高中物理必修第3册 静电场及其应用试卷易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修第3册 静电场及其应用试卷易错题(Word 版 含答案)
一、第九章 静电场及其应用选择题易错题培优(难)
1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。

取无穷远处电势为零,则( )
A .只有MN 区间的电场方向向右
B .在N 点右侧附近存在电场强度为零的点
C .在ON 之间存在电势为零的点
D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】
AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为
12Q Q >,根据2Q
E k
r
=在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确;
C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确;
D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。

故选BC 。

2.如图所示,a 、b 、c 、d 四个质量均为 m 的带电小球恰好构成“三星拱月”之形,其中 a 、b 、c 三个完全相同的带电小球在光滑绝缘水平面内的同一圆周上绕 O 点做半径为 R 的匀速圆周运动,三小球所在位置恰好将圆周等分。

小球 d 位于 O 点正上方 h 处,且在外力 F 作用下恰处于静止状态,已知 a 、b 、c 三小球的电荷量大小均为 q ,小球 d 的电荷量大小为 6q ,h =2R 。

重力加速度为 g ,静电力常量为 k 。

则( )
A .小球 a 一定带正电
B .小球 c 的加速度大小为2
2
33kq mR
C .小球 b 2R mR
q k
π
D .外力 F 竖直向上,大小等于mg +2
2
26kq R
【答案】BD 【解析】 【分析】 【详解】
A .a 、b 、c 三小球所带电荷量相同,要使三个做匀速圆周运动,d 球与a 、b 、c 三小球一定是异种电荷,由于d 球的电性未知,所以a 球不一定带正电,故A 错误。

BC .设 db 连线与水平方向的夹角为α,则
223cos 3R h α==+ 22
6sin 3
R h α=
+=
对b 球,根据牛顿第二定律和向心力得:
22222264cos 2cos302cos30()q q q k k mR ma h R R T
πα⋅-︒==+︒ 解得
23R
mR
T q k
π=
2
2
33kq a mR
= 则小球c 的加速度大小为2
33kq mR
,故B 正确,C 错误。

D .对d 球,由平衡条件得
2
222
6263sin q q kq F k mg mg h R R
α⋅=+=++ 故D 正确。

故选BD 。

3.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则()
A .小球运动到
B B .小球运动到B 点时的加速度大小为3g
C .小球从A 点运动到B 点过程中电势能减少mgR
D .小球运动到B 点时对轨道的压力大小为3mg +k 12
2
q q R 【答案】AD 【解析】 【分析】 【详解】
A.带电小球q 2在半圆光滑轨道上运动时,库仑力不做功,故机械能守恒,则:
212
B mgR mv =
解得:
B v 故A 正确;
B.小球运动到B 点时的加速度大小为:
22v a g R
==
故B 错误;
C.小球从A 点运动到B 点过程中库仑力不做功,电势能不变,故C 错误;
D.小球到达B 点时,受到重力mg 、库仑力F 和支持力F N ,由圆周运动和牛顿第二定律得:
2
122B
N q q v F mg k m R R
--=
解得:
12
2
3N q q F mg k
R =+ 根据牛顿第三定律,小球在B 点时对轨道的压力为:
12
2
3q q mg k
R + 方向竖直向下,故D 正确.
4.如图所示,内壁光滑的绝缘半圆容器静止于水平面上,带电量为q A 的小球a 固定于圆心O 的正下方半圆上A 点;带电量为q ,质量为m 的小球b 静止于B 点,其中∠AOB =30°。

由于小球a 的电量发生变化,现发现小球b 沿容器内壁缓慢向上移动,最终静止于C 点(未标出),∠AOC =60°。

下列说法正确的是( )
A .水平面对容器的摩擦力向左
B .容器对小球b 的弹力始终与小球b 的重力大小相等
C .出现上述变化时,小球a 的电荷量可能减小
D .出现上述变化时,可能是因为小球a 的电荷量逐渐增大为32
(23)A q
【答案】BD 【解析】 【分析】 【详解】
A .对整体进行受力分析,整体受到重力和水平面的支持力,两力平衡,水平方向不受力,所以水平面对容器的摩擦力为0,故A 错误;
B .小球b 在向上缓慢运动的过程中,所受的外力的合力始终为0,如图所示
小球的重力不变,容器对小球的弹力始终沿半径方向指向圆心,无论小球a 对b 的力如何变化,由矢量三角形可知,容器对小球的弹力大小始终等于重力大小,故B 正确; C .若小球a 的电荷量减小,则小球a 和小球b 之间的力减小,小球b 会沿半圆向下运动,与题意矛盾,故C 错误;
D .小球a 的电荷量未改变时,对b 受力分析可得矢量三角形为顶角为30°的等腰三角形,此时静电力为
2
2sin15A
qq mg k
L ︒= a 、b 的距离为
2sin15L R =︒
当a 的电荷量改变后,静电力为
2A
qq mg k
L '='
a 、
b 之间的距离为
L R '=
由静电力
12
2'
q q F k
L = 可得
32
23A A q q -=
-'() 故D 正确。

故选BD 。

5.如图所示,质量相同的A 、B 两物体放在光滑绝缘的水平面上,所在空间有水平向左的匀强电场,场强大小为E ,其中A 带正电,电荷量大小为q ,B 始终不带电。

一根轻弹簧一端固定在墙面上,另一端与B 物体连接,在电场力作用下,物体A 紧靠着物体B ,一起压缩弹簧,处于静止状态。

现在A 物体上施加一水平向右的恒定外力F 。

弹簧始终处于弹性限度范围内,下列判断正确的是( )
A .若F = qE ,则弹簧恢复到原长时A 、
B 两物体分离 B .若F = qE ,则弹簧还未恢复到原长时A 、B 两物体分离
C .若F > qE ,则弹簧还未恢复到原长时A 、B 两物体分离
D .若F < q
E ,则A 、B 两物体不能分离,且弹簧一定达不到原长位置 【答案】AC 【解析】 【分析】 【详解】
AB .若F = qE ,A 物体所受合力为0,在弹簧处于压缩状态时,B 物体由于弹簧的作用向右加速运动,而A 物体将被迫受到B 物体的作用力以相同的加速度一起向右加速运动,A 、B 两物体未能分离,当弹簧恢复到原长后,B 物体在弹簧的作用下做减速运动,A 物体做匀速直线运动,则B 物体的速度小于A 物体的速度,A 、B 两物体将分离,故A 正确,B 错误;
C .若F > qE ,A 物体将受到水平向右恒力F A = F − qE 的作用,弹簧在恢复到原长之前,对B 物体的弹力逐渐减小,则B 物体的加速度逐渐减小,当A 、B 两物体刚要分离时,A 、B 两物体接触面的作用力刚好为0,此时弹簧对B 物体的作用力所产生的加速度与恒力F A 对A 物体产生的加速度相等(a B = a A ≠ 0),此时弹簧还未恢复到原长,故C 正确;
D .若F < q
E ,A 物体将受到水平向左恒力
F A = qE − F 的作用,如果F A 比较小,那么A 、B 两物体还是可以分离的,并且在超过弹簧原长处分离,故D 错误。

故选AC 。

6.如图甲所示,两点电荷放在x 轴上的M 、N 两点,电荷量均为Q ,MN 间距2L ,两点电
荷连线中垂线上各点电场强度y E 随y 变化的关系如图乙所示,设沿y 轴正方向为电场强度的正方向,中垂线上有一点()
0,3P L ,则以下说法正确的是 ( )
A .M 、N 两点上的两等量点电荷是异种电荷,M 为正电荷,N 为负电荷
B .将一试探电荷-q 沿y 轴负方向由P 移动到O ,试探电荷的电势能一直减少
C .一试探电荷-q 从P 点静止释放,在y 轴上做加速度先变小后变大的往复运动
D .在P 点给一试探电荷-q 合适的速度,使其在垂直x 轴平面内以O 点为圆心做匀速圆周运动,所需向心力为3Qq
k 【答案】BD 【解析】 【详解】
A .如果M 、N 两点上的两等量点电荷是异种电荷,则其中垂线是为等势线,故A 错误;
B .等量同种电荷连线中垂线上,从P 到O 电势升高,负电荷的电势能减小,故B 正确;
C .等量同种电荷连线中垂线上,从P 到O 电场线方向向上,试探电荷受的电场力沿y 轴向下,在y 轴上O 点下方,电场线方向沿y 轴向下,试探电荷受的电场力沿y 轴向上,由图乙可知,y 轴上电场强度最大点的位移在P 点的下方,所以试探电荷沿y 轴先做加速度增大,后做加速度减小的加速运动,在y 轴上O 点下方,做加速度先增大后减小的减速运动,故C 错误;
D .等量正电荷中垂面上电场方向背离圆心O ,所以负试探电荷受电场力作用以O 为圆心做匀速圆周运动,如图,由几何关系可知,P 到M 的距离为2L ,图中60θ︒=,由叠加原理可得,P 点的场强为
232sin 2
sin 60(2)P M kQ kQ E E L θ︒
=== 所以电场力即为向心力为
3Qq
F k
= 故D 正确。

7.物理学中有些问题的结论不一定必须通过计算才能验证,有时只需通过一定的分析就可以判断结论是否正确.如图所示为两个彼此平行且共轴的半径分别为R 1和R 2的圆环,两圆环上的电荷量均为q (q >0),而且电荷均匀分布.两圆环的圆心O 1和O 2相距为2a ,连线的中点为O ,轴线上的A 点在O 点右侧与O 点相距为r (r <a ),试分析判断下列关于A 点处电场强度大小
E 的表达式正确的是
A .()()()()332
2
2
2
2
2
1
2
kq a r kq a r E R a r R a r +-=
-
⎡⎤⎡⎤+++-⎣⎦
⎣⎦
B .
()()()
()3
3
22222
2
12kq a r kq a r E R a r R a r +-=
+
⎡⎤⎡⎤
+++-⎣⎦
⎣⎦
C .()()1
2
222212kqR kqR E R a r R a r =
-
⎡⎤⎡⎤
+++-⎣⎦
⎣⎦
D .
()()1
2
3
3
22222
2
12kqR kqR E R a r R a r =
-
⎡⎤
⎡⎤
+++-⎣⎦
⎣⎦
【答案】A 【解析】
【分析】
题目要求不通过计算,只需通过一定的分析就可以判断结论,所以根据点电荷场强的公式
E=k
2
Q
r ,与选项相对比,寻找不同点,再用极限分析问题的思想方法就可以分析出结果. 【详解】
与点电荷的场强公式E=k 2
Q
r ,比较可知,C 表达式的单位不是场强的单位,故可以排除C ;
当r=a 时,右侧圆环在A 点产生的场强为零,则A 处场强只由左侧圆环上的电荷产生,即场强表达式只有一项,故可排除选项D ;
左右两个圆环均带正电,则两个圆环在A 点产生的场强应该反向,故可排除B ,综上所述,可知A 正确.故选A .
8.如图所示,光滑绝缘半球形的碗固定在水平地面上,可视为质点的带电小球1、2的电荷分别为Q 1、Q 2,其中小球1固定在碗底A 点,小球2可以自由运动,平衡时小球2位于碗内的B 位置处,如图所示.现在改变小球2的带电量,把它放置在图中C 位置时也恰好能平衡,已知AB 弦是AC 弦的两倍,则( )
A .小球在C 位置时的电量是
B 位置时电量的一半 B .小球在
C 位置时的电量是B 位置时电量的四分之一
C .小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小
D .小球2在B 点对碗的压力大小大于小球2在C 点时对碗的压力大小 【答案】C 【解析】 【详解】
AB .对小球2受力分析,如图所示,小球2受重力、支持力、库仑力,其中F 1为库仑力F 和重力mg 的合力,根据三力平衡原理可知,F 1=F N .由图可知,△OAB ∽△BFF 1
设半球形碗的半径为R ,AB 之间的距离为L ,根据三角形相似可知,
1F mg F
OA OB AB
== 即
1F mg F
R R L
=
= 所以
F N =mg ①
L
F mg R
=
② 当小球2处于C 位置时,AC 距离为
2
L
,故 '1
2F F =
, 根据库仑定律有:
2
A B
Q Q F k
L = '21()2
A C Q Q F k
L = 所以
1
8
C B Q Q = , 即小球在C 位置时的电量是B 位置时电量的八分之一,故AB 均错误;
CD .由上面的①式可知F N =mg ,即小球2在B 点对碗的压力大小等于小球2在C 点时对碗的压力大小,故C 正确,D 错误。

故选C 。

9.如图所示,小球A 、B 质量均为m ,初始带电荷量均为+q ,都用长为L 的绝缘细线挂在绝缘的竖直墙上O 点,A 球紧靠绝缘的墙壁且其悬线刚好竖直,球B 悬线偏离竖直方向θ角而静止.如果保持B 球的电荷量不变,使小球A 的电荷量缓慢减小,当两球间距缓慢变为原来的
1
3
时,下列判断正确的是( )
A .小球
B 受到细线的拉力增大 B .小球B 受到细线的拉力变小
C .两球之间的库仑力大小不变
D .小球A 的电荷量减小为原来的
127
【答案】D
【解析】 【详解】
AB.小球B 受力如图所示,两绝缘线的长度都是L ,则△OAB 是等腰三角形,如果保持B 球
的电量不变,使A 球的电量缓慢减小,当两球间距缓慢变为原来的
1
3
时,θ变小,F 减小; 线的拉力T 与重力G 相等,G =T ,即小球B 受到细线的拉力不变;对物体A :
cos()22
A A T G F πθ
=+-
则θ变小,T A 变小;故AB 错误;
CD.小球静止处于平衡状态,当两球间距缓慢变为原来的1/3时,由比例关系可知,库仑力变为原来的1/3,因保持B 球的电量不变,使A 球的电量缓慢减小,由库仑定律
2
A B
Q Q F k
r = 解得:球A 的电量减小为原来的
1
27
,故C 错误,D 正确;
10.AB 是长为L 的均匀带电绝缘细杆,P 1、P 2是位于AB 所在直线上的两点,位置如图所示。

AB 上电荷产生的静电场在P 1处的场强大小为E 1,在P 2处的场强大小为E 2,若将绝缘细杆的右半边截掉并移走(左半边电荷量、位置不变),则P 2处的场强大小变为( )
A .2
2
E B .E 2–E 1 C .E 1–2
2
E D .E 1+
2
2
E 【答案】B 【解析】 【详解】
将均匀带电细杆等分为左右两段,设左右两段细杆形成的电场在P 2点的场强大小分别为E A 、E B ,则有E A +E B =E 2;左半段细杆产生的电场在P 1点的场强为0,右半段细杆产生的电场在P 1点的场强大小为E 1=E B ,去掉细杆的右半段后,左半段细杆产生的电场在P 2点的场强大小为E A =E 2–E B =E 2–E 1,选B 。

11.如图所示,真空中有三个带等电荷量的点电荷a、b和c,分别固定在水平面内正三角形的顶点上,其中a、b带正电,c带负电。

O为三角形中心,A、B、C为三条边的中点。

设无穷远处电势为零。

则()
A.B、C两点电势相同
B.B、C两点场强相同
C.电子在O点电势能为零
D.在O点自由释放电子(不计重力),将沿OA方向一直运动
【答案】A
【解析】
【分析】
【详解】
A.B、C两点分别都是等量正负电荷连线的中点,由对称性知电势为零,剩下的正电荷产生了相等的电势,则B、C两点电势相同,故A正确;
B.电场强度是矢量,场强的合成满足平行四边形定则,通过矢量的合成可得,B、C点的场强大小相同,但方向不同,故B错误;
C.两等量异种电荷在O点产生的总电势为零,但剩下的正电荷在O点产生的电势为正,则O点的总电势为正,故电子在O点的电势能不为零,故C错误;
D.ab两个点电荷在OA线段上的合场强方向向下,过了A点后,ab两个点电荷在OA直线上向上;点电荷c在OA线段上的场强方向向下,过了A点后,场强方向向下也向下,故在O点自由释放电子(不计重力),会沿直线做加速运动,后做减速运动,直到静止,故D错误。

故选A。

12.如图所示,竖直绝缘墙上距O点l处固定一带电量Q的小球A,将另一带等量同种电荷、质量为m的小球B用长为l的轻质绝缘丝线悬挂在O点,A、B间用一劲度系数为k′
原长为5
4
l
的绝缘轻质弹簧相连,静止时,A、B间的距离恰好也为l,A、B均可看成质
点,以下说法正确的是()
A .A 、
B 间库仑力的大小等于mg B .A 、B 间弹簧的弹力大小等于k ′l
C .若将B 的带电量减半,同时将B 球的质量变为4m ,A 、B 间的距离将变为2
l D .若将A 、B 的带电量均减半,同时将B 球的质量变为
2k l
m g
'+,A 、B 间的距离将变为2
l 【答案】D 【解析】 【分析】 【详解】
A .对小球受力分析如图;小球受弹簧的弹力与
B 所受的库仑力的合力(F 库+F 弹)沿AB 斜向上,由几何关系以及平衡条件可知
F 库+F 弹=mg

F 库= mg -F 弹
选项A 错误;
B .A 、B 间弹簧的弹力大小等于
''51=(
)44
l F k l k l -=弹 选项B 错误;
C .若将B 的带电量减半,A 、B 间的距离将变为2
l
,则库仑力变为2F 库,则弹力和库仑力的合力为
''
53=()22424
l l k l F k F F -+=+合库库
则由相似三角形关系可知
11'=13224
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'11
4=42
m g mg k l mg =+≠
选项C 错误;
D .若将A 、B 的带电量都减半,A 、B 间的距离将变为2
l
,则库仑力仍F 库,则弹力和库仑力的合力为
''
'
53=()424
l l k l
F k F F -+=+合库库
则由相似三角形关系可知
22''=1324
m g m g l
k l F l F =+合库 而
'1
4
F k l mg +=库
解得
'22m g mg k l =+

'22k l
m m g
=+
选项D 正确; 故选D 。

13.如图所示,绝缘水平面上一绝缘轻弹簧一端固定在竖直墙壁上,另一端栓接一带负电小物块,整个装置处在水平向右的匀强电场中。

现保持匀强电场的场强大小不变,仅将其方向改为指向左偏下方向,物块始终保持静止,桌面摩擦不可忽略,则下列说法正确的是
( )
A .弹簧一定处于拉伸状态
B .相比于电场变化前,变化后的摩擦力的大小一定减小
C .变化后的摩擦力不可能为零
D .相比于电场变化前,变化后弹簧的弹力和摩擦力的合力大小一定变小 【答案】D 【解析】 【分析】 【详解】
A .如果电场力和弹力都远小于最大静摩擦力,那么无论怎么样改变电场,物块都是静止,弹簧可以处于压缩也可以处于伸长状态,故 A 错误;
B .不知道弹簧处于拉伸还是压缩状态,不知道电场力和弹力的大小和方向,故无法判断摩擦力方向及大小变化,故B ;
C .如果变化后电场力的水平分力与弹簧的弹力等大反向,摩擦力为零,故C 错误;
D .由题根据三个力的平衡可知,弹簧的弹力和摩擦力的合力与水平方向电场力等大反向,水平方向电场力变小,弹簧的弹力和摩擦力的合力必定变小,故D 正确。

故选D 。

14.如图所示,光滑绝缘水平面上有三个带电质点A 、B 、C,A 和C 围绕B 做匀速圆周运动,B 恰能保持静止,其中A 、C 和B 的距离分别是L 1、L 2
.仅考虑三质点间的库仑力,则A 和C 的
A .线速度之比为2
1L L
B .加速度之比为2
12L L ⎛⎫
⎪⎝⎭
C .电荷量之比1
2
L L
D .质量之比2
1
L L
【答案】D 【解析】 【分析】 【详解】
A .A 和C 围绕
B 做匀速圆周运动,B 恰能保持静止,则AB
C 三者要保持相对静止,所以AC 角速度相等,则线速度之比为
1
2
A B v L v L = 选项A 错误;
C .根据B 恰能保持静止可得
2212
C B A B q q q q k
k L L = 解得
21
22
A C q L q L = 选项C 错误;
A 围绕
B 做匀速圆周运动,根据A 受到的合力提供向心力,
()2122112A C A B
A A A q q q q k
k m m L L L L a ω-==+ C 围绕B 做匀速圆周运动,有
()
2222212C B A C
B C B q q q q k
k m m L L a L L ω-=+= 因为2212
C B A B
q q q q k
k L L =,所以有 A B B A a m m a =
12A C m L m L =
解得
2
1A C m L m L = 1
2
A B A B m L m L a a == 选项B 错误,D 正确。

故选D 。

15.如图所示,质量为m 的带电小球A 用绝缘细线悬挂于O 点,另一个相同的带电小球B 固定于O 点的正下方,已知细线长L ,O 到B 点的距离也为L ,平衡时,BO 与AO 间的夹角为45°,已知重力加速度为g ,则下列说法正确的是( )
A .细线对A 球的拉力等于库仑力和重力的合力,因此拉力大于重力
B.两球之间的库仑力大小为22mg
-
C.A球漏了少量电后,细线对A球的拉力减小
D.A球漏了少量电后,B球对A球的库仑力增大
【答案】B
【解析】
【分析】
【详解】
A.小球A的受力分析,如图所示
由于力的三角形与OAB相似,对应边成比例,设AB间距离为x,因此
mg T F
==①
l l x
可得
=
T mg
A错误;
B.根据余弦定理,可得
222o
=+-=-
2cos4522
x l l l
根据①式可得,库仑力大小
F mg
=-
22
B正确;
C.A球漏了少量电后,力的三角形与OAB仍相似,根据①式可知,细线对A球的拉力仍等于mg,C错误;
D.根据相似三角形,可得当x减小时,根据①可知,库仑力也减小,D错误。

故选B。

二、第九章静电场及其应用解答题易错题培优(难)
16.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M0,两者相距L,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G.求:
①该双星系统中星体的加速度大小a;
②该双星系统的运动周期T.
(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大
于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .
①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;
②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.
【答案】(1) ①02GM a L =
②2T = (2) ①2
k k II =2ke E E r =Ⅰ
②T T ⅠⅡ
为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】
(1)①根据万有引力定律和牛顿第二定律有:2
002GM M a L
=
解得0
2
GM a L =
②由运动学公式可知,224π2
L
a T =⋅
解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿
第二定律有22
2ke mv r r
=
解得:2
2k 122ke E mv r
==Ⅰ
模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r 2.根据库仑定律和牛顿第二定律 对电子有:22121mv ke r r =,解得2
2k11121=22ke E mv r r
=
对于原子核有:2
2222=Mv ke r r ,解得22
k22221=22ke E Mv r r
=
系统的总动能:E k Ⅱ=E k1+ E k2=()22
12222ke ke r r r r
+=
即在这两种模型中,系统的总动能相等.
②模型Ⅰ中,根据库仑定律和牛顿第二定律有
22224πke m r r T =Ⅰ
,解得232
24πmr T ke =Ⅰ 模型Ⅱ中,电子和原子核的周期相同,均为T Ⅱ 根据库仑定律和牛顿第二定律
对电子有221224πke m r r T =⋅Ⅱ, 解得22
122
4πke T r r m =Ⅱ
对原子核有222224πke M r r T =⋅Ⅱ, 解得22222
4πke T r r M
=Ⅱ
因r 1+r 2=r ,可解得:()
23
22
4πmMr T ke M m =+Ⅱ
所以有
T M m T M
+=Ⅰ
Ⅱ 因为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便.
17.如图所示,空间存在方向水平向右的匀强电场,两个可视为点电荷的带电小球P 和Q 用绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,已知匀强电场强度为E ,两小球之间的距离为L ,PQ 连线与竖直方向之间的夹角为θ,静电常数为k (1)画出小球P 、Q 的受力示意图; (2)求出P 、Q 两小球分别所带的电量。

【答案】(1)P 带负电,Q 带正电;(2)2
sin EL k θ
【解析】 【详解】
(1)依题意得,小球P 、Q 受力示意图如图
根据平衡条件,P 带负电,Q 带正电 ① (2)设P 带电量为-q 1,Q 带电量为q 2 根据库仑定律:
12
2C q q F k
L
= ② 根据牛顿第三定律:
F C =F C / ③
对于P 球: 根据平衡条件:
1sin C q E F θ= ④
解得:
2
1sin EL q k θ
=
⑤ 对于Q 球: 根据平衡条件:
'
2sin c q E F θ= ⑥
解得:
2
2sin EL q k θ
=

18.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。

质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(不计空气阻力,极板间电场可视为匀强电场,重力加速度为g )。

求:
(1)极板间电场强度大小和电容器所带电荷量;
(2)小球从开始下落运动到下极板的时间. 【答案】(1)()mg h d E qd +=,()mgC h d Q q +=
(2)2h d
h
t h
g
+= 【解析】 【详解】
(1)对从释放到到达下极板处过程的整个过程,由动能定理得:
()0mg h d qEd +-=
解得:()
mg h d E qd
+=
电容器两极板间的电压为:
()
mg h d U Ed q +==
故电容器的带电量为:
()
mgC h d Q CU q +==
(2)小球到达小孔前是自由落体运动,则有:
2112
h gt =
得:12h t g
=
根据速度位移关系公式,有: v 2=2gh
得:2v gh =
取竖直向下为正方向,根据动量定理对减速过程有:
2()0mg qE t mv -=-
小球从开始下落运动到下极板的时间t =t 1+t 2 联立解得:2h d h t h g
+=

19.如图所示,一条长为l 的细线,上端固定,下端拴一质量为m 的带电小球.将它置于一匀强电场中,电场强度大小为E ,方向水平向右.已知当细线离开竖直位置的偏角为α时,小球处于平衡状态.
(1)小球带何种电荷并求出小球所带电荷量;
(2)若将小球拉到水平位置后放开手,求小球从水平位置摆到悬点正下方位置的过程中,电场力对小球所做的功.
【答案】(1)正,tan /mg E α (2)tan mgl α
【解析】
【详解】
(1)小球所受电场力的方向与场强方向一致,则带正电荷;
由平衡可知:
Eq =mgtanα
得:
mgtan q E
α= (2)小球从水平位置摆到悬点正下方位置的过程中,电场力做负功,大小为
W =Eql = mgltanα
20.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。

已知小球所带电荷量61.010q C -=⨯,匀强电场的场强33.010N/C E =⨯,取重力加速度210m/s g =,sin370.6︒=。

求:
(1)小球所受电场力F 大小;
(2)小球质量m ;
(3)将电场撤去小球回到最低点时速度v 的大小;
(4)撤去电场后小球到达最低点时绳子对小球的拉力大小。

【答案】(1)3⨯10-3N ;(2)4⨯10-4kg ;(3)2m/s ;(4)5.6⨯10-3N
【解析】
【分析】
【详解】
(1)小球所受电场力F 大小
3310N F qE -==⨯
(2)球受mg 、绳的拉力T 和电场力F 作用,
根据共点力平衡条件和图中几何关系有
tan mg qE θ=
解得小球的质量
-4410kg m =⨯
(3)将电场撤去,小球摆动到最低点的过程由机械能守恒定律得:
21(1-cos37)2
mgL mv ︒=
解得 2.0m/s v =
(4)将电场撤去,小球摆动到最低点时由牛顿第二定律得
2
-v T mg m L
= 解得
-35.610N T =⨯
21.在竖直平面内固定一半径为R=0.3m 的金属细圆环,质量为5
m 310kg -=⨯的金属小球(视为质点)通过长为L=0.5m 的绝缘细线悬挂在圆环的最高点.小球带电荷量为62.510q C -=⨯时,发现小球在垂直圆环平面的对称轴上某点A 处于平衡状态,如图所示.已知静电力常量9229.010?/k N m C =⨯. 求:
(1)细线的拉力F 的大小;
(2)小球所在处的电场强度E 的大小?
(3)金属细圆环不能等效成点电荷来处理,试应用微元法推导圆环带电量Q 表达式?(用字母R 、L 、k 、E 表示)
【答案】(1) 4510N -⨯ (2) 160/N C (3) 2
54EL Q k =或322Q k L R
=- 【解析】 由几何关系:3cos 5R L θ==,224sin 5
L R θ-== ,4tan 3θ= ①
(1)对小球受力分析可知:cos mg F θ
= ② 由①②得:4510F N -=⨯ ③
(2)由平衡条件可得:tan qE mg θ= ④
由①④得:160/E N C = ⑤
(3)由微元法,无限划分,设每一极小段圆环带电量为q ∆
则:2sin q k
E L
θ∆=∑ ⑥ 其中:q Q ∑∆= 由①⑥得:
2
54EL Q k =或322Q k L R
=- ⑦ 点睛:因2Q E k r
=只能适用于真空中的点电荷,故本题采用了微元法求得圆环在小球位置的场强,应注意体会该方法的使用.库仑力的考查一般都是结合共点力的平衡进行的,应注意正确进行受力分析.。

相关文档
最新文档