高中物理牛顿运动定律技巧 阅读训练策略及练习题(含答案)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理牛顿运动定律技巧 阅读训练策略及练习题(含答案)含解析
一、高中物理精讲专题测试牛顿运动定律
1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。
求:
(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;
(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m 【解析】 【详解】
解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:
解得:
对长木板:
得长木板的加速度:
自小滑块刚滑上长木板至两者达相同速度:
解得:
长木板位移:
解得:
两者达相同速度时长木板还没有碰竖直挡板
解得:
(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:
最终两者的共同速度:
小滑块和长木板相对静止时,小滑块距长木板左端的距离:
2.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:
(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;
(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)0
23sin L g θ
【解析】 【详解】
解:(1)对B 分析:sin cos B mg mg ma θμθ-=
0B a =,B 仍处于静止状态
对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=
(2) 与B 第一次碰撞前的速度,则有:2
02A A v a L =
解得:02sin A v gL θ=所用时间由:1v A at =,解得:0
12sin L g t θ
=
对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222
A B mv mv mv =+ 解得:100,2sin B v v gL θ==
(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2
212
A A x a t =
22B x v t =
第二次相碰:A B x x = 解得:0
222
sin L t g θ
=从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+
解得:0
23
sin L t g θ
=
3.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求
(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55
/5
m s 【解析】 【分析】 【详解】
(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带
向下的分力sin 37mg o
,在传送带方向,对小物块根据牛顿第二定律有:
cos37sin 37mg mg ma μ-=o o
解得:20.4/a m s =
小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度
为0时没有滑落,根据运动公式有:2
112v x a
=
解得:1 1.25x m =,12
L
x <
,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =
小物块向下滑动的时间为1
1=v t a
传送带运动的距离101s v t = 联立解得15s m =
小物块相对传送带运动的距离11x s x ∆=+
解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:
2
2122L v a x ⎛⎫=+ ⎪⎝
⎭
解得:255
/v m s =
20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55
/m s .
4.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求:
(1)小环的质量m ; (2)细杆与地面间的倾角a . 【答案】(1)m =1kg ,(2)a =30°. 【解析】 【详解】
由图得:0-2s 内环的加速度a=
v
t
=0.5m/s 2 前2s ,环受到重力、支持力和拉力,根据牛顿第二定律,有:1sin F mg ma α-= 2s 后物体做匀速运动,根据共点力平衡条件,有:2sin F mg α= 由图读出F 1=5.5N ,F 2=5N
联立两式,代入数据可解得:m =1kg ,sinα=0.5,即α=30°
5.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2
(1)求木块和木板保持相对静止的时间t1;
(2)t=10s时,两物体的加速度各为多大;
(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF的方向为正方向,只要求画图,不要求写出理由及演算过程)
【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;
(3)
【解析】
【详解】
(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:
f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g
解得:a max=3m/s2
对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max
解得:F max=12N
由F max=3t 得:t=4s
(2)t=10s时,两物体已相对运动,则有:
对m1:μ1m2g﹣μ2(m1+m2)g=m1a1
解得:a1=3m/s2
对m2:F﹣μ1m2g=m2a2 F=3t=30N
解得:a2=12m/s2
(3)图象过(1、0),(4.3),(10、12)
图象如图所示.
6.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:
(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .
【答案】(1)2
A 8m/s a =;(2)50W P =
【解析】 【详解】
(1)A 、B 受力如图所示:
A 、
B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=
联立以上各式并代入数据解得:2
A 8m/s a =
(2)对A 由位移公式得:2
12
A A x a t = 对
B 由位移公式得:2
12
B B x a t =
由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W
7.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.
(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;
(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22
v ≤≤ 【解析】
试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守
恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.
(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111
222
E mv m v ∆=- 解得:9E J ∆=
(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+
由机械能守恒得:()()22
2111122222
B C m v m v mv =+
解得:4/c v m s =
C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速
由牛顿第二定律得:2
10.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2
212C v v a x -=
联立解得:x=11.25m <L 加速运动的时间为t ,有:1
2.5C
v v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=
摩擦生热·
8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速
则有:22
212c v v a L -=
根据牛顿第二定律得:2
212.4/a gsin gcos m s θμθ=--=-
联立解得:1/c v s =
设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速
则有:22
112c v v a L -=
解得:2/c v s =
对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+
由机械能守恒得:()()22
211
111122222
B C m v m v mv =+ 解得:133397/22
max c v v m s =
= 同理得:3
13/2
min v m s = 所以
03313/397/22
m s v m s ≤≤
8.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。
某滑雪爱好者连滑雪板总质量为75kg (可视为质点)从赛道顶端静止开始沿直线下滑,到达斜面底端通过测速仪测得其速度为30m/s 。
然后在水平赛道上沿直线继续前进180m 静止。
假定滑雪者与斜面及水平赛道间动摩擦因数相同,滑雪者通过斜面与水平面连接处速度大小不变,重力加速度为g=10m/s 2,sin37°=0.6,cos37°=0.8.求:
(1)滑雪者与赛道间的动摩擦因数; (2)滑雪者在斜面赛道上受到的合外力;
(3)滑雪者在斜面滑雪赛道上运动的时间及斜面赛道的长度 【答案】(1)0.25(2)300N(3)7.5s,112.5m 【解析】
【分析】根据匀变速直线运动的速度位移公式求出匀减速直线运动的加速度大小,根据牛顿第二定律求出滑雪者与赛道间的动摩擦因数;根据滑雪者的受力求出在斜面滑道上所受的合外力;根据牛顿第二定律求出在斜面滑道上的加速度,结合速度时间公式求出运动的时间,根据速度位移公式求出斜面赛道的长度; 解:(1)水平面匀减速v 2=2a 2s 得a 2=2.5m/s 2
由牛顿第二定律:μmg=ma 2 得:μ=0.25
(2) 滑雪者在斜面赛道上受到的合外力F =mg sin37°-μmg cos37°=300N (3) 根据牛顿第二定律得在斜面滑道上的加速度
由
得:
由v 2=2as 得
9.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.
(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?
【答案】(1)见解析(2)2.5m 【解析】 【分析】
(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;
(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】
(1)甲车紧急刹车的加速度为2
10.44/a g m s ==
甲车停下来所需时间0
11
2.5v t s a =
= 甲滑行距离 20
1
12.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;
(2)乙车紧急刹车的加速度大小为:2
20.55/a g m s ==
设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,
0120022()v a t t v a t -+=-
解得2 2.0t s =
此过程中乙的位移: 220002121
152
x v t v t a t m =+-= 甲的位移:210021021
()()12.52
x v t t a t t m =+-
+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】
解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.
10.如图甲所示,一质量为m 的带电小球,用绝缘细线悬挂在水平向右的匀强电场中,静
止时悬线与竖直方向成θ角.小球位于A 点,某时刻突然将细线剪断,经过时间t 小球运动到B 点(图中未画出)已知电场强度大小为E ,重力加速度为g ,求:
(1)小球所带的电荷量q ;
(2)A 、B 两点间的电势差U .
【答案】(1)tan mg E θ;(2)12
Egt 2tanθ. 【解析】试题分析:(1)小球处于静止状态,分析受力,作出受力图,根据平衡条件和电场力公式求解电荷量q ;(2)将细线突然剪断小球将沿细线方向做匀加速直线运动,根据牛顿第二定律求解加速度a ,再根据匀变速直线运动求解位移,再计算A 、B 两点间的电势差U .
①静止时有tan qE mg θ=,解得 tan mg q E
θ=
②将细线剪断后,根据牛顿第二定律可得cos mg F ma θ=
=合,解得 故221tan sin 2cos 2
AB g Egt U E t θθθ=-⋅=-。