初中数学定义公式大全(最新整理)

合集下载

初中数学公式大全完整版可打印

初中数学公式大全完整版可打印

初中数学公式大全完整版可打印一、有理数。

1. 有理数加法法则。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,( - 3)+(-5)= - 8。

- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:3+( - 5)= - 2,5+( - 3)=2。

- 一个数同0相加,仍得这个数。

例如:0 + 3=3。

2. 有理数减法法则。

- 减去一个数,等于加上这个数的相反数。

即a - b=a+( - b)。

例如:5 - 3 =5+( - 3)=2。

3. 有理数乘法法则。

- 两数相乘,同号得正,异号得负,并把绝对值相乘。

例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。

- 任何数同0相乘,都得0。

4. 有理数除法法则。

- 除以一个不等于0的数,等于乘这个数的倒数。

即a÷ b=a×(1)/(b)(b≠0)。

- 两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

5. 乘方的定义。

- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a^n中,a 叫做底数,n叫做指数。

例如:2^3=2×2×2 = 8。

二、整式的加减。

1. 单项式。

- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如:3x,-5,a都是单项式。

- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如:在单项式3x^2中,系数是3,次数是2。

2. 多项式。

- 几个单项式的和叫做多项式。

其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。

- 多项式里次数最高项的次数,叫做这个多项式的次数。

最全面的初中数学概念定义公式大全

最全面的初中数学概念定义公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

数学定义定理公式大全

数学定义定理公式大全

数学定义、定理、公式大全1. 数学定义1.1 数集•有限集:指元素个数有限的集合,记作A={a₁,a₂,…,an}。

•无限集:指元素个数无限的集合,记作A={a₁,a₂,…,an,…}。

•空集:不含任何元素的集合,记作∅或{}。

•子集:若集合A中的每个元素都是集合B中的元素,则称A为B的子集,记作A⊆B。

1.2 常用数系•自然数:正整数,记作N={1,2,3,4,…}。

•整数:正整数、负整数和0的集合,记作Z={…, -2,-1,0,1,2,…}。

•有理数:可以写成两个整数的比的数,记作Q。

•实数:包含有理数和无理数的数,记作R。

1.3 函数•函数:指定了集合A到集合B的一种关联规则,记作f:A→B。

•定义域:函数f中所有可能输入的集合,记作D(f)或Dom(f)。

•值域:函数f中所有可能输出的集合,记作R(f)或Ran(f)。

•逆函数:对于函数f:A→B,如果任意b∈B,都有唯一的a∈A,使得f(a)=b,则函数g:B→A称为f的逆函数,记作g=f⁻¹。

2. 数学定理2.1 代数定理•因式分解定理:每个整数都可以唯一地表示为素数的乘积。

•二次根定理:若在实数域上,对于方程ax²+bx+c=0,当b²-4ac>0时,方程有两个不相等的实根;当b²-4ac=0时,方程有两个相等的实根;当b²-4ac<0时,方程没有实根。

2.2 几何定理•勾股定理:对于直角三角形,斜边的平方等于两直角边的平方和。

•正弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:a/sinA=b/sinB=c/sinC。

•余弦定理:在任意三角形ABC中,边长a、b、c与对应的角A、B、C之间存在以下关系:c²=a²+b²-2abcosC。

2.3 微积分定理•基本定理:若函数f在区间[a,b]上连续,并且F是f的任意一个原函数,则∫[a,b]f(x)dx=F(b)-F(a)。

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)初中数学概念、定义、定理、公式大全(最新版) 数系及运算1.正数是比0大的数。

2.负数是比0小的数。

3.0既不是正数,也不是负数。

4.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

5.符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数。

6.0的相反数是0。

7.两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

8.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数和为0。

一个数与0相加,仍得这个数。

9.有理数加法运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)10.有理数减法法则减去一个数,等于加上这个数的相反数。

11.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘都得0。

12.有理数乘法运算律交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c13.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

14.有理数的乘方求相同因数的积的运算叫做乘方,乘方运算的结果叫幂。

15.16.正数的任何次幂都是正数。

负数的奇数次幂是负数,负数的偶数次幂是正数。

17.一个大于10的数可以写成的形式,其中1≤a<10,n是正整数,这种记数法称为科学计数法。

18.有理数混合运算顺序先乘方,再乘除,最后加减。

如果有括号,先进行括号内的运算。

19.幂的乘方,底数不变,指数相乘。

(m、n是正整数)20.积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘。

(n是正整数)21.同底数幂相除,底数不变,指数相减。

(m、n是正整数,m>n)22.任何不等于0的数的0次幂等于1。

23.任何不等于0的数的-n(n是正整数)次幂,等于这个数的n次幂的倒数。

(a≠0,n是正整数)。

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式第二版逻辑与命题1.仅凭实验、观察、操作得到的结论有时是不深入的、不全面的,甚至是错误的。

2.判断某一件事情的句子叫做命题。

3.如果条件成立,那么结论成立,像这样的命题叫做真命题。

4.条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题。

5.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题。

其中一个命题称为另一个命题的逆命题。

数系及运算1.正数是比0大的数。

2.负数是比0小的数。

3.0既不是正数,也不是负数。

4.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

5.符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数。

6.0的相反数是0。

7.两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

8.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数和为0。

一个数与0相加,仍得这个数。

9.有理数加法运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)10.有理数减法法则减去一个数,等于加上这个数的相反数。

11.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘都得0。

12.有理数乘法运算律交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c13.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

14.有理数的乘方求相同因数的积的运算叫做乘方,乘方运算的结果叫幂。

15.16.正数的任何次幂都是正数。

负数的奇数次幂是负数,负数的偶数次幂是正数。

17.一个大于10的数可以写成的形式,其中1≤a<10,n是正整数,这种记数法称为科学计数法。

18.有理数混合运算顺序先乘方,再乘除,最后加减。

初中数学各种公式(完整版)

初中数学各种公式(完整版)

初中数学各种公式(完整版) 初中数学公式大全1.乘法与因式分解① $(a+b)(a-b)=a^2-b^2$② $(a\pm b)^2=a^2\pm 2ab+b^2$③ $(a+b)(a^2-ab+b^2)=a^3+b^3$④ $(a-b)(a^2+ab+b^2)=a^3-b^3$a^2+b^2=(a+b)^2-2ab$a-b)^2=(a+b)^2-4ab$2.幂的运算性质① $a^1=a$⑥ $a^{-n}=\frac{1}{a^n}$② $a^{\frac{1}{n}}=\sqrt[n]{a}$③ $(a^m)^n=a^{mn}$④ $a^m\times a^n=a^{m+n}$⑤ $\frac{a^m}{a^n}=a^{m-n}$⑦ $a^0=1(a\neq 0)$特别地:$a^{\frac{1}{2}}=\sqrt{a}$3.二次根式① $\sqrt{a^2}=a(a\geq 0)$② $|\pm a|=|a|$③ $\sqrt{ab}=\sqrt{a}\sqrt{b}$④ $\sqrt{a+b}=\sqrt{a}\sqrt{b}(\text{其中}a>0,b\geq 0)$4.三角不等式a|-|b|\leq |a\pm b|\leq |a|+|b|(\text{定理})$;加强条件:$||a|-|b||\leq |a\pm b|\leq |a|+|b|$也成立,这个不等式也可称为向量的三角不等式(其中$a$,$b$分别为向量$a$和向量$b$);a+b|\leq |a|+|b|$;$|a-b|\leq |a|+|b|$;$|a|\leq b\iff -b\leq a\leq b$;a-b|\geq |a|-|b|$;$-|a|\leq a\leq |a|$;5.某些数列前$n$项之和1+2+3+4+5+6+7+8+9+\cdots+n=\frac{n(n+1)}{2}$;1+3+5+7+9+11+13+15+\cdots+(2n-1)=n^2$;2+4+6+8+10+12+14+\cdots+(2n)=n(n+1)$;1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+\cdots+n^2=\frac{n(n +1)(2n+1)}{6}$;1^3+2^3+3^3+4^3+5^3+6^3+\cdots+n^3=\frac{n^2(n+1)^2} {4}$;1\times 2+2\times 3+3\times 4+4\times 5+5\times 6+6\times 7+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$;6.一元二次方程对于方程:$ax^2+bx+c=0$:①求根公式是$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,其中$\Delta=b^2-4ac$叫做根的判别式。

初中数学全部定义定理公式

初中数学全部定义定理公式

初中数学全部定义定理公式
一、定义
1、数:由数字表示的量或标志符号,用来代替实物,并用来计算、比较和研究事物的结果或关系。

2、集合:按照其中一种特征组织起来的一系列元素的有序统一体。

3、元素:又称成员,是组成集合的基本和最小单位。

4、空集:没有任何元素的集合称为空集,表示为∅。

5、并集:两个集合的所有元素的结合体。

表示为A∪B,即A和B的“或”集合。

6、交集:两个集合的公共部分,表示为A∩B,即A和B的“且”集合。

7、补集:指一个集合中不属于另一个集合中的元素与另一个集合相对应的集合,表示为A-B。

8、差集:指两个集合A和B中不同时属于两个集合的元素的集合,表示为A\B。

9、概率:是指在一定条件下,随机事件发生的可能性的大小指标。

10、函数:在其中一变量与另一变量之间关系的函数用等号表示,叫做函数。

二、公式
1、交集的公式:A∩B={x,x∈A且x∈B}
2、并集的公式:A∪B={x,x∈A或x∈B}
3、差集的公式:A\B={x,x∈A且x∉B}
4、补集的公式:A-B={x,x∈A且x∉B}
5、阶乘的公式:n!=1×2×3×4×…×n
6、数列求和的公式:Sn=a1+a2+a3+…+an
7、有理数的乘法的公式:(m/n)×(r/s) = (mr)/(ns)
8、有理数的除法的公式:(m/n)÷(r/s) = (ms)/(nr)。

完整版)初中数学公式大全(整理打印版)

完整版)初中数学公式大全(整理打印版)

完整版)初中数学公式大全(整理打印版) 与代数1.数与式1) 实数实数具有以下性质:①实数a的相反数是-a,实数a的倒数是1/a(a≠0);②实数a的绝对值:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。

③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:当a≥0,b≥0时,√(ab)=√a×√b;当a≥0,b>0时,√(a/b)=√a/√b;②二次根式的性质:当a≥0时,√(a²)=a;当a<0时,√(a²)=-a。

2) 整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即am×an=am+n (m、n为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即am/an=am-n (a≠0,m、n为正整数,m>n);③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab)^n=a^n×b^n(n 为正整数);④零指数:a^0=1(a≠0);⑤负整数指数:a^-n=1/(a^n)(a≠0,n为正整数);⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即(a+b)(a-b)=a²-b²;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即(a±b)²=a²±2ab+b²;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即a/a×m=b/b×m,其中m是不等于零的代数式;②分式的乘法法则:a/c×b/d=a×b/c×d(a、b、c、d≠0);③分式的除法法则:a/c÷b/d=a/c×d/b(c、d≠0);④分式的乘方法则:a/c)^n=a^n/c^n(n为正整数);⑤同分母分式加减法则:a/b±c/b=(a±c)/b;⑥异分母分式加减法则:a/b±c/d=(ad±bc)/bd(b、d≠0)。

初中数学公式大全(从初一到初三)

初中数学公式大全(从初一到初三)

一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。

(完整版)初中数学定义公式大全

(完整版)初中数学定义公式大全

初中数学定义、定理、公理、公式汇编寇本义老师直线、线段、射线1. 过两点有且只有一条直线.(简:两点决定一条直线)2.两点之间线段最短3.同角或等角的补角相等.同角或等角的余角相等.4. 过一点有且只有一条直线和已知直线垂直5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)平行线的判断1.平行公理经过直线外一点,有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)3.同位角相等,两直线平行.4.内错角相等,两直线平行.5.同旁内角互补,两直线平行.平行线的性质1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.三角形三边的关系1.三角形两边的和大于第三边、三角形两边的差小于第三边.三角形角的关系 1. 三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的两个锐角互余.3.三角形的一个外角等于和它不相邻的两个内角的和.4. 三角形的一个外角大于任何一个和它不相邻的内角.全等三角形的性质、判定1.全等三角形的对应边、对应角相等.2.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等.3. 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等.4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等.5. 边边边公理(SSS) 有三边对应相等的两个三角形全等. 6. 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等.角的平分线的性质、判定性质:在角的平分线上的点到这个角的两边的距离相等.判定:到一个角的两边的距离相同的点,在这个角的平分线上.等腰三角形的性质1.等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角).2.推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 .3.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.4.推论3 等边三角形的各角都相等,并且每一个角都等于60° .等腰三角形判定1等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)2.三个角都相等的三角形是等边三角形.3.有一个角等于60°的等腰三角形是等边三角形. 线段垂直平分线的性质、判定1. 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 .2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.轴对称、中心对称、平移、旋转1. 关于某条直线对称的两个图形是全等形2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上4.若两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.5.关于中心对称的两个图形是全等的.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.6. 若两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.7.平移或旋转前后的图形是不变的.中心对称是旋转的特殊形式。

(完整版)初中数学公式大全

(完整版)初中数学公式大全

直线 与圆相切 直线 与圆相离 直线 与圆相交 2.9 两圆的位置 设两圆半径分别为 R 和 r,圆心距为 d,则
两圆外离 两圆外切
两圆相交 两圆内切 两圆内含
2.1 角 1 周角= 360 °, 1 平角= 180 °, 1 直角= 90°, 1°= 60′, 1′= 60″

,则∠ A 与∠ B 互为余角。
若 2.2 三角形
,则∠ A 与∠ B 互为补角。

,则

,则

,则
为直角三角形
正弦定理:
余弦定理: 2.3 四边形
( a 为底边长, h 为底边上的高) ( ab 为两邻边长)
1.8 因式分解
2.8 直线与圆的位置
1.9 不等式
2.9 两圆的位置
1.10 二次根式
1.1 绝对值运算
1.2 有理数的运算
1.3 整式的乘法运算
1.4 整式乘法公式
1.5 整式除法公式 1.6 分式的运算公式
1.7 一元二次方程:
的解
1.8 因式分解
1.9 不等式

,则

,则若Βιβλιοθήκη ,则1.10 二次根式
(ab 为菱形的两条对角线)
2.4 比例性质

,则
若 2.5 三角函数
,则
2.6 与圆有关的公式 圆周长 圆面积
弧长
扇形面积 2.7 点与圆的位置 设 P 点到圆心的距离为 d,圆的半径长为 r,则
点 P 在圆上 点 P 在圆内 点 P 在圆外 2.8 直线与圆的位置 设圆心到直线 的距离为 d,圆半径长为 r,则
一. 代数:
初中数学常用公式 二 . 平面几何:

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。

②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。

y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。

初中数学全部公式

初中数学全部公式

初中数学全部公式初中数学常用公式:一、代数公式:1.两数相加的和等于它们反过来相加的和:a+b=b+a2.两数相减的差等于它们反过来相减的差:a-b≠b-a3.两数相乘的积等于它们反过来相乘的积:a×b=b×a4.两数相除的商等于它们分子、分母反过来相除的商:a÷b≠b÷a5. 两个数之和的平方等于它们的平方和加上两倍的它们的积:(a +b)² = a² + 2ab + b²6. 平方差公式:(a - b)² = a² - 2ab + b²7. 平方和公式:a² + b² = (a +b)² - 2ab8.两个平方差的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²9.一次方差公式:(a+b)×(a-b)=a²-b²10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 平方完全差公式:(a - b)² = a² - 2ab + b²12.两个完全平方的乘积等于两个数之和与差的平方差:(a+b)(a-b)=a²-b²13.四平方定理:任何一个正整数都可以表示成不超过四个正整数的平方之和。

14.二项式定理:(a+b)ⁿ=C(n,0)aⁿ+C(n,1)aⁿ⁻¹b+C(n,2)aⁿ⁻²b²+...+a(b+a)ⁿ⁻¹bⁿ⁻¹+bⁿ15.幂运算的乘法法则:aⁿ×aᵐ=aⁿ⁺ᵐ16.幂运算的除法法则:aⁿ÷aᵐ=aⁿ⁻ᵐ二、几何公式:1.线段等分点公式:已知线段AB,M为AB的中点,则AM=MB=AB/22.垂直平分线公式:已知线段AB,O为线段AB的中点,则AO⊥OB,并且AO=OB=AB/23.线段外一点到线段的距离公式:已知线段AB和一点C,以A、B为两端点作线段AB的垂直平分线,交垂直平分线于点D,则CD为点C到线段AB的距离。

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式大全(最新版)

初中数学概念、定义、定理、公式第二版逻辑与命题1.仅凭实验、观察、操作得到的结论有时是不深入的、不全面的,甚至是错误的。

2.判断某一件事情的句子叫做命题。

3.如果条件成立,那么结论成立,像这样的命题叫做真命题。

4.条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题。

5.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题。

其中一个命题称为另一个命题的逆命题。

数系及运算1.正数是比0大的数。

2.负数是比0小的数。

3.0既不是正数,也不是负数。

4.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。

5.符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数。

6.0的相反数是0。

7.两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

8.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数和为0。

一个数与0相加,仍得这个数。

9.有理数加法运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)10.有理数减法法则减去一个数,等于加上这个数的相反数。

11.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘都得0。

12.有理数乘法运算律交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c13.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。

14.有理数的乘方求相同因数的积的运算叫做乘方,乘方运算的结果叫幂。

15.16.正数的任何次幂都是正数。

负数的奇数次幂是负数,负数的偶数次幂是正数。

17.一个大于10的数可以写成的形式,其中1≤a<10,n是正整数,这种记数法称为科学计数法。

18.有理数混合运算顺序先乘方,再乘除,最后加减。

初中数学公式定义大全

初中数学公式定义大全

初中数学常见定理和公式大全1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1 直角三角形的两个锐角互余19.推论2 三角形的一个外角等于和它不相邻的两个内角的和20.推论3 三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS) 有三边对应相等的两个三角形全等26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27.定理1 在角的平分线上的点到这个角的两边的距离相等28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3 等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1 三个角都相等的三角形是等边三角形36.推论2 有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1 关于某条直线对称的两个图形是全等形43.定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1 平行四边形的对角相等53.平行四边形性质定理2 平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3 平行四边形的对角线互相平分56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60.矩形性质定理1 矩形的四个角都是直角61.矩形性质定理2 矩形的对角线相等62.矩形判定定理1 有三个角是直角的四边形是矩形63.矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1 四边都相等的四边形是菱形68.菱形判定定理2 对角线互相垂直的平行四边形是菱形69.正方形性质定理1 正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1 关于中心对称的两个图形是全等的72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3 三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2 相似三角形周长的比等于相似比98.性质定理3 相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。

最全面的初中数学概念定义公式大全

最全面的初中数学概念定义公式大全

初中数学定义定理公式总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初中数学所有公式定义性质定理

初中数学所有公式定义性质定理

初中数学所有公式定义性质定理
初中数学公式定义性质定理包括:
1、三角形三边关系定理:任意一个三角形的两条边之和都大于第三条边。

2、正方形面积公式:正方形面积等于长度的平方。

3、正方体体积公式:正方体的体积等于长度的立方。

4、圆面积公式:圆的面积等于半径的平方乘以π。

5、圆周长公式:圆的周长等于直径乘以π。

6、梯形面积公式:梯形的面积等于上底加下底乘以高的一半。

7、平行四边形面积公式:平行四边形的面积等于对角线的乘积除以2。

8、圆柱体体积公式:圆柱体的体积等于底面积乘以高。

9、球的体积公式:球的体积等于4/3π半径的立方。

初中数学全部定义定理公式

初中数学全部定义定理公式

初中数学全部定义定理公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学定义、定理、公理、公式汇编寇本义老师直线、线段、射线1.过两点有且只有一条直线.(简:两点决定一条直线)2.两点之间线段最短3.同角或等角的补角相等.同角或等角的余角相等.4.过一点有且只有一条直线和已知直线垂直5.直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)平行线的判断1.平行公理经过直线外一点,有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)3.同位角相等,两直线平行.4.内错角相等,两直线平行.5.同旁内角互补,两直线平行.平行线的性质1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.三角形三边的关系1.三角形两边的和大于第三边、三角形两边的差小于第三边.三角形角的关系 1. 三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的两个锐角互余.3.三角形的一个外角等于和它不相邻的两个内角的和.4.三角形的一个外角大于任何一个和它不相邻的内角.全等三角形的性质、判定1.全等三角形的对应边、对应角相等.2.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等.3.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等.4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等.5.边边边公理(SSS) 有三边对应相等的两个三角形全等.6.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等.角的平分线的性质、判定性质:在角的平分线上的点到这个角的两边的距离相等.判定:到一个角的两边的距离相同的点,在这个角的平分线上.等腰三角形的性质1.等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角).2.推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 .3.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.4.推论 3 等边三角形的各角都相等,并且每一个角都等于60° .等腰三角形判定1 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)2.三个角都相等的三角形是等边三角形.3.有一个角等于60°的等腰三角形是等边三角形. 线段垂直平分线的性质、判定1.定理:线段垂直平分线上的点和这条线段两个端点的距离相等 .2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.轴对称、中心对称、平移、旋转1.关于某条直线对称的两个图形是全等形2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上4.若两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.5.关于中心对称的两个图形是全等的.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.6.若两个图形的对应点连线都经过某一点,并且被这1 一点平分,那么这两个图形关于这一点成中心对称. 7.平移或旋转前后的图形是不变的.中心对称是旋转的特殊形式。

勾股定理 直角三角形两直角边 a 、b 的平方和、等于斜边 c 的平方,即 a 2+b 2=c 2.勾股定理的逆定理 如果三角形的三边长 a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角①直角三角形中, 如果一个锐角等于 30°那么它所对的直角边等于斜边的一半.②直角三角形斜边上的中线等于斜边上的一半. n 边形、四边形的内角和、外角和1. 四边形的内角和等于 360°.2. 四边形的外角和等于 360°3. 多边形内角和定理 n 边形的内角的和等于(n-2)180°.4.推论 任意多边的外角和等于 360°. 平行四边形性质1. 平行四边形的对角相等.2. 平行四边形的对边相等.3. 夹在两条平行线间的平行线段相等.4. 平行四边形的对角线互相平分.平行四边形判定菱形判定1. 有一组邻边相等的平行四边形是菱形2. 四边都相等的四边形是菱形3. 对角线互相垂直的平行四边形是菱形.正方形性质1. 正方形的四个角都是直角,四条边都相等.2. 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角. 正方形判定1. 四个角都是直角,四条边都相等的四边形是正方形2. 对角线互相垂直平分且相等的四边形是正方形.等腰梯形性质1. 等腰梯形在同一底上的两个角相等.2. 等腰梯形的两条对角线相等.等腰梯形判定1. 同一底上的两个角相等的梯形是等腰梯形2. 对角线相等的梯形是等腰梯形.①经过梯形一腰的中点与底平行的直线,必平分另一腰.②经过三角形一边的中点与另一边平行的直线,必平分第三边.三角形中位线定理:三角形的中位线平行于第三边, 并且等于它的一半.梯形中位线定理:梯形的中位线平行于两底,并且等 1. 两组对边分别平行的四边形是平行四边形. 2. 两组对角分别相等的四边形是平行四边形. 3.两组于两底和的一半 l = 1(a + b ) ,S=Lh2对边分别相等的四边形是平行四边形.4. 对角线互相平分的四边形是平行四边形.5. 一组对边平行相等的四边形是平行四边形矩形性质1. 矩形的四个角都是直角 .2. 矩形的对角线相等. 矩形判定1. 有一个角是直角的平行四边形是矩形.2. 有三个角是直角的四边形是矩形.3. 对角线相等的平行四边形是矩形 .菱形性质1、菱形的四条边都相等.2. 菱形的对角线互相垂直,并且每一条对角线平分一组对角.3、菱形面积=对角线乘积的一半,即 s =ab2比例的基本性质 如果 a:b=c:d 相似三角形判定1. 定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.2. 两角对应相等,两三角形相似.3. 两边对应成比例且夹角相等,两三角形相似4. 三边对应成比例,两三角形相似5. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 相似三角形性质1. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.2. 相似三角形周长的比等于相似比.3. 相似三角形面积的比等于相似比的平方.4. 位似图形是相似图形的特殊形式。

位似比等于相似比。

圆1. 圆是到定点的距离等于定长的点的集合.ad=bc2.圆的内部可以看作是到圆心的距离小于半径.的点的集合.3.圆的外部可以看作是到圆心的距离大于半径的点的集合.4.同圆或等圆的半径相等.5.不在同一直线上的三点确定一个圆。

垂径定理1.垂直于弦的直径平分这条弦并且平分弦所对的两条弧 .推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 .②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 .3.圆是以圆心为对称中心的中心对称图形 .4.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 .5.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等. 切线长定理. 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 圆和圆的位置关系如果两个圆相切,那么切点一定在连心线上①两圆外离 d>R+r②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r)⑤两圆内含 d<R-r(R>r)正多边形和圆①依次连结各等分点所得的多边形是这个圆的内接正 n 边形n(n≥3):②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 .定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.正 n 边形的每个内角都等于=1 (n - 2)180︒n定理正n 边形的半径和边心距把正n 边形分成 2n 个全等的直角三角形.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半. 正三角形面积s =3a 2 , a 表示边长.4①同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.②半圆(或直径)所对的圆周角是直角;90° 的圆周角所对的弦是直径. 扇形弧长:扇形面积:l=n r180nr2s =360=1nrr=1lr2 180 2③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 .三角形的外心,三角形外接圆的圆心,它是三边的中圆拄的侧面积s=2rh圆拄的表面积s=2rh+2r21垂线的交点,到三个顶点的距离相等.三角形的内心,三角形内切圆的圆心,它是三个内角圆锥的侧面积s = .2rl=rl2的平分线的交点,到三边的距离相等.直角三角形三边为 a、b、c,c 为斜边,则外接圆的圆锥的表面积s幂的运算:=rl+r2半径R =c;内切圆的半径r =2a +b -c2①a≠0 时a0=1,a -p=1a p直线和圆的位置关系①直线 L 和⊙O 相交 d<r②直线 L 和⊙O 相切 d=r③直线 L 和⊙O 相离 d>r切线的判定:经过半径的外端且垂直于这切线切线的性质:圆的切线垂直于经过切点的半径①经过圆心且垂直于切线的直线必经过切点 .②经过切点且垂直于切线的直线必经过圆心. ②a m a n= a m+n;(a m)n= a m n③0 的0 次幂没有意义平方差:a2-b2=(a+b)(a-b)完全平方:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2 推广:a2+b2=(a+b)2-2ab (a-b)2=(a+b)2- 4ab一次函数 y=kx+b(k≠0)- b + b 2 - 4ac - b - b 2 - 4ac 3 2 k>0,y 随 x 的增大而增大k<0,y 随 x 的增大而减少 常见的勾股数(整数)3,4,5; 6,8,10;5, 12,13; 8,15,17,9,40,41 等。

正比例函数 y=kx (k≠0)①k>0,y 随 x 的增大而增大,直线 y=kx 经过(0,0),(1,k ), 经过第一、三象限②k<0,y 随 x 的增大而减少,直线 y=kx 经过(0,0),(1,k ),经过第二、四象限 常见的无理数;, ≈1.414 ≈1.732 3 ,等等 5 ≈2.236反比例函数 y =k(k≠0)x①k>0,双曲线在第一、三象限,在每个象限内,随 x 的增大而减少.②k<0,双曲线在第二、四象限,在每个象限内,随 x 的增大而增大当一元二次方程 ax 2+bx+c=0( b 2-4ac≥0) 根为x 1 =2ax 2 = 2a到最后一个数止。

相关文档
最新文档