对称图形.理解定义是关键.
19.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()
A.3个 B.4个 C.5个 D.2个
【答案】A
【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有
3个.
故选:A.
20.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.
【答案】B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,
A、是轴对称图形,不是中心对称图形,不符合题意;
B、是轴对称图形,也是中心对称图形,符合题意;
C、是轴对称图形,不是中心对称图形,不符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选B.。