永和县二中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永和县二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4
B .2
C .
D .2
2. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
=(
)
A .﹣1
B .2
C .﹣5
D .﹣3
3. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )
A .36种
B .18种
C .27种
D .24种
4. 函数y=2|x|的图象是(
)
A .
B .
C .
D .
5. 设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=(
)
A .(1,2)
B .[1,2]
C .[1,2)
D .(1,2]
6. 如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是(
)
A .增函数且最小值为3
B .增函数且最大值为3
C .减函数且最小值为﹣3
D .减函数且最大值为﹣3
7. 平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥β
C .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α
D .α内的任何直线都与β平行
8. 如图所示,程序执行后的输出结果为(
)
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .﹣1
B .0
C .1
D .29. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )
A .A
B ⊂α
B .AB ⊄α
C .由线段AB 的长短而定
D .以上都不对
10.极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )
A .1
B .
C .
D .2
11.已知命题和命题,若为真命题,则下面结论正确的是( )
p p q ∧A .是真命题 B .是真命题
C .是真命题
D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝12.设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则(
)
A .T=π,
B .T=π,A=2
C .T=2π,
D .T=2π,A=2
二、填空题
13.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)14.将曲线向右平移
个单位后得到曲线,若与关于轴对称,则1:C 2sin(04
y x π
ωω=+>6
π
2C 1C 2C x ω
的最小值为_________.
15.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣APQC 的体积为 .
16.【泰州中学2018届高三10月月考】设函数,其中,若存在唯一的整数
()()21x
f x e
x ax a =--+1a <,使得,则的取值范围是
0x ()00f x <a
17.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:
甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”
结果,四名学生中有两人说对了,则这四名学生中的
两人说对了.
18.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为
.
1111]
三、解答题
19.某运动员射击一次所得环数X 的分布如下:X 0~678910P
0.2
0.3
0.3
0.2
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.(I )求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望E ξ.
20.设函数f (x )=x 3﹣6x+5,x ∈R (Ⅰ)求f (x )的单调区间和极值;
(Ⅱ)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围.
21.已知﹣2≤x ≤2,﹣2≤y ≤2,点P 的坐标为(x ,y )
(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;
(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.
22.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.
23.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P,M,N椭圆C上的三个动点.
(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;
(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.
24.已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+a n.(Ⅰ)求数列{a n},{b n}的通项公式;
(Ⅱ)求数列{}的前n项和T n.
永和县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】A
【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),
∴AB是正方体的体对角线,AB=,
设正方体的棱长为x,
则,解得x=4.
∴正方体的棱长为4,
故选:A.
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
2.【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f′(x)=0的两个根,
∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由f′(x)=3ax2+2bx+c=0,
得2+(﹣1)==1,
﹣1×2==﹣2,
即c=﹣6a,2b=﹣3a,
即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),
则===﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
3.【答案】C
【解析】
排列、组合及简单计数问题.
【专题】计算题;分类讨论.
【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.
【解答】解:分4种情况讨论,
①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,
②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,
③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,
④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况,
则共有6+12+6+3=27种乘船方法,
故选C.
【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.
4.【答案】B
【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)
∴y=2|x|是偶函数,
又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.
且当x=0时,y=1;x=1时,y=2,故A,D错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
5.【答案】D
【解析】解:A={x|x2+x﹣6≤0}={x|﹣3≤x≤2}=[﹣3,2],
要使函数y=有意义,则x﹣1>0,即x>1,
∴函数的定义域B=(1,+∞),
则A∩B=(1,2],
故选:D.
【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础
6.【答案】D
【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,
则那么f(x)在区间上为减函数,且有最大值为﹣3,
故选:D
【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.
7.【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.
当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.
当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.
当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,
故选D.
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
8.【答案】B
【解析】解:执行程序框图,可得
n=5,s=0
满足条件s<15,s=5,n=4
满足条件s<15,s=9,n=3
满足条件s<15,s=12,n=2
满足条件s<15,s=14,n=1
满足条件s<15,s=15,n=0
不满足条件s<15,退出循环,输出n的值为0.
故选:B.
【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.
9.【答案】A
【解析】解:∵线段AB在平面α内,
∴直线AB上所有的点都在平面α内,
∴直线AB与平面α的位置关系:
直线在平面α内,用符号表示为:AB⊂α
故选A.
【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.
10.【答案】A
【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,
可知两条曲线是同心圆,如图,|PQ|的最小值为:1.
故选:A.
【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.
11.【答案】C 【解析】]
试题分析:由为真命题得都是真命题.所以是假命题;是假命题;是真命题;
p q ∧,p q p ⌝q ⌝p q ∨是假命题.故选C.
()()p q ⌝∨⌝考点:命题真假判断.12.【答案】B
【解析】解:由三角函数的公式化简可得:
=2(
)=2(sin2xcos +cos2xsin
)=2sin (2x+
),
∴T==π,A=2
故选:B
二、填空题
13.【答案】 12
【解析】解:安排甲工程放在第一位置时,乙丙与剩下的两个工程共有种方法,
同理甲在第二位置共有2×2种方法,甲在第三位置时,共有2种方法.由加法原理可得: +4+2=12种.
故答案为:12.
【点评】本题考查了排列与乘法原理,优先安排除了甲乙丙3个工程后剩下的2个工程的方案是解题的关键,属于中档题.
14.【答案】6
【解析】解析:曲线的解析式为,由与关于轴对2C 2sin[(]2sin()6446
y x x π
πππ
ωωω=-
+=+-1C 2C x
称知,即对一切
sin()sin()4
6
4
x x π
π
πωωω+
-
=-+1cos()sin(sin()cos(06
4
6
4
x x ππππωωωω⎡
⎤++-+=⎢⎥⎣
⎦
恒成立,∴∴,∴,由得的最小值为6.x R ∈1cos()06
sin()0
6πωπω⎧+=⎪⎪⎨
⎪=⎪⎩
(21)6k πωπ=+6(21),k k Z ω=+∈0ω>ω15.【答案】V
【解析】
【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C ,
所求四棱锥B ﹣APQC 的体积,转化为三棱锥A
′﹣ABC 体积,就是:故答案为:
16.【答案】【解析】试题分析:设
,由题设可知存在唯一的整数,使得
在直线0x 的下方.因为
,故当
时,
,函数
单调递减; 当
时,
,函数单调递增;故,而当
时,
,故当
且
,解之得
,应填答案
.3,12e ⎡⎫
⎪⎢⎣⎭
考点:函数的图象和性质及导数知识的综合运用.
【易错点晴】本题以函数存在唯一的整数零点,使得为背景
,设置了一道求函数解析式中的参数0x ()00f x <的取值范围问题,目的是考查函数的图象和性质及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数,使得在直线
的下方.然后再借助导数的知识求出函数的最小值,依
0x 据题设建立不等式组求出解之得.
17.【答案】乙 ,丙【解析】【解析】
甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。
故答案为:乙,丙。
18.【答案】8cm 【解析】
考点:平面图形的直观图.
三、解答题
19.【答案】
【解析】解:(1)设A=“该运动员两次都命中7环”,
则P(A)=0.2×0.2=0.04.
(2)依题意ξ在可能取值为:7、8、9、10
且P(ξ=7)=0.04,
P(ξ=8)=2×0.2×0.3+0.32=0.21,
P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,
P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,
∴ξ的分布列为:
ξ78910
P0.040.210.390.36
ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.
【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.
20.【答案】
【解析】解:(Ⅰ)
∴当,
∴f(x)的单调递增区间是,单调递减区间是
当;当
(Ⅱ)由(Ⅰ)的分析可知y=f(x)图象的大致形状及走向,
∴当的图象有3个不同交点,
即方程f(x)=α有三解.
21.【答案】
【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),
满足(x﹣2)2+(y﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).
(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,
满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,
依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);
∴所求的概率P=.
(2)当x,y∈R时,
满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,
满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,
∴所求的概率P==.
【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.
22.【答案】
【解析】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴f(2)﹣f(1)=4=4×1.
f(3)﹣f(2)=8=4×2,
f(4)﹣f(3)=12=4×3,
f(5)﹣f(4)=16=4×4
∴f(5)=25+4×4=41.…
(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…
∴f(2)﹣f(1)=4×1,
f(3)﹣f(2)=4×2,
f(4)﹣f(3)=4×3,
…
f(n﹣1)﹣f(n﹣2)=4•(n﹣2),
f(n)﹣f(n﹣1)=4•(n﹣1)…
∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,
∴f(n)=2n2﹣2n+1.…
23.【答案】
【解析】解:(Ⅰ)由题意得解得a=2,b=1,
所以椭圆方程为.
(Ⅱ)(i)由已知,直线MN的斜率存在,
设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).
由得(1+4k2)x2﹣4kx﹣3=0,
∴x1+x2=,x1x2=,
又.
所以S△PMN=|PD|•|x1﹣x2|=
=.
令t=,则t≥,k2=
所以S△PMN=,
令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,
所以△PMN面积的最大值为.
(ii)假设存在△PMN是以O为中心的等边三角形.
(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.
又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).
从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.
(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,
又O为△PMN的中心,则,可知.
设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,
又x12+4y12=4,x22+4y22=4,两式相减得k MN=,
从而k MN=.
所以k OP•k MN=•()=≠﹣1,
所以OP与MN不垂直,与等边△PMN矛盾.
综上所述,不存在△PMN是以O为中心的等边三角形.
【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想
24.【答案】
【解析】解:(Ⅰ)由题意知数列{a n}是公差为2的等差数列,
又∵a1=3,∴a n=3+2(n﹣1)=2n+1.
列{b n}的前n项和S n=n2+a n=n2+2n+1=(n+1)2
当n=1时,b1=S1=4;
当n≥2时,.
上式对b1=4不成立.
∴数列{b n}的通项公式:;
(Ⅱ)n=1时,;
n≥2时,,
∴.
n=1仍然适合上式.
综上,.
【点评】本题考查了求数列的通项公式,训练了裂项法求数列的和,是中档题.。