深圳公明中英文学校数学轴对称填空选择单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳公明中英文学校数学轴对称填空选择单元测试卷(解析版)
一、八年级数学全等三角形填空题(难)
1.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:
①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=1
4
BC2.其中正确结论
是_____(填序号).
【答案】①②
【解析】
分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.
详解:∵∠B=45°,AB=AC
∴点D为BC的中点,
∴AD=CD=BD
故①正确;
由AD⊥BC,∠BAD=45°
可得∠EAD=∠C
∵∠MDN是直角
∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°
∴∠ADE=∠CDF
∴△ADE≌△CDF(ASA)
故②正确;
∴DE=DF,AE=CF,
∴AF=BE
∴BE+AE=AF+AE
∴AE+AF>EF
故③不正确;
由△ADE≌△CDF可得S△ADF=S△BDE
∴S四边形AEDF=S△ACD=1
2×AD×CD=
1
2
×
1
2
BC×
1
2
BC=
1
8
BC2,
故④不正确.
故答案为①②.
点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.
2.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
【答案】1或7
【解析】
【分析】
分点P在线段BC上和点P在线段AD上两种情况解答即可.
【详解】
设点P的运动时间为t秒,则BP=2t,
当点P在线段BC上时,
∵四边形ABCD为长方形,
∴AB=CD,∠B=∠DCE=90°,
此时有△ABP≌△DCE,
∴BP=CE,即2t=2,解得t=1;
当点P在线段AD上时,
∵AB=4,AD=6,
∴BC=6,CD=4,
∴AP=BC+CD+DA=6+4+6=16,
∴AP=16-2t,
此时有△ABP≌△CDE,
∴AP=CE,即16-2t=2,解得t=7;
综上可知当t为1秒或7秒时,△ABP和△CDE全等.
故答案为1或7.
【点睛】
本题考查了全等三角形的判定,判定三角形全等方法有:ASA、SAS、AAS、SSS、HL.解决本题时注意分情况讨论,不要漏解.
3.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长

.
【答案】41.
【解析】
作AD′⊥AD ,AD′=AD ,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
即∠BAD=∠CAD′,
在△BAD 与△CAD′中,
BA CA BAD CAD AD AD =⎧⎪∠=∠'⎨⎪='⎩
, ∴△BAD ≌△CAD′(SAS),
∴BD=CD′.
∠DAD′=90°
由勾股定理得22()=32=42AD AD +'
∠D′DA+∠ADC=90°
由勾股定理得22()=932=41DC DD +'+
∴41,
41.
4.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.
【答案】
252
【解析】
【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.
【详解】
∵90ABC ∠=︒,AB=BC,
∴∠A=45︒,
∵D 为AC 边上中点,
∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,
∵DE DF ⊥,
∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,
∴∠ADE=∠BDF,
∴△ADE ≌△BDF,
∴BF==AE=3,
∵CF=2,
∴AB=BC=BF+CF=5,
∴ABC ∆的面积为
212BC ⋅=252, 故答案为:
252
. 【点睛】
此题考查等腰直角三角形的性质,三角形全等的判定及性质.
5.如图,已知△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,若BE 交AD 于点F ,则∠AFE 的大小为_____(度).
【答案】60
【分析】
根据△ABC 为等边三角形得到AB =BC ,∠ABD =∠BCE =60°,再利用BD =CE 证得△ABD ≌△BCE ,得到∠BAD =∠CBE ,再利用内角和外角的关系即可得到∠AFE=60°.
【详解】
∵△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且BD =CE ,
∴AB =BC ,∠ABD =∠BCE =60°,
在△ABD 和△BCE 中,
AB BC ABD BCE BD CE =⎧⎪∠∠⎨⎪=⎩
=,
∴△ABD ≌△BCE (SAS ),
∴∠BAD =∠CBE ,
∵∠ABF +∠CBE =∠ABC =60°,
∴∠ABF +∠BAD =60°,
∵∠AFE =∠ABF +∠BAD ,
∴∠AFE =60°,
故答案为:60.
【点睛】
此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD =∠CBE ,再利用外角和内角的关系求∠AFE 是解题的关键.
6.如图,直角三角形ABC 与直角三角形BDE 中,点B,C,D 在同一条直线上,已知AC=AE=CD ,∠BAC 和∠ACB 的角平分线交于点F ,连DF,EF,分别交AB 、BC 于M 、N ,已知点F 到△ABC 三边距离为3,则△BMN 的周长为____________.
【答案】6
【解析】
【分析】
由角平分线和三角形的内角和定理可得∠AFC =135°,由△AFC ≌△DFC 可得
∠DFC =∠AFC =135°,可得∠AFD =90°.同理可得∠CFE =90°,可求得∠MFN =45°,过点F 作FP ⊥AB 于点P ,FQ ⊥BC 于点Q ,由正方形的半角模型可得MN =MP +NQ ,由此即可得出答案.
解:过点F 作FP ⊥AB 于点P ,FQ ⊥BC 于点Q ,过点F 作FG ⊥FM ,交BC 于点G .
∵点F 是∠BAC 和∠BCA 的角平分线交点,
∴FP =FQ =3,
∵∠ABC =90°,
∴四边形BPFQ 是正方形,
∴BP =BQ =3.
在Rt △ABC 中,∠BAC +∠BCA =90°,
∵AF 、CF 是角平分线,
∴∠FAC +∠FCA =45°,
∴∠AFC =180°-45°=135°.
易证△AFC ≌△DFC (SAS ),
∴∠AFC =∠DFC =135°,
∴∠ADF =90°,
同理可得∠EFC =90°,
∴∠MFN =360°-90°-90°-135°=45°.
∵∠PFM +∠MFN =90°,∠MFN +∠QFG =90°,
∴∠PMF =∠QFG ,
∵∠FPM =∠FQG =90°,FP =FQ ,
∴△FPM ≌△FQG (ASA ),
∴PM =QG ,FM =FG .
在△FMN 和△FGN 中
45FM FG MFN GFN FN FN =⎧⎪∠=∠=⎨⎪=⎩
∴△FMN ≌△FGN (SAS ),
∴MN =NG ,
∴MN =NG =NQ +QG =PM +QN ,
∴△BMN 的周长为:
BM +BN +MN
= BM +BN + PM +QN
=BP +BQ
=3+3
=6.
故答案为:6.
【点睛】
本题是一道全等三角形的综合题,主要考查了全等三角形的判定和性质的应用,角平分线的性质,以及全等三角形常用辅助线的作法,作出辅助线,准确的找出全等三角形是解决此题的关键.
7.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为
_______________.
【答案】(10
3

11
3
).
【解析】
【详解】
解:∵点P的坐标为(a,2a-3),
∴点P在直线y=2x-3上,
如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,
则∠E=∠ADP=90°,
∵△ACP是以AC为斜边的等腰直角三角形,
∴AP=PC,∠APD=∠PCE,
∴△APD≌△PCE,
∴PE=AD , 又∵OD=2a-3,AO=3,
∴AD=2a-6=PE ,
∵DE=OB=4,DP=a ,
又∵DP+PE=DE ,
∴a+(2a-6)=4,
解得a=
103 ∴2a-3=
113, ∴P (103,113
); 当点P 在AC 下方时,过P 作y 轴的垂线,垂足为D ,交BC 于E ,
a=2,
此时,CE=2,BE=2,
即BC=2+2=4>AO ,不合题意;
综上所述,点P 的坐标为P (
103,113) 故答案为P (103,113
).
8.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.
【答案】AC 中点或点P 与点C 重合
【解析】
分析:本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=5cm ,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC ,P 、C 重合.
详解:根据三角形全等的判定方法HL 可知:
①当P 运动到AP BC =的,
∵90C QAP ∠=∠=︒,
在Rt ABC △和Rt QPA 中,
AP BC PQ AB =⎧⎨=⎩
, ∴Rt ABC △≌Rt ()QPA HL ,
即5AP BC ==,
即P 运动到AC 的中点.
②当P 运动到与C 点重合时,AP=AC ,
在Rt △ABC 与Rt △QPA 中,
AP AC PQ AB =⎧⎨=⎩
∴Rt △QAP ≌Rt △BCA (HL ),
即AP=AC=10cm ,
∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.
故答案为:AC 中点或点P 与点C 重合.
点睛:本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.
9.如图,在△ABC 和△ADC 中,下列论断:
①AB =AD ;②∠ABC =∠ADC =90°;③BC =DC .把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.
【答案】2
【解析】
根据题意,可得三种命题,由①②⇒③,根据直角三角形全等的判定HL 可证明,是真命题;由①③⇒②,能证明∠ABC=∠ADC ,但是不能得出一定是90°,是假命题;由②③⇒①,根据SAS 可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.
故答案为:2.
点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.
10.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为点E .已知AB =12,则△DEB 的周长为_______.
【答案】12
【解析】
根据角平分线的性质,由AD是∠CAB的平分线,DE⊥AB,∠C=90°,可得到CD=ED,然后根据直角三角形的全等判定HL证得Rt△ACD≌Rt△AED,再由全等的性质得到
AC=AE,然后根据AC=BC,因此可得△DEB的周长
=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=12.
故答案为:12.
点睛:此题主要考查了全等三角形的性质和角平分线的性质,解题时根据全等三角形的性质和角平分线的性质得到相等的线段,然后再代还求解即可.
二、八年级数学全等三角形选择题(难)
11.如图,与都是等边三角形,,下列结论中,正确的个数是
( )①;②;③;④若,且,则.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB

∴,①正确;

∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA-∠ADC≠∠CEA-∠AEB
∴,③错误

∴∠DAC+∠BCA=180°
∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正确
故由①②④三个正确,
故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
12.下列四组条件中,能够判定△ABC和△DEF全等的是()
A.AB=DE,BC=EF,∠A=∠D B.AC=EF,∠C=∠F,∠A=∠D
C.∠A=∠D,∠B=∠E,∠C=∠F D.AC=DF,BC=DE,∠C=∠D
【答案】D
【解析】
根据三角形全等的判定定理:SSS、SAS、ASA、AAS、HL,逐一判断:
A、AB=DE,BC=EF,∠A=∠D,不符合“SAS”定理,不能判断全等;
B、AC=EF,∠C=∠F,∠A=∠D,不符合“ASA”定理,不能判断全等;
C、∠A=∠D,∠B=∠E,∠C=∠F ,“AAA”不能判定全等;
不符合“SAS”定理,不对应,不能判断全等;
D、AC=DF,BC=DE,∠C=∠D,可利用“SAS”判断全等;
故选:D.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
13.下列条件中,不能判定两个直角三角形全等的是( )
A.两条直角边对应相等B.有两条边对应相等
C.斜边和一锐角对应相等D.一条直角边和斜边对应相等
【答案】B
【解析】
根据全等三角形的判定SAS,可知两条直角边对应相等的两个直角三角形全等,故A不正确;
根据一条直角边和斜边对应相等的两个直角三角形,符合全等三角形的判定定理HL,能判
定全等;若两条直角边对应相等的两个直角三角形,符合全等三角形的判定定理SAS,也能判全等,但是有两边对应相等,没说明是什么边对应,故不能判定,故B正确.
根据全等三角形的判定AAS,可知斜边和一锐角对应相等的两直角三角形全等,故C不正确;
根据直角三角形的判定HL,可知一条直角边和斜边对应相等两直角三角形全等,故D不正确.
故选B.
点睛:此题主要考查了直角三角形全等的判定,解题时利用三角形全等的判定SSS,SAS,ASA,AAS,HL,直接判断即可.
14.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()
A.∠OAB+∠BCO=180°B.∠OAB=∠BCO
C.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定
【答案】C
【解析】
根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.
故选C.
15.如图,在Rt△ABC中,∠CBA=90°,∠CAB的角平分线AP和∠ACB外角的平分线CF相交于点D,AD交CB于点P,CF交AB的延长线于点F,过点D作DE⊥CF交CB的延长线于点G,交AB的延长线于点E,连接CE并延长交FG于点H,则下列结论:①∠CDA=45°;
②AF-CG=CA;③DE=DC;④FH=CD+GH;⑤CF=2CD+EG;其中正确的有()
A.①②④B.①②③C.①②④⑤D.①②③⑤
【答案】D 【解析】
试题解析:①利用公式:∠CDA=1
2
∠ABC=45°,①正确;
②如图:延长GD与AC交于点P',
由三线合一可知CG=CP',
∵∠ADC=45°,DG⊥CF,
∴∠EDA=∠CDA=45°,
∴∠ADP=∠ADF,
∴△ADP'≌△ADF(ASA),
∴AF=AP'=AC+CP'=AC+CG,故②正确;
③如图:
∵∠EDA=∠CDA,
∠CAD=∠EAD,
从而△CAD≌△EAD,
故DC=DE,③正确;
④∵BF⊥CG,GD⊥CF,
∴E为△CGF垂心,
∴CH⊥GF,且△CDE、△CHF、△GHE均为等腰直角三角形,∴2CD,故④错误;
⑤如图:作ME⊥CE交CF于点M,
则△CEM 为等腰直角三角形,从而CD=DM ,CM=2CD ,EM=EC ,
∵∠MFE=∠CGE ,
∠CEG=∠EMF=135°,
∴△EMF ≌△CEG (AAS ),
∴GE=MF ,
∴CF=CM+MF=2CD+GE ,
故⑤正确;
故选D
点睛:本题考查了角平分线的性质、等腰三角形的判定与性质、三角形垂心的定义和性质、全等三角形的判定与性质等多个知识点,技巧性很强,难度较大,要求学生具有较高的几何素养.对于这一类多个结论的判断型问题,熟悉常见的结论及重要定理是解决问题的关键,比如对第一个结论的判定,若熟悉该模型则可以秒杀.
16.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,
AQ PQ =,PR PS =,下面三个结论:
①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).
A .①②
B .②③
C .①③
D .①②③
【答案】A
【解析】
连接AP ,
由题意得,90ARP ASP ∠=∠=︒,
在Rt APR 和Rt APS 中,
AP AP PR PS =⎧⎨=⎩
, ∴△APR ≌()APS HL ,
∴AS AR =,故①正确.
BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,
在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,
∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,
∴PQ AB ∥,故②正确;
在Rt BRP 和Rt CSP 中,只有PR PS =,
不满足三角形全等的条件,故③错误.
故选A .
点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.
17.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:
①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).
A .①②
B .①③
C .②③
D .①②③
【答案】D
【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出
∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.
详解:∵60BAC ∠=︒,
∴180
60120ABC ACB ∠+∠=︒-︒=︒,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴12EBC ABC ∠=∠,12
ECB ACB ∠=∠, ∴11()1206022
EBC ECB ABC ACB ∠+∠=
∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.
如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,
∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,
∴AD 为BAC ∠的平分线,
∴DF DG =,
∴36090260120FDG ∠=︒-︒⨯-︒=︒,
又∵120BDC ∠=︒,
∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.
∴BDF CDG ∠=∠,
∵在BDF 和CDG △中,
90BFD CGD DF DG
BDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩
, ∴BDF ≌()CDG ASA ,
∴DB CD =,
∴1(180120)302
DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,
∵BE 平分ABC ∠,AE 平分BAC ∠,
∴ABE CBE ∠=∠,1302
BAE BAC ∠=
∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,
∴DEB DBE ∠=∠,
∴DB DE =,故②正确.
∵DB DE DC ==,
∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,
∴2BDE BCE ∠=∠,故③正确,
综上所述,正确结论有①②③,
故选:D .
点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.
18.如图,AD 是△ABC 的外角平分线,下列一定结论正确的是( )
A .AD+BC=AB+CD ,
B .AB+AC=DB+DC,
C .AD+BC <AB+C
D ,
D .AB+AC <DB+DC
【答案】D
【解析】
【分析】 在BA 的延长线上取点E,使AE=AC,连接ED,证△ACD ≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC <DB+DC.
【详解】
解: 在BA 的延长线上取点E, 使AE=AC,连接ED,
∵AD 是△ABC 的外角平分线,
∴∠EAD=∠CAD,
在△ACD 和△AED 中,
AD AD EAD CAD AC AE =⎧⎪∠=∠⎨⎪=⎩
∴△ACD ≌△AED(SAS)
∴DE=DC,
在△EBD 中,BE <BD+DE,
∴AB+AC <DB+DC
故选:D.
【点睛】
本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB 、AC 、DB 、DC 的长度为边的三角形是解题的关键,也是解本题的难点.
19.在ABC 中,2,72A B ACB ∠=∠∠≠︒,CD 平分ACB ∠,P 为AB 的中点,则下列各式中正确的是( )
A .AD BC CD =-
B .AD B
C AC =- C .A
D BC AP =-
D .AD BC BD =-
【答案】B
【解析】
【分析】 可在BC 上截取CE=CA ,连接DE ,可得△ACD ≌△ECD ,得DE=AD ,进而再通过线段之间的转化得出线段之间的关系.
【详解】
解:∵∠A=2∠B,∴∠A﹥∠B∴BC﹥AC
∴可在BC上截取CE=CA,连接DE(如图),
,∴∠ACD=∠BCD
∵CD平分ACB
又∵CD=CD,CE=CA
∴△ACD≌△ECD,
∴AD=ED,∠CED=∠A=2∠B
又∠CED=∠B+∠BDE
∴∠B=∠BDE
∴AD=DE=BE,
∴BC=BE+EC=AD+AC
所以AD=BC-AC
故选:B
若A选项成立,则CD=AC,
∴∠A=∠CDA=∠CDE=∠CED=2∠B=2∠EDB
∴∠CDA+∠CDE+∠EDB=180°
即5∠EDB=180°∴∠EDB=36°
∴∠A=72°,∠B=36°
∴∠ACB=72°与已知∠ACB≠72°矛盾,故选项A不正确;
假设C选项成立,则有AP=AC,作∠BAC的平分线,连接FP,∴△CAF≌△PAF≌△PBF,
∴∠CFA=∠AFP=∠PFB=60°
∠B=30°,∠ACB=90°
当∠ACB=90°时,选项C才成立,
∴当∠ACB≠72°时,选项C不一定成立;
假设D选项成立,则AD=BC-BD
由图可知AD=BA-BD
∴AB=BC
∴∠A=∠ACB=2∠B
∴∠A+∠ACB+∠B=180°
∴∠B=36°,∠ACB=72
这与已知∠ACB ≠72°矛盾,故选项D 不成立.
故选:B
【点睛】
本题考查的是考查的是利用角的平分线的性质说明线段之间的关系.
,,
20.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ; ③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )
A .①②
B .①③④
C .①②③
D .①②④ 【答案】D
【解析】
①∵F 是AD 的中点,
∴AF=FD , ∵在?ABCD 中,AD=2AB ,
∴AF=FD=CD ,
∴∠DFC=∠DCF ,
∵AD ∥BC ,
∴∠DFC=∠FCB ,
∴∠DCF=∠BCF ,
∴∠DCF=12∠BCD ,故此选项正确;
延长EF ,交CD 延长线于M ,
∵四边形ABCD 是平行四边形,
∴AB ∥CD ,
∴∠A=∠MDF ,
∵F 为AD 中点,
∴AF=FD ,
在△AEF和△DFM中,
∠A=∠FDMAF=DF∠AFE=∠DFM,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;
③∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误;
④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确.
故正确的有:①②④.
故选D.
21.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()
A.AB﹣AD>CB﹣CD B.AB﹣AD=CB﹣CD
C.AB﹣AD<CB﹣CD D.AB﹣AD与CB﹣CD的大小关系不确定【答案】A
【解析】
如图,在AB上截取AE=AD,连接CE.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又AC是公共边,
∴△AEC≌△ADC(SAS),
∴AE=AD,CE=CD,
∴AB-AD=AB-AE=BE,BC-CD=BC-CE,
∵在△BCE中,BE>BC-CE,
∴AB-AD>CB-CD.
故选A.
22.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是
A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC
【答案】B
【解析】
【分析】
根据余角的性质得到∠C=∠ABE,∠EBC=∠BAC.根据SAS推出△ABF≌△ADF,根据全等三角形的性质得到BF=DF,故A正确;由全等三角形的性质得到∠ABE=∠ADF,等量代换得到∠ADF=∠C,根据平行线的判定得到DF∥BC,故D正确;根据直角三角形的性质得到DF >EF,等量代换得到BF>EF;故C正确;根据平行线的性质得到
∠EFD=∠EBC=∠BAC=2∠1,故B错误.
【详解】
∵AB⊥BC,BE⊥AC,∴∠C+∠BAC=∠ABE+∠BAC=90°,∴∠C=∠ABE.同
理:∠EBC=∠BAC.
在△ABF与△ADF中,∵12
AD AB
AF AF
=


∠=∠

⎪=

,∴△ABF≌△ADF,∴BF=DF,故A正确,
∵△ABF≌△ADF,∴∠ABE=∠ADF,∴∠ADF=∠C,∴DF∥BC,故D 正确;
∵∠FED=90°,∴DF>EF,∴BF>EF;故C正确;
∵DF∥BC,∴∠EFD=∠EBC.∵∠EBC=∠BAC=∠BAC=2∠1,∴∠EFD=2∠1,故B错误.
故选B.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,证得△ABF≌△ADF是解题的关键.
23.在和中,,高,则和的关系是( )
A.相等B.互补
C.相等或互补D.以上都不对
【答案】C
【解析】
试题解析:当∠C′为锐角时,如图1所示,
∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,
∴Rt△ADC≌Rt△A′D′C′,
∴∠C=∠C′;
当∠C为钝角时,如图3所示,
∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,
∴Rt△ACD≌Rt△A′C′D′,
∴∠C=∠A′C′D′,
∴∠C+∠A′C′B′=180°.
故选C.
24.下列命题中的假命题是()
A.等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等
B.等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等
C.等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等
D.直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等
【答案】D
【解析】
【分析】
根据等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定进行判定即可.
【详解】
解:A、等边三角形的一个内角的平分线把这个等边三角形分成的两个三角形全等,正确,是真命题;
B、等腰三角形底边上的中线把这个等腰三角形分成的两个三角形全等,正确,是真命题;
C、等腰直角三角形底边上的高把这个等腰直角三角形分成的两个三角形全等,正确,是真命题;
D、直角三角形斜边上的中线把这个直角三角形分成的两个三角形全等,错误,是假命题,
故答案为D.
【点睛】
本题考查了等边三角形、等腰三角形、直角三角形的性质和全等三角形的判定,其中灵活应用所学知识是解答本题的关键.
25.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )
A .AD +BC =AB
B .与∠CBO 互余的角有两个
C .∠AOB =90°
D .点O 是CD 的中点
【答案】B
【解析】
【分析】 根据角平分线上的点到角的两边距离相等可得AD =AE ,BC =BE ,利用角平分线的定义和平角的性质可得到∠AOB 的度数,再利用“HL ”证明Rt △AOD 和Rt △AOE 全等,根据全等三角形对应边相等可得OD =OE ,同理可得OC =OE ,然后求出∠AOB =90°,然后对各选项分析判断即可得解.
【详解】
∵点A ,B 分别是∠NOP ,∠MOP 平分线上的点,∴AD =AE ,BC =BE .
∵AB =AE +BE ,∴AB =AD +BC ,故A 选项结论正确;
与∠CBO 互余的角有∠COB ,∠EOB ,∠OAD ,∠OAE 共4个,故B 选项结论错误; ∵点A 、B 分别是∠NOP 、∠MOP 平分线上的点,∴∠AOE =
12∠EOD ,∠BOC =12∠MOE ,∴∠AOB =12
(∠EOD +∠MOE )=12×180°=90°,故C 选项结论正确; 在Rt △AOD 和Rt △AOE 中,AO AO AD AE =⎧⎨
=⎩,∴Rt △AOD ≌Rt △AOE (HL ),∴OD =OE ,同理可得OC =OE ,∴OC =OD =OE ,∴点O 是CD 的中点,故D 选项结论正确.
故选B .
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.
26.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()
A .∠1=∠3
B .∠2=∠3
C .∠3=∠4
D .∠4=∠5
【答案】A
【解析】
【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.
【详解】
如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒
45BAC ACB ∠∴∠==︒
904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒
BF AD ⊥
1190BAD CBG ∴∠+∠=∠+∠=︒
BAD CBG ∴∠=∠
在BAD ∆和CBG ∆中,90BAD CBG AB BC ABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
()BAD CBG ASA ∴∆≅∆
,1BD CG G ∴=∠=∠
点D 是BC 的中点
CD BD CG ∴==
在CDF ∆和CGF ∆中,45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩
()CDF CGF SAS ∴∆≅∆
3G ∴∠=∠
13∠∠∴=
故选:A .
【点睛】
本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.
27.如图所示,△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:①∠PBC =15°,②AD ∥BC ,③PC ⊥AB ,④四边形ABCD 是轴对称图形,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
【分析】
根据周角的定义先求出∠BPC 的度数,再根据对称性得到△BPC 为等腰三角形,∠PBC 即可求出;根据题意:有△APD 是等腰直角三角形;△PBC 是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD 是轴对称图形,进而可得②③④正确.
【详解】
根据题意,BPC 36060290150∠=-⨯-= , BP PC =,
()
PBC 180150215∠∴=-÷=,①正确;
根据题意可得四边形ABCD 是轴对称图形,④正确;
∵∠DAB+∠ABC=45°+60°+60°+15°=180°,
∴AD//BC ,②正确;
∵∠ABC+∠BCP=60°+15°+15°=90°,
∴PC ⊥AB ,③正确,
所以四个命题都正确,
故选D .
【点睛】
本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.
28.在ABC ∆中,已知AB BC =,90ABC ∠=︒,点E 是BC 边延长线上一点,如图所示,将线段AE 绕点A 逆时针旋转90︒得到AF ,连接CF 交直线AB 于点G ,若53BC CE =,则AG BG
=( )
A .73
B .83
C .113
D .133
【答案】D
【解析】
【分析】
过点F 作FD ⊥AG ,交AG 的延长线于点D, 设BC=5x ,利用AAS 证出△FAD ≌△AEB ,从而用x 表示出AD ,BD ,然后利用AAS 证出△FDG ≌△CBG ,即可用x 表示出BG,AG 从而求出结论.
【详解】
解:过点F 作FD ⊥AG ,交AG 的延长线于点D
∵53
BC CE = 设BC=5x ,则CE=3x
∴BE=BC +CE=8x
∵5AB BC x ==,90ABC ∠=︒,
∴∠BAC=∠BCA=45°
∴∠BCA=∠CAE +∠E=45°
由旋转可知∠EAF=90°,AF=EA
∴∠CAE +∠FAD=∠EAF -∠BAC=45°
∴∠FAD=∠E 在△FAD
和△AEB 中
90FAD E D ABE AF EA ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
∴△FAD ≌△AEB
∴AD=EB=8x ,FD=AB
∴BD=AD -AB=3x ,FD=CB
在△FDG 和△CBG 中
90FDG CBG FGD CGB
FD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△FDG ≌△CBG
∴DG=BG=12BD=32
x ∴AG=AB +BG=132
x ∴1313233
2
x
AG x BG == 故选D .
【点睛】
此题考查的是全等三角形的判定及性质,掌握构造全等三角形的方法和全等三角形的判定及性质是解决此题的关键.
29.如图,在等腰△ABC 中,AB =AC ,∠A =20°,AB 上一点D ,且AD =BC ,过点D 作DE ∥BC 且DE =AB ,连接EC ,则∠DCE 的度数为( )
A .80°
B .70°
C .60°
D .45°
【答案】B
【解析】
【分析】 连接AE .根据ASA 可证△ADE ≌△CBA ,根据全等三角形的性质可得AE=AC ,
∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.
【详解】
如图所示,连接AE.
∵AB=DE,AD=BC
∵DE∥BC,
∴∠ADE=∠B,可得AE=DE
∵AB=AC,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE与△CBA中,
DAE ACB
AD BC
ADE B
∠∠



⎪∠∠





∴△ADE≌△CBA(ASA),
∴AE=AC,∠AED=∠BAC=20°,
∵∠CAE=∠DAE-∠BAC=80°-20°=60°,
∴△ACE是等边三角形,
∴CE=AC=AE=DE,∠AEC=∠ACE=60°,
∴△DCE是等腰三角形,
∴∠CDE=∠DCE,
∴∠DEC=∠AEC-∠AED=40°,
∴∠DCE=∠CDE=(180-40°)÷2=70°.
故选B.
【点睛】
考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.
30.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,
PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;
③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()
A.②③④B.①②C.①④D.①②③④【答案】B
【解析】
【分析】
连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】
解:如图
连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
AP是∠BAC的平分线,∠1=∠2,
△APR≌△APS.
AS=AR,
又QP/AR,
∠2 = ∠3又∠1 = ∠2,
∠1=∠3,
AQ=PQ,
没有办法证明△PQR≌△CPS,③不成立,
没有办法证明AC-AQ=2SC,④不成立.
所以B选项是正确的.
【点睛】
本题主要考查三角形全等及三角形全等的性质.。

相关文档
最新文档