桥东区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥东区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )
A .k
B .﹣k
C .1﹣k
D .2﹣k
2. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是(
)
A .M ∪N
B .M ∩N
C .∁I M ∪∁I N
D .∁I M ∩∁I N
3. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( )
A .{3,4}
B .{1,2,5,6}
C .{1,2,3,4,5,6}
D .∅
4. 设集合(
)
A .
B .
C .
D .
5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( )
A .4
B .5
C .6
D .9
6. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )
A .
B .
C .
D .
7. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是(
)
A .
B .
C .2015
D .
8. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )
A .30°
B .60°
C .120°
D .150°
9. (文科)要得到的图象,只需将函数的图象( )
()2log 2g x x =()2log f x x =A .向左平移1个单位 B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位
10.在极坐标系中,圆
的圆心的极坐标系是( )。
A
B C D
11.如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(
,﹣
),∠AOC=α,若|BC|=1,则
cos 2
﹣sin
cos
﹣
的值为(
)
A .
B .
C .﹣
D .﹣
12.设集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B=( )
A .{1,2}
B .{﹣1,4}
C .{﹣1,2}
D .{2,4}
二、填空题
13.已知复数
,则1+z 50+z 100= .
14.已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集 是 ▲ .
15.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为
.
16.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .
17.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .
18.已知圆O:x2+y2=1和双曲线C:﹣=1(a>0,b>0).若对双曲线C上任意一点A(点A在圆O外
),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则﹣= .
三、解答题
19.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{a n}的通项公式;
(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.
20.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=
成立,且f(1)=1,当0<x<2时,f(x)>0.
(1)证明:函数f(x)是奇函数;
(2)试求f (2),f (3)的值,并求出函数f (x )在[2,3]上的最值.
21.(本小题12分)在多面体中,四边形与是边长均为正方形,平面
ABCDEFG ABCD CDEF a CF ⊥,平面,且.
ABCD BG ⊥ABCD 24AB BG BH ==(1)求证:平面平面;AGH ⊥EFG (2)若,求三棱锥的体积.
4a =G ADE -
【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.
22.已知椭圆C : +=1(a >b >0)与双曲线﹣y 2=1的离心率互为倒数,且直线x ﹣y ﹣2=0经过椭圆的右
顶点.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)设不过原点O 的直线与椭圆C 交于M 、N 两点,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.
23.已知椭圆的离心率,且点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.
24.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.
(Ⅰ)求线段AD的长;
(Ⅱ)比较∠ADC和∠ABC的大小.
桥东区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】D
【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,
∴f(2016)=20163a+2016b+1=k,
∴20163a+2016b=k﹣1,
∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.
故选:D.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
2.【答案】D
【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},
∴M∪N={1,2,3,6,7,8},
M∩N={3};
∁I M∪∁I N={1,2,4,5,6,7,8};
∁I M∩∁I N={2,7,8},
故选:D.
3.【答案】B
【解析】解:∵A={1,2,3,4},B={3,4,5,6},
∴A∩B={3,4},
∵全集I={1,2,3,4,5,6},
∴∁I(A∩B)={1,2,5,6},
故选B.
【点评】本题考查交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
4.【答案】B
【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,
集合B中的解集为x>,
则A∩B=(,+∞).
故选B
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
5.【答案】B
【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;
②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;
③x=2时,y=0,1,2,∴x﹣y=2,1,0;
∴B={0,﹣1,﹣2,1,2},共5个元素.
故选:B.
6.【答案】
D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=,
故选:D.
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
7.【答案】D
【解析】解:∵2S n=a n+,∴,解得a1=1.
当n=2时,2(1+a2)=,化为=0,又a2>0,解得,
同理可得.
猜想.
验证:2S n=…+=,=
=,
因此满足2S n=a n+,
∴.
∴S n=.
∴S2015=.
故选:D.
【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.
8. 【答案】A 【解析】解:∵sinC=2sinB ,∴c=2
b ,
∵a 2﹣b 2=
bc ,∴cosA=
=
=
∵A 是三角形的内角∴A=30°故选A .
【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.
9. 【答案】C 【解析】
试题分析:,故向上平移个单位.()2222log 2log 2log 1log g x x x x ==+=+考点:图象平移.
10.【答案】B 【解析】,圆心直角坐标为(0,-1),极坐标为
,选B 。
11.【答案】 A
【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=,
又∠AOC=α,∴∠AOB=﹣α,∴cos (
﹣α)=
,﹣sin (
﹣α)=﹣
,
∴sin (
﹣α)=
.∴cos α=cos[﹣(
﹣α)]=cos
cos (
﹣α)+sin
sin (
﹣α)
=
+
=,
∴sin α=sin[﹣(﹣α)]=sin
cos (
﹣α)﹣cos
sin (
﹣α)
=﹣=.
∴cos 2
﹣sin cos
﹣=
(2cos 2﹣1)﹣sin α=
cos α﹣sin α
=
﹣
=
,
故选:A .
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.
12.【答案】A
【解析】解:集合A={x|﹣2<x <4},B={﹣2,1,2,4},则A ∩B={1,2}.故选:A .
【点评】本题考查交集的运算法则的应用,是基础题.
二、填空题
13.【答案】 i .
【解析】解:复数
,
所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50=1+i ﹣1=i ;故答案为:i .
【点评】本题考查了虚数单位i 的性质运用;注意i 2=﹣1.
14.【答案】[]
2,4-考
点:利用函数性质解不等式1111]
15.【答案】 (±,0) y=±2x .
【解析】解:双曲线的a=2,b=4,
c=
=2
,
可得焦点的坐标为(±
,0),
渐近线方程为y=±x ,即为y=±2x .故答案为:(±,0),y=±2x .
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题
.
16.【答案】 .
【解析】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,
设点P到CD的距离为h,
则有V=×2×h××2,
当球的直径通过AB与CD的中点时,h最大为2,
则四面体ABCD的体积的最大值为.
故答案为:.
【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.
17.【答案】 ①④ .
【解析】解:由所给的正方体知,
△PAC在该正方体上下面上的射影是①,
△PAC在该正方体左右面上的射影是④,
△PAC在该正方体前后面上的射影是④
故答案为:①④
18.【答案】 1 .
【解析】解:若对双曲线C上任意一点A(点A在圆O外),
均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,
可通过特殊点,取A(﹣1,t),
则B(﹣1,﹣t),C(1,﹣t),D(1,t),
由直线和圆相切的条件可得,t=1.
将A(﹣1,1)代入双曲线方程,可得﹣=1.
故答案为:1.
【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)设等比数列{a n}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列.
∴2×3a2=a1+3+a3+4,∴6q=1+7+q2,解得q=2.
(2)由(1)可得:a n=2n﹣1.
b n=lna3n+1=ln23n=3nln2.
∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)
=ln2.
20.【答案】
【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.
又f(x﹣y)=,
所以f(﹣x)=f[(1﹣x)﹣1]====
==,
故函数f(x)奇函数.
(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,
令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,
∵f(x﹣2)==,
∴f(x﹣4)=,
则函数的周期是4.
先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,
设2<x<3,则0<x﹣2<1,
则f(x﹣2)=,即f(x)=﹣<0,
设2≤x1≤x2≤3,
则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,
则f (x 1)﹣f (x 2)=,
∴f (x 1)>f (x 2),
即函数f (x )在[2,3]上为减函数,
则函数f (x )在[2,3]上的最大值为f (2)=0,最小值为f (3)=﹣1.
【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.
21.【答案】
【解析】(1)连接,由题意,知,,∴平面.FH CD BC ⊥CD CF ⊥CD ⊥BCFG 又∵平面,∴.GH ⊂BCFG CD ⊥GH 又∵,∴……………………………2分
EF
CD A EF GH ⊥由题意,得,,,∴,14BH a =
34CH a =12BG a =22225
16
GH BG BH a =+=,,
22225()4FG CF BG BC a =-+=222225
16
FH CF CH a =+=则,∴.……………………………4分
222
FH FG GH =+GH FG ⊥又∵,平面.……………………………5分
EF FG F = GH ⊥EFG ∵平面,∴平面平面.……………………………6分
GH ⊂AGH AGH ⊥EFG
22.【答案】
【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,
又∵直线x﹣y﹣2=0经过椭圆的右顶点,
∴右顶点为(2,0),即a=2,c=,b=1,…
∴椭圆方程为:.…
(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…
则,
于是…
又直线OM、MN、ON的斜率依次成等比数列.
∴…
由m≠0得:
又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2
显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,
直线OM、ON中至少有一个斜率不存在,与已知矛盾)…
设原点O到直线的距离为d,则
∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…
【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.
23.【答案】
【解析】【知识点】圆锥曲线综合椭圆
【试题解析】(Ⅰ)由已知,
点在椭圆上,,解得.
所求椭圆方程为
(Ⅱ)设,,的垂直平分线过点, 的斜率存在.
当直线的斜率时,
当且仅当时,
当直线的斜率时,设.
消去得:
由.①
,
,的中点为
由直线的垂直关系有,化简得②
由①②得
又到直线的距离为,
时,.
由,,解得;
即时,;
综上:;
24.【答案】
【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,
在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,
由余弦定理可得AD==;
(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,
∴问题转化为比较∠ADE与∠EBC的大小.
在△ADE中,由正弦定理可得,
∴sin∠ADE=<=sin30°,
∴∠ADE<30°
∴∠ADC<∠ABC.
【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.。