Mentor公司产品线介绍

合集下载

Mentor MP简易样本

Mentor MP简易样本

ENVIROMENTAL MANAGEMENT
003
Certificate No. Q 05176
QUALITY MANAGEMENT
003
E171230
2
Mentor MP 直流驱动器特性
交流输入端子,配有可拆卸 的保护盖
驱动器工程标牌 驱动器铭牌
直流输出端子, 配有可拆卸的保 护盖
电枢电压反馈端 子,用于带直流 接触器和逆频器 公共直流母线系 统应用
7 个数字 I/O 5 个模拟 I/O 2 个固态继电器
BECKHOFF BK7200
REMOTE I/O
CTNet HEALTHY BUS ERR COMRUN 24V 0V INIT ERR I/O RUN I/O ERR
PE PE
集中式 PLC/运动控制
运动控制器
24V DC Class 2
MC206 Motion
简单的再生发电解 决方案
Mentor MP 可将机械能轻松地 再生转换为电能
4
可回收性
所有 Mentor MP 部件都可回收 4
6
艾默生电动机与驱动器解决方案
艾默生 CT Mentor MP 直流驱动器和 Leroy Somer 直流电 动机提供整体艾默生解决方案。这两家在质量与技术方面 均处于领先地位的公司可提供最佳电动机与驱动器组合方 案。高效直流电动机结合变速控制可成就完美匹配的能源 优化解决方案。
标准
MP-键盘 LCD,配置 MP 固件
标准 SM-键盘 LED
CTSoft CTScope
选项
?
输入/输出
智能卡

Data Storage
SM–I/O 32 SM–I/O Plus SM–I/O Lite SM–I/O Timer SM–I/O 120V SM–PELV

T3ster中文手册

T3ster中文手册


明导公司 Mechanical Analysis 部门为结构设计和热特性市场提 供测试与仿真解决方案与咨询服务,在该领域服务各行业客户 22 年。 Mechanical Analysis 部门在全球四十多个国家和地区配备有销售 和技术办事处或代理,服务当地市场。在中国的上海、北京和深 圳三地均设有办事处。
96% 的客户乐意向同 行推荐我们的产品
Mechanical Analysis 的产品,不仅得到用户的高度评价,也得到 了行业的一致公认: 荣获由英国首相 Tony Blair 授予的优秀商业企业奖 T3Ster 产品研发负责人荣获匈牙利最高技术荣誉奖,受到匈 牙利国会议员接见 工业行业著名传媒”Design News”网友和资深编辑共同评选结 果,我们的同步 CFD 获得最佳新产品奖 同步 CFD 帮助美国堪萨斯州的高中学生获得 “真实设计挑战” 赛全国冠军 EDN 杂志中国版评选同步 CFD:创新产品奖
为什么选择 T3Ster 热测试仪?
高达 1μs 的瞬态测量精度 ■ T3ster 配 置 软 件 采 用 的 NID(Network identification by deconvolution ,反卷积网络计算 ) 方 法,要获得准确的计算结果,其所采 集的实验数据必须是非常准确且连 续的瞬态数据。 ■比如,在LED封装测试当中,如果 瞬态变化的最初 1ms 时间的瞬态温 度变化没有被采集到, 那么最终测试 出的热阻将被低估10%-15%, ■T3ster测试仪采集瞬态数据的精度 高达1μs, 可以完美地捕捉到每一个 温度的瞬态变化。 保证了分析软件分 析结果的准备性。
市场上最高的灵敏度 ■在测量封装的结温时, 高的信噪比 可以充许非常精细的测量。T3ster提 供了市场您能见到的测试仪器当中 最高的灵敏度, 无需封装有太高的发 热功耗,T3ster可以通过其高精度的 微分输入放大器获取准确的温度结 果。温度分辨率高达0.01摄氏度。

T3ster中文手册

T3ster中文手册

分析出的结果包括: ■芯片结温 ■时间常数谱; ■脉冲热阻图; ■测试得热阻抗的复杂轨迹 ■积分结构函数 ■微分结构函数 所有的分析结果都可以打印输出 或拷贝至其它处理软件
2) 选配的分析软件 T3ster Master:
■T3ster Master软件为选配的后处 理分析软件,主要用于T3ster仪器采 集数据的分析。 ■利用T3ster Master的数据导入功 能, 可以将任何仿真得到的瞬态温度 结果导入进来, 将导入的仿真结果与 实测的数据结果进行对比。 我们可以 快速修正芯片封装的仿真模型, 使之 更接近真实。
热管或散热器的热性能测试
利用 T3ster,可以对热管或散热器进行 快速性能测试,测试出热管的传热量和传 热热阻,确定热管的最大传热量,也可以 实时测试散热器在各种风速下的热阻。 利用 T3ster,INTEL 公司的工程师对 Celeron 型号的 CPU 热阻模组进行快速测 试,不但实时测试出其热阻,同时也可以 测试出散热器的热容属性。
明导公司(Mentor Graphics)简介 明导公司 (Mentor Graphics®) 是电子设计自动化 (EDA) 技术和机 械分析(MCAE)技术的领导厂商,提供完整的软件和硬件设计解决 方案,让客户能在短时间内,以最低的成本,在市场上推出功能 强大的电子和机械产品。

NASDAQ: MENT 上市公司 创立于 1981 年,总部位于 Wilsonville, Oregon 1989 年率先进驻中国,在上海设立中国公司总部,在北京和 上海设有办事处 拥有世界级研发中心,销售和服务渠道遍布全球 公司网址: 五星技术服务网站:/supportnet ,提供 24 小时,365 天不间断技术服务 明导公司的设备系统管理经理使用 Mechanical Analysis 部门的分析 产品 FloVENT, 对公司办公大楼进 行分析,优化整幢大楼的加热与冷 却系统,为公司节省 10 万美元外 部运营费用。 该大楼被俄勒冈州评为绿色节能大 楼。 明导在美国俄勒冈州的公司大楼

candence、Mentor,Altium三家公司的软件分析之一

candence、Mentor,Altium三家公司的软件分析之一

candence、Mentor,Altium三家公司的软件分析之⼀candence、Mentor,Altium三家公司的原理图和Layout的软件分析Cadence,Mentor,Altium三家,⽬前市场上份额最⼤1)Cadence公司Cadence公司的原理图软件:OrCAD,界⾯Cadence公司的Layout软件: Allegro软件,界⾯2) Mentor公司Mentor公司的原理图软件:PADS Logic,界⾯Mentor公司的Layout软件: PADS Layout,PADS Router,界⾯3)Altium公司Altium Designer软件:集合原理图和Layout于⼀体,通称 AD软件总结:衡量⼀个软件的优劣,其中⼀个很现实的标准就是看它的市场占有率,也就是它的普及和流⾏程度。

Protel 系列,在很多⾼校⾥都有开设相关课程,对于⾼校师⽣还有很多的⽤户,但是不得不承认,Protel 在 PCB 软件家族中的确是最低端的软件之⼀,因此很少有公司企业使⽤,后来升级为Altium Designer软件,简称AD软件。

Mentor PADS,也就是以前的 PowerPCB/PowerLogic 系列,是低端的 PCB 软件中最优秀的⼀款,其界⾯友好、轻易上⼿、功能强⼤⽽深受中⼩企业的青睐,在中⼩企业⽤户占有很⼤的市场份额;Cadence Allegro、Mentor EN 和 Mentor WG 都是最⾼端的 PCB 软件,像中兴、华为这类⼤型公司都是使⽤这些⾼端的设计软件;其中,Cadence Allegro 现在似乎成为⾼速板设计中实际上的⼯业标准,其学习资源也⽐较丰富,⽐较适合⾃学;Mentor Expedition 正是拉线最顺畅的软件,被誉为拉线之王,它的⾃动布线功能⾮常强⼤,布线规则设计⾮常专业;Mentor EN 系列是从早期 UNIX 系统移植到 Windows 系统,也是最专业的 PCB ⼯具软件,但其学习难度较⼤,不建议⾃学。

MentorGraphics公司PCB产品介绍

MentorGraphics公司PCB产品介绍

MentorGraphics公司PCB产品介绍Mentor Graphics是一家全球领先的电子设计自动化公司,其PCB (Printed Circuit Board)产品是其核心产品之一、PCB产品提供了一套完整的电路板设计解决方案,包括设计工具、模拟仿真、布局布线、验证和制造。

下面将详细介绍Mentor Graphics的PCB产品及其主要特点。

首先,Mentor Graphics的PCB产品包括多个设计工具,其中最重要的是Xpedition和Pads。

Xpedition是一款全面的电路板设计和布局布线工具,能够满足高复杂性电路板设计的需求。

它提供了强大的设计功能,包括分层布局、信号完整性分析、高速信号路由和三维模型。

而Pads则是一款适用于中小型项目的PCB设计工具,它相对简单易用,但功能齐全,能够满足常规电路板设计的需求。

其次,Mentor Graphics的PCB产品提供了强大的模拟仿真功能。

通过使用HyperLynx仿真工具,设计师可以对信号完整性、电源完整性和电磁兼容性进行仿真分析。

仿真可以帮助设计师在实际制造之前发现和解决潜在问题,提高电路板设计的可靠性和可制造性。

此外,PCB设计过程中的验证也是非常重要的环节。

MentorGraphics的PCB产品提供了专业的设计验证工具,包括Valor NPI和Valor DFM。

Valor NPI可以帮助设计师验证电路板设计的制造可行性,包括DFT(Design for Testability)和DFA(Design for Assembly)等方面。

Valor DFM则是一款设计制造一致性工具,通过自动化的制造规则检查和修复功能,确保电路板设计符合制造要求。

最后,Mentor Graphics的PCB产品还提供了制造执行系统(MES),可以帮助制造商将设计文件与实际生产过程相结合。

这一功能可以提高制造的效率和质量,并减少人工错误的发生。

最新Mentor_Graphics公司软件介绍

最新Mentor_Graphics公司软件介绍

科学四年级上册复习资料第一单元天气1.人们通常从云量、降雨量、气温、风向和风速这几个方面来描述天气。

2.天气特征主要包括云量、降水量、风和温度。

通过亲自观察认识到天气每天都在发生变化。

3.温度计、雨量器、风向标和风速仪是测量天气的工具。

4.气象学家是研究、观察和记录关于天气信息以及应用这些信息预报天气的科学家;天气影响着我们的生活。

记录每天各种天气现象的表格叫做天气日历。

5.温度计上标出的温度往往是整十数,每两个数值之间分成5或10个相等的小格,每个小格代表1摄氏度或2摄氏度。

6.测量时,要把温度计放置到测量环境内2-3分钟,待液柱不再升高(或降低)时再读数。

读数时,视线要与温度计的液柱顶端平行。

7.气温是指室外阴凉、通风地方的温度,每天应选择同一时间、同一地点来测量气温。

室外阴凉通风地方的温度最能反映当地的气温,所以我们应该选择合适的地方来测量气温。

8.风可以通过自然界中事物的变化来感知,可以用风向和风速来描述。

风向是指风吹来的方向,可以用八个方位来描述风向。

风向可以用风向标来测量,风向标的箭头指向的是风吹来的方向。

风的速度是以风每秒行进多少米来计算的。

风速仪是测量风速的仪器。

气象学家把风速记为13个等级。

在我们的天气日历中可以用简化的风速等级来划分风速。

降水量的多少可以用雨量器来测量。

根据云量的多少,天气可分为晴天、多云和阴天;云在天空中是会变化的,不同的云预示着不同天气的来临。

根据云高度和形状可以把云分成三类:积云、层云和卷云。

9.天气是不断变化的,对长时间观察记录的天气信息进行分析和整理,可以帮助我们认识天气的一些特征,了解天气变化的一些规律。

第二单元溶解10.一些物质容易溶解在水中,有些物质不容易溶解在水中。

11.不容易用的方法把溶解了的物质从水中分离出来。

做过滤实验时,要注意“一贴、两低、三靠”。

(一贴:滤纸紧贴漏斗内壁。

两低:滤纸低。

Mentor UT 产品介绍说明书

Mentor UT 产品介绍说明书

Mentor UTA new generation of ultrasonic inspection. industrial.aiThe pressure to reduce operating costs and increase productivity while maintaining reliable inspections is higher than ever. And with increasingly complex testing procedures, more instrument parameters to understand, and the growing loss of domain expertise, it’s becoming even more challenging.The majority of Ultrasonic Phased Array Testing (PAUT) systems on the market are complex and require extensive inspector training. Instruments designed to gather a wealth of data for a range of use-cases can lead to inconsistency among procedures. That means higher costs and less efficiency.But what if performing high-quality, efficient UT inspections was as easy as using a smartphone? With Mentor UT, it is.Reimagineultrasonic testingMentor UT offers a new kind of inspection experience by combining outstanding UT performance, customizable workflow applications and user interfaces, and intuitive hardware with embedded expertise—making inspections more accessible and efficient.Mentor CreateThis desktop software allows you to customize or create inspection “apps” for your unique testing procedures, industry applications, and experience levels. These can be as detailed or generic as you see fit.User-defined menus can walk technicians through every step of any inspection—from probe selection and calibration, to reporting—ensuring consistency acrossyour inspections, every time, from every inspector. And with the flexibility to load multiple workflows on one device, you can guarantee easy access to the right apps for any inspection. Mentor PCUtilize all the tools available on Mentor UT, right on your PC. With Mentor PC, you can conveniently upload and analyze your inspection data on your computer without having to purchase or learn another specialized software package. With Mentor PC Live, you can harness the processing power of your PC to drive the Mentor UT remotely with the scan data saved directly to your local network. Visit to download the software at no cost.Consistencyyou can customize.Field-ready right out of the boxTake the guesswork out of inspection setup with probe kits and inspection apps alreadyinstalled on your device. Reference guides are also immediately accessible during field inspections with pictures, videos, training documents, and detailed inspection procedures.Rugged durabilityMentor UT stands up to tough environments with its IP65 durability rating. It’s extensively tested for water and dust resistance, extreme heat and humidity, cold, vibration, shocks, and drops.Remote calibration-capableSave time and resources. Every Mentor UT isInspectionWorks enabled. This makes it the first UT device to easily allow wireless connectivity and live streaming. Now, you can get expert advice or a second opinion for tough inspection calls when you need it: in real time.High-performance designWith 20 kHz pulse repetition frequency (PRF), Mentor UT combines a 32:32 phased array flaw detector (upgradable to 32:128) with a conventional UTchannel to instantly switch between phased array and conventional inspections as needed.Intuitive operationWith a glove-friendly, daylight-readable touchscreen, data collection, archiving and reporting are simplified with the ability to store A-scan data, as well as post-inspection analyses, right on the device.Power meets performanceMentor UT was developed with the quality and precision you expect from GE. And it’s now more powerful than ever.For maximum flexibility, Mentor UT can be configured with an industry standard Tyco or Ipex PA probe connector.For maximum functionality, attach the MUX module and gain 32:128capability, an additional hot swappablebattery, and standard Tyco connector.General specificationsUltrasonic specificationsMUX module specificationsMentor UT and MUX Module complies to standard EN ISO 18563-1 for Phased Array Channels and EN ISO 12668-1 for Conventional Channels.With GE, innovation is the standard.GE’s industry-leading Mentor portables are designed to enable the most reliable inspections, regardless of experience level. With outstanding performance and advanced software, these connected NDT portable devices can help you improve inspection productivity, asset reliability, and confidence.GE Inspection Technologies+1 717 242 0327industrial.ai© 2017 General Electric Company. All rights reserved.GEA32151A (12/2017)。

MentorGraphics公司PCB产品介绍

MentorGraphics公司PCB产品介绍

MentorGraphics公司PCB产品介绍Mentor Graphics是一家领先的电子设计自动化(EDA)公司,其PCB产品是该公司的核心产品之一、PCB(Printed Circuit Board)是电子设备的重要组成部分,它连接和支持电子组件,使整个系统能够正常运行。

Mentor Graphics的PCB产品为工程师提供了一套全面的设计和验证工具,帮助他们设计高性能、高可靠性和高效率的PCB。

其次,Mentor Graphics的PCB产品还提供了全面的验证工具。

这些工具包括信号完整性分析、功耗分析和热分析等。

信号完整性分析可以帮助工程师检测和解决信号传输过程中的问题,确保信号的稳定性和可靠性。

功耗分析可以帮助工程师评估和优化PCB设计的功耗情况,提高系统的能效。

热分析可以帮助工程师预测和解决PCB设计中的热问题,确保系统的可靠性和稳定性。

此外,Mentor Graphics的PCB产品还具备强大的协同设计能力。

工程师可以通过云端平台实现多人协同设计,提高团队的工作效率和协作能力。

此外,Mentor Graphics的PCB产品还支持与其他设计工具的集成,如机械设计工具和封装设计工具等,实现全面的系统设计。

最后,Mentor Graphics的PCB产品还提供了丰富的培训和技术支持。

公司为用户提供了详细的用户手册和培训课程,帮助他们快速上手并熟练使用PCB产品。

此外,Mentor Graphics还设有专业的技术支持团队,随时解答用户的疑问和提供技术支持。

总之,Mentor Graphics的PCB产品是一套功能强大、全面的设计和验证工具,帮助工程师设计高性能、高可靠性和高效率的PCB。

通过其强大的设计工具、全面的验证工具、协同设计能力以及丰富的培训和技术支持,工程师可以更加轻松地进行PCB设计,并确保设计的质量和可靠性。

Mentor Graphics的PCB产品已经在电子设计行业取得了广泛的应用和认可,成为众多工程师的首选。

Mentor_Graphics公司软件介绍

Mentor_Graphics公司软件介绍
电路板与系统设计
今天,全世界许多最大的系统设计公司都在使用Mentor提供的工具与组件库,而且随着公司最近在这个产品线上所做的投资,Mentor已经做好了准备,有能力协助客户升级到新一代系统设计工具与方法,让他们能够很快的完成设计工作 - 即使在电路复杂性迅速成长的压力下。
Board Station®系列:不受限制的企业设计环境;Expedition™系列:最适合个别设计人员或小型工程团队的设计环境;AutoActive® RE:最佳的绕线作业环境,不但能立刻增加工程师的生产力,还能与Expedition及Board Station整合在一起。DMS:数据管理系统。
ModelSim®:提供数字仿真的功能;HDL Designer Series™:设计的输入、分析与管理工具;Precision Synthesis™:强大的FPGA合成解决方案。
实体设计与分析
随着深次微米制程技术的不断发展,它也带来了许多复杂的实体效应,设计人员必须克服这些效应所产生的影响,才能把他们的设计转换为实际的芯片。Mentor是实体验证市场的领导厂商,公司提供了整套的工具,让设计人员能在制程日渐精密的组件设计中,迅速找出及修正其中的所有重要错误。
Seamless®:可提供早期而精确的硬件/软件协同验证;Nucleus:嵌入式实时操作系统;XRAY®:芯片制造前与制造后的软件除错工具;FastScan™:芯片测试资料的自动产生工具;VStation 和Celaro™:硬件仿真工具/虚拟原型建构系统。
硬件描述语言与FPGA设计
在VHDL及混合硬件描述语言的仿真、FPGA组件的合成、以及设计的捕捉与管理等方面,Mentor Graphics都是市场的领导厂商,这让公司成为百万逻辑闸等级的FPGA设计领域里,唯一有能力提供整合式设计解决方案的厂商;除此之外,无论是高阶硬件描述语言的设计与仿真,或是设计的捕捉与管理等方面,Mentor 也提供了非常杰出的独立应用工具。

Mentor公司MBIST说明文档

Mentor公司MBIST说明文档

/silicon-yieldCopyright Mentor Graphics Corporation 2010 All rights reservedThis document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this document may duplicate this document in whole or in part for internal business purposes only, provided that this entire notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the proprietary information.Silicon Test & Yield Analysis WhitepaperA G UIDE TO P OWER -A WARE M EMORY R EPAIRM AY 2010AbstractThe number of embedded memories contained within an SoC continues to grow rapidly. This growth has driven the need for rethinking manufacturing test strategies as embedded memories represent in most cases a die’s largest contributor to yield loss due to the very large area and density of these regular circuits. A successful memory strategy must incorporate some form of repair methodology in order to achieve profitable yield levels. This paper explores how to formulate an effective repair methodology by leveraging available memory redundancy schemes and advanced on-chip memory repair capabilities. The adaptation of memory repair techniques to the increasing use of power management schemes such as voltage and power islands is also examined.Table of ContentsINTRODUCTION (3)EFFECTIVE TEST FOR EFFECTIVE REPAIR (4)MEMORY REPAIR APPROACHES (5)POWER-AWARE SELF-REPAIR (8)CHOOSING A REDUNDANCY SCHEME (9)MANUFACTURING REPAIR FLOW (11)CONCLUSION (12)REFERENCES (13)APPENDIX A: GUIDE TO CHOOSING REDUNDANCY LEVELS (14)APPENDIX B: GUIDE TO CHOOSING NUMBER OF FUSES (17)IntroductionOne of the most notable consequences of the semiconductor industry moving to deeper nanoscale technology nodes is the significant growth in both the number and densities of embedded memories. Designs have migrated from containing a handful of memories to containing hundreds and in some cases thousands of memories of all types. This explosion in embedded memories is driving the need for rethinking the manufacturing test strategy for these designs [1].Embedded memories often represent a die’s largest contributor to yield loss because of the very large area and density of these regular circuits. A successful memory test strategy must now incorporate some form of repair methodology to achieve profitable yield levels.Another important and growing design consideration is power management. Low power requirements affect test in two separate ways. First, any functional power constraints must be met (or at least adequately managed) during test execution. Second, a test solution needs to be compatible with whatever low-power design techniques are used. This compatibility requirement is particularly important with regard to memory repair because the repair process must generally operate in conjunction with the normal operational mode of the device.Formulating a power-aware repair methodology often requires combining IP from memory providers, automation from DFT providers, as well as IP and data from foundries. This often represents a significant challenge, as not only are there several combinations and choices to consider, but more importantly, there is generally very little information on how to best make these choices. This document attempts to address this challenge by explaining the power-aware memory repair process along with all of its components and trade-offs.Effective Test for Effective RepairThe memory repair process has three basic components: test, repair analysis, and repair delivery. A comprehensive test capability is fundamental as the repair process is only effective if it addresses all existing defects. In the great majority of cases, embedded memories today are tested with Built-In Self-Test (BIST). In its simplest form, memory BIST consists of an on-chip engine placed next to each embedded memory that writes algorithmically generated patterns to the memory and then reads these patterns back to discover and possibly log any defects. The memory BIST engine is typically designed to generate patterns based on a pre-determined memory test algorithm encoded in a finite state machine (figure 1a). Decreases in process geometries and associated increases in memory densities are resulting in a growing number of memory defect types. Many of these new defect mechanisms are difficult to predict and hence properly test for. These defects are therefore being discovered during the production testing of a device or worse during the analysis of field returns. This can result in significant quality and cost issues if the predetermined test algorithm does not detect a newly discovered defect type. The cost issues are worse when repair is used as the added repair cost is wasted on a part that will remain defective.To address this growing problem, some commercial memory BIST solutions now provide programmable BIST engines (figure 1b). With these engines it is possible to download (on the tester or in-system) program code that implements an arbitrary memory test algorithm, allowing new or enhanced algorithms to be applied as needed to specific memories as new defect mechanisms need to be addressed. To maintain a simplified manufacturing test flow, these programmable BIST engines will typically support predetermined default algorithms as well. This removes the need to program the BIST engine if the default algorithm is sufficient. Only when new defect mechanisms are discovered does it become necessary to program each BIST engine before having it execute the memory test. The programmable BIST engines are larger than the more traditional hard-coded ones and therefore should only be used when the need is justified. This tends to be when a new memory design and/or a new foundry process are to be used.Figure 1: Memory BIST ArchitecturesT O / F R O M M E M O R YT O / F R O M M E M O R Y(a)(b)Memory Repair ApproachesIn addition to an effective test capability, a memory repair solution consists of two additional basic components: repair analysis and repair delivery. These are described in detail in this section.R EPAIR A NALYSISThis component of the repair process consists of determining which of a memory’s defective sections (typically rows or columns) must be replaced with available spares. Repair analysis can be performed on or off chip. In the off-chip approach, all memory failures are logged on the tester and the resulting fail data is post-processed offline. A significant drawback of the off-chip approach is that logging all of the fail data off-chip results in a large increase in test time. Because of this, the majority of today’s repair approaches use an on-chip repair analysis capability, often referred to as BIRA for Built-In Repair Analysis. With BIRA, absolutely no fail data needs to be logged externally as the BIRA circuitry or engine analyzes the fail data coming out of an associated BIST controller on the fly. By the end of the memory test, the BIRA engine has determined the spare element allocation necessary to repair the chip. A key requirement for a BIRA engine is to maximize its success at finding spare allocation solutions. If only spare rows or spare columns are used then the repair analysis is straightforward as any defective row or column is simply replaced. The analysis becomes much more complex however when both spare rows and columns are available. Take for example the memory represented in figure 2a which contains 2 spare rows and one spare column and contains the six defects shown. If a simple linear algorithmic approach is taken to allocate spares, then the allocation shown in figure 2b would be the outcome and the repair would not be successful. A successful allocation is possible in this case however as shown in figure 2c. In general, determining the optimum allocation when both spare rows and columns are used is in mathematical terms an NP -Complete problem, or more simply put, a problem that grows exponentially in difficulty with growing number of spare elements. Fortunately though, when theFigure 2: Optimal spare allocationSpare RowsS p a r e C o l u m n(a)(b)(c)number of rows and columns is relatively small (which is generally the case) an optimal solution can typically always be computed.R EPAIR D ELIVERYThere are two general forms of repair delivery: hard repair and soft repair.Hard RepairIn this approach, repair instructions are stored permanently within the die through the programming of fuses. The two common fuse types are laser and electrical. Laser fuses are programmed by cutting a metal link, while electrical fuses (eFuses) are typically one-time programmable or flash memory elements and are programmed using an elevated voltage level. eFuse usage is growing rapidly as they are generally smaller than laser fuses—typically by a factor of 2 to 3 (e.g. 0.02 mm2 vs. 0.05 mm2), and they do not require special equipment or a different test insertion to be programmed. For this last reason, eFuses are also associated with Self-Repair approaches which are described later in this section. Soft RepairIn this approach, repair instructions are stored in volatile memory, typically in scan registers, at each power up of the device. Soft repair has the advantage of being able to address defects that may arise over time as new repair instructions can be created and stored throughout the life of the device. This provides higher long term availability and reliability. Because the repair instructions are not permanently stored within the device, they have to be either stored somewhere external to the device (somewhere in the system) or they have to be generated on-the-fly at power-up. Storing the repair instructions in the system can be daunting from a logistics point of view as the repair instructions for typically many different memories within many different devices have to be properly managed. For this reason, soft repair is almost exclusively associated with a BIRA mechanism to calculate repair instructions on-chip at power up.Self-Repair:A self-repair solution, typically referred to as BISR (Built-In Self-Repair), is one where both the repair analysis and repair delivery are performed on-chip. In its simplest form, a BISR solution consists of the combined BIRA and soft repair capabilities described above. One important disadvantage of this approach however is that since the repair instructions are calculated once at power-up, they may not take into account defects that only manifest themselves under specific operating conditions such as high temperature. For this reason, more advanced BISR solutions now incorporate a combination of both soft and hard repair capabilities. Hard repair is used to store repair instructions determined during manufacturing test and soft repair is then used at each power up to address any new defects. These advanced solutions provide several advantages including: a simplified manufacturing test and repair process, support for long term reliability using soft-repair as explained above, and significant silicon area savings through pooling of fuse data as explained below. A potential drawback of this incremental soft repair approach is that the power up cycle time for a device becomes longer as the BIST must be executed twice. For some applications this extended time may be problematic.The on-chip architecture for the Tessent MemoryBIST BISR solution is shown in figure 3. A key component of this architecture is the concept of a centralized fuse pool (eFuse array). Because most memories with redundancy will typically need little to no repair on any given die, sharing a pool of fuses for all memories allows for much better fuse utilization. Memories needing little to no repair will require little to no fuse information to be stored, freeing that fuse storage for other memories. In order to simplify the fuse data allotment, standard data compression techniques are used to implicitly allocate the necessary amount of fuse storage per memory. On-chip management of a centralized programmable fuse pool is performed by a fuse controller . This controller together with one or more BIST controllers performs all necessary activities for testing and repairing memories. In this architecture, the BIST interfaces to memories containing redundancy are equipped with a BIRA engine to analyze failures and generate any necessary repair instructions in the form of fuse data. A dedicated chip-wide (BISR) scan chain is used by the fuse controller to transfer fuse data to and from the eFuse array and the various memories. This scan chain contains a BISR register for each memory with redundancy. The operation of this BISR architecture is described in detail in the next section.Figure 3: BISR ArchitectureRegistersPower-Aware Self-RepairThe self-repair architecture described above breaks down when voltage islands or power domains are used. This increasing popular power management approach involves using a separate supply voltage for each core (or, possibly, group of cores) within a design. Each resulting power domain can then be shut down when not required and re-activated when needed. This powering up and down activity has a direct effect on repairable memories. When a sleeping power domain is re-activated, the repair information for the repairable memories in that domain will have been lost and will need to be reloaded. The challenge here is that the reloading has to occur without disrupting the already active domains, and the reloading can’t be affected by the fact that some domains may still be inactive.To handle these constraints, the self-repair architecture described above has to be augmented to provide at least one repair shift register for each power domain as illustrated in figure 4. Each shift register can be of arbitrary length. A functional power management unit indicates to the fuse controller which shift register(s) need to be loaded. The other shift registers are kept in a stable state as they might contain repair information of active power domains. When multiple domains are re-activated, the controller will generally need to load them sequentially according to a default priority defined at design time. The operation is sequential because all repair information is typically stored in the same eFuse array. If the loading order needs to be changed, the power management unit simply needs to re-activate each island one at a time in the desired order.The functional power management unit and the fuse controller must both be in an always on power domain while the various memory BIST controllers are placed within the same power domains as the memories they test. Power domains can span multiple physical regions (shown as blocks in figure 4) and a physical region can also contain multiple power domains. In the current Tessent BISR solution, the association of memories to power domains is specified manually through a configuration file. A future enhancement will make use of available UPF or CPF files to automatically derive the associations.Always OnFigure 4: Power-Aware BISR ArchitectureChoosing a Redundancy SchemeThere are three general forms of redundancy to choose from. Each is described here along with some associated advantages and disadvantages. The reader is encouraged to work with the memory vendor and/or foundry to ultimately determine the best choice for his or her design.Row Only RedundancyOne or more spare rows are added per memory. In the case of several spare rows, some redundancy schemes force all rows to be allocated as a contiguous block while others allow each row to be allocated separately. For memories that support bank addressing, it is also possible to have an entire spare bank added to the memory.Advantages: This is the cheapest repair method from a BIST and BIRA overhead point of view. The BIST overhead is cheapest as a serial test interface between the BIST controller and memory can be used. A serial interface only requires one comparator per word rather than one per bit (I/O). The amount of BIRA logic is also low and varies only slightly with the memory size as only the most significant bits(MSBs) of the row address bits are logged.Disadvantages: Has a slight impact on performance as the setup time on the address inputs is slightly increased. Bit level diagnostics are not possible if the serial interface is used.Column Only RedundancyThere are two forms of column redundancy. In the IO replacement scheme, one or more entire memory sub-arrays are added. Each redundant element can repair any failing column associated with a memory IO. Figure 5a illustrates the structure of an 8-bit repairable memory with 4-to-1 column multiplexing and 1 redundant IO. The redundancy logic for the IO replacement mechanism is highlighted in grey. In the column replacement scheme, one or more single columns are added. Each redundant element can repair one failing column withinany memory IO. Figure 5b illustrates(a)(b)Figure 5: Column Redundancy Schemesthe structure of an 8-bit repairable memory with 4-to-1 column multiplexing and 1 redundant column. The logic for the column replacement mechanism is highlighted in grey.Advantages: This has the least effect on memory performance as there is no impact on address decoding.Disadvantages: It precludes the use of a serial interface between the BIST controller and the memory as a comparator per bit (I/O) is needed. The area cost is a function of the number of I/Os so that even a small memory can require a large amount of repair circuitry. The BIRA circuitry required to encode the failing I/O number is relatively big and slow. This may reduce the maximum frequency at which the BIST and BIRA can operate.Row and Column RedundancyIn row and column redundancy schemes, one or more spare rows as well as one or more spare columns are added per memory. The number of spares rows or spare columns rarely exceeds two.Advantages: Provides the highest repair success rate for a given number of spares. Having spares in both dimensions not only improves the ability to cover a random distribution of defects, but also improves the ability to cover defect mechanisms that affect an entire word (e.g. word line fault) or entire column (e.g. bit line fault).Disadvantages: Very expensive from both a memory overhead as well as from a BIRA overhead point of view. Can only be justified for very large memories and generally for less mature processes.Manufacturing Repair FlowThe manufacturing repair flow is typically performed at wafer sort and depends of course on the repair capabilities used. The following steps define the flow when the on-chip self-repair solution described in the previous section is used. Each of the steps is also represented graphically in figure 6.◆ Action : Power up/Reset the chip. Result : The fuse controller is automaticallyenabled and loads the chip-wide BISR chain with all 0s. This ensures that only the non-redundant portion of each memory is tested in the next step.Action : Run the memory BIST/BIRA controllers(at typically different test corners) Result : Each memory is fully tested and anynecessary repair info is automatically calculated and accumulated across different test corners. The repair info is stored in the local BIRA registers.♦ Action : Run “transfer BIRA to BISR” instruction Result : Transfers local repair info into chip-wide BISR chain for subsequent fuseprocessing.⌧ Action : Scan out BIRA registers from each BISTcontroller. Result : The BIRA registers contain the repairstatus. If any memory is not reparable then exit as chip is bad. If no repair info is generated for all memories then exit as chip is good.⍓ Action : Run fuse controller in programming mode. Result : The repair info contained in the BISRchip-wide chain is scanned out, compressed and programmed on-the-fly into the eFuse array. High voltage is applied to the eFuse array during this step from on-chip generator or off-chip supply.Figure 6: Manufacturing repair flowRegistersRegistersAction: Power up/Reset the chipResult: The fuse controller is automatically enabled and loads the chip wide BISR chain with all of the stored repair info. This results in all the memories with redundancy being repaired as the BISR registers directly drive the memory repair ports. Note that some memory types contain an internal scannable repair register rather than a repair port. For these memories, the internal repair register is scan loaded in parallel with the BISR register.Action: Run the memory BIST controllers.Result: The (repaired) memories are fully re-tested to ensure that the repair was successful.In the field, all memories are repaired automatically at power up by the fuse controller as described in step 6. For long term reliability, the Tessent BISR solution will soon support the ability to perform additional incremental soft repair at power up to address any defects that may have developed over time. To accomplish this, once the fuse controller has loaded the BISR registers to repair the memories, the BIRA registers are then loaded with the BISR register contents to create a baseline. The BIST controllers (with BIRA) are then executed and the BIRA registers are then updated to contain the baseline repair info combined with any new repair info. This combined repair info is then transferred back into the BISR registers to repair the memories. This is a soft repair as the new repair info cannot be programmed into the eFuse array and is therefore only available while the device is powered up. ConclusionPower-aware memory repair is a rapidly growing requirement for today’s leading edge designs. Maximizing yield and thus profitability requires proper planning and selection of an effective on-chip solution and related resources. Although it is recommended to work with your memory provider and foundry when making repair architecture and resource decisions, understanding the basic principles and some simple rules of thumb can help ensure the implementation of a successful solution.References[1] S. Pateras, “Best Practices for Cost Effective Test and Yield Optimization of Embedded Memories”,FSA Forum, vol. 13, no. 4, December 2006[2] J.A. Cunningham, “The Use and Evaluation of Yield Models in Integrated Circuit Manufacturing”,IEEE Transactions on Semiconductor Manufacturing, vol. 3, no. 2, May 1990, pp. 60-71.Appendix A: Guide to choosing redundancy levelsThe most basic question regarding memory repair is: how much redundancy, if any, should be added to each embedded memory? The answer to that question depends on several factors which are explored in this appendix. Although some guidelines are presented here, the reader is encouraged to work with his or her memory IP provider and/or foundry to determine the optimum redundancy strategy for a particular design.Redundancy is added to improve memory yield and thus die yield. A method to calculate yield is therefore required in order to analyze redundancy requirements. There is a long history of work on determining accurate yield models [2]. A common model for memory yield used by several companies is one based on the Negative Binomial model: Y MEM = ( 1 + D MEM A MEM )-C(1) where:D MEM = memory defect density(defects/mm 2) A MEM = memory core size (mm 2) C = complexity factor. This parameterrelates to the complexity of the underlying process and is derived from the number of critical steps in the manufacturing flow. Values between 5 and 15 have been used successfully with processes of varying complexity.Figure A1 plots yields for memories ranging in size from 1 mm 2 to 10 mm 2, for complexity factor values ranging from 8 to 14. A relatively high defect density of 0.002 defects/mm 2 (1.3 defects/in 2) is assumed. It is clear that redundancy will be needed if even a few of the larger memories are placed together on a die as the die’s yield will be the product of the already low memory yields.To calculate the effect of redundancy on a memory’s yield, consider first the case when one spare element (row or column) is added to a memory. In this case the memory can be viewed as being divided into N equal parts of the size of the spare element. For example, if a spare row is added to a memory then N is equal to the number of rows. With the spare element, the memory has N +1 parts each with the same yield value, Y MEM/N , which can be calculated using equation (1) with an area value N times smaller than the full memory. The yield of the memory can be closely approximated by the probability of no more than one of the N+1 parts being bad. The memory yield with one spare element can therefore be calculated by:Memory core size (mm 0.80.850.90.95112345678910Y MEM2)Figure A1: Memory YieldY 1SP = (Y MEM/N )N+1 + (N+1) (Y MEM/N )N (1- Y MEM/N ) (2)As additional independent spare elements are added, the yield calculation becomes increasingly complex as all combinations of allowable bad part combinations must be taken into account. With 2 spare elements, the yield calculation grows to:Y 2SP = (Y MEM/N )N+2 + (N+2) (Y MEM/N )N+1 (1- Y MEM/N ) + ½ (N+2)(N+1) (Y MEM/N )N (1- Y MEM/N )2 (3)Figure A2 shows the improved yield values for both the single and double spare element cases for the same memory sizes and defect density used in figure A1. It is interesting to note that even at the relatively high defect density, a single spare element seems sufficient for all but the largest memories. It also appears from this data that it will be rare to need more than 2 spare elements within an individual memory.Determining the optimum number of spares to use within any given memory requires more than just analyzing the memory yield improvement. Redundancy of course increases the memory’sarea and thus the die’s area. The increase in area results in an increase in cost. Another way to view this is that the increase in the die’s area reduces the number of die that can be manufactured per wafer. The end goal is to maximize the number of good die per wafer DPW GOOD . DPW GOOD is the product of the die yield times the number of die that can be manufactured per wafer, or:Adding redundancy to a given memory will therefore increase the DPW GOOD value if the resulting percentage increase in the die yield, Y DIE (which is equal to the percentage increase in the given memory yield as yields are multiplied together) is greater than the resulting percentage increase in the die area A DIE . The ratio Y DIE / A DIE must increase to justify the added redundancy. For example, if one spare element is added to a memory, then the ratio Y 1SP / A 1SP must be greater than the ratio Y 0SP / A 0SP orDPW GOOD = Y DIE DPW =Y DIE A WAFER =A DIEA WAFER A DIEY DIEMemory core size (mm 0.800.820.840.860.880.900.920.940.960.981.0012345678910Y MEM2)Figure A2: Improved Yield from added redundancywhere:Y 1SP = die yield with one spare element added to the memory Y 0SP = die yield with no spare element added to the memory A 1SP = die area with one spare element added to the memory A 0SP = die area with no spare element added to the memoryThe graph in figure A3a displays the above ratio for the memory sizes and yield data used in figure A1. The ratio is greater than one for all memory sizes and therefore indicates that one spare element should be added in all cases. The graph also displays the ratiowhich measures whether a second spare element should be added. In this case, the values indicate that a second spare element should only be added for memory sizes 4 mm 2 or greater.Figure A3b shows the same two ratios for the same memory sizes but with the defect density decreased from 0.002 defects/mm 2 (1.3 defects/in 2) to 0.0002 defects/mm 2(0.13 defects/in 2). At this reduced defect density, two spare elements are never justified, and one spare element helps for only memory sizes 3 mm 2 or greater.Note that if the design starts off pad-limited then there is some unused silicon area in the core that can be used for redundancy without any cost. The above ratios are still useful in this case as they serve to rank the relative benefits of adding redundancy to the various memories.The above analysis also assumes that the die area can grow to an arbitrary size. This is often not the case as specific die sizes may only be available due to packaging and other issues. In this case adding redundancy may force a change to the next die size resulting in a more significant area increase.Y 0SP A 0SPY 1SP A 1SP> 111.11.212345678910Memory core size (mm2)0.990.99511.0051.011.0151.0212345678910Memory core size (mm 2)。

mentor_intro

mentor_intro

Mentor Graphics软件配置方案Mentor Graphics板级系统级解决方案流程图:1、Mentor公司PCB板级系统设计电子技术的发展日新月异,这种变化主要来自芯片技术的进步。

随着深亚微米技术的广泛应用,半导体工艺日趋物理极限,超大规模集成电路成为芯片设计和应用的主流。

对电子系统而言,工艺和规模的变化产生了许多新的设计瓶颈。

这使得电子系统设计师面临更多的压力和挑战:不但要求缩短产品的上市时间,而且要保证产品的高质量、高性能;此外,随着电子技术的不断发展,产品的复杂程度不断提高,这就造成了产品上市时间与开发周期的矛盾。

要解决这一矛盾,就必须避免冗余循环设计过程,将过去串行工作方式转变成并行工作方式,使设计工作更加有效,从而缩短产品开发周期。

Expedition PCB是Mentor Graphics公司针对小型企业用户,工作于Windows/NT/2000平台的EDA设计工具,其PCB设计功能强大,又非常易于使用。

它涵盖了从设计创建、版图布局到产品加工的设计过程,同时使设计者可以进行简单的高速电路分析,板级热分析、库开发与管理等。

充分满足了项目组的需求。

Expedition提供了优秀的无网格布线器及最新的先进技术,如扩展的设计复用工具、改进的微孔检查以及功能管理的参数化设计能力等,以增强设计的可制造性并大幅度缩短设计时间。

该系列工具中采用业界领先的AutoActive 布局布线技术,可将基于形状的自动布线与交互布线功能结合到单一、易用的设计环境之中。

可将一个复杂的交互和自动布线时间从几周缩短到几小时。

实践证明,AutoActive的特性可有效提高布通率、缩短布线时间、提高设计质量与可制造性。

Expedition统一的设计环境将FPGA设计与PCB设计完整地结合在一起,将FPGA设计结果自动生成PCB 设计中的原理图符号和几何封装,大大提高设计师的设计效率。

为达到平台选择的最大灵活性,Expedition可应用Windows98/NT/2000多种操作系统。

Mentor_Graphics公司软件介绍

Mentor_Graphics公司软件介绍
Moቤተ መጻሕፍቲ ባይዱelSim®:提供数字仿真的功能;
HDL Designer Series™:设计的输入、分析与管理工具;
Precision Synthesis™:强大的FPGA合成解决方案。
实体设计与分析
随着深次微米制程技术的不断发展,它也带来了许多复杂的实体效应,设计人员必须克服这些效应所产生的影响,才能把他们的设计转换为实际的芯片。Mentor是实体验证市场的领导厂商,公司提供了整套的工具,让设计人员能在制程日渐精密的组件设计中,迅速找出及修正其中的所有重要错误。
Mentor Graphics公司软件介绍
软件名称
软件特点
适合范围
系统单芯片验证系列
随着芯片设计的日趋复杂,如何验证产品的功能,确认它们的表现符合原来的设计要求,这已变成一个困难的挑战,Mentor提供了许多重要工具,让客户得以解决这方面的问题。在硬件描述语言的仿真、硬件与软件的协同验证、多核心内嵌式系统的除错以及「可测试设计」(Design-for-Test)等方面,Mentor 都居于市场领先的地位;此外,在美125国以外的地区,Mentor也是仿真工具市场的领导厂商,因此公司有能力协助客户解决这方面的问题 - 无论是今天正在面对的设计困难,或是明天即将面对的设计挑战。
Expedition™系列:最适合个别设计人员或小型工程团队的设计环境;
AutoActive® RE:最佳的绕线作业环境,不但能立刻增加工程师的生产力,还能与Expedition及Board Station整合在一起。
DMS:数据管理系统。
Calibre®:速度最快且结果最精确的深次微米设计实体验证工具;
Calibre OPC与PSM:次波长光学制程修正及相偏移光罩的发展工具;

泛达产品线-垂直理线器

泛达产品线-垂直理线器

泛达产品线-垂直理线器简介泛达产品线-垂直理线器是一种用于将物体垂直放置或调整的工具。

它主要用于工业生产中,可以帮助操作员将物体以精确的垂直姿势放置在指定位置。

垂直理线器具有简单易用、调节方便、精度高等特点,广泛应用于各行业的生产线上。

组成部分泛达产品线-垂直理线器主要由以下几个部分组成:1.底座:底座是垂直理线器的支撑结构,通常采用坚固耐用的铁板材料制作,以确保整个系统的稳定性和可靠性。

2.支撑杆:支撑杆是连接底座和调节台的垂直柱状结构,可以通过调节杆长度来实现高度的调节。

3.调节台:调节台是安装在支撑杆上的可调节平台,可以实现物体在垂直方向上的精确调节。

调节台通常具有微调功能,可以进行微小的高度调整。

4.固定夹具:固定夹具是用于固定物体的装置,通常由夹具座和夹具臂组成。

夹具座可以固定在调节台上,夹具臂可以通过调节实现对物体的夹持。

5.控制装置:控制装置通常包括按压按钮、旋钮、标尺等。

通过控制装置,操作员可以方便地调节和固定物体的垂直位置。

工作原理泛达产品线-垂直理线器的工作原理主要分为以下几个步骤:1.安装调节台:首先将调节台安装在支撑杆上,确保调节台与支撑杆垂直对齐,并通过固定螺丝将其固定在适当的高度上。

2.调节高度:根据需要,通过调节杆的长度调节调节台的高度。

如果需要微调高度,可以使用调节台上的微调功能进行微小的调节。

3.安装固定夹具:固定夹具可以根据物体的形状和尺寸进行调节,并用螺丝将其固定在调节台的夹具座上。

4.固定物体:将需要放置或调整的物体放入固定夹具中,并使用夹具臂进行固定。

通过调节固定夹具的位置,可以确保物体在垂直方向上的位置正确。

5.完成调整:通过按压按钮或旋钮,根据需要进行微调,并使用标尺等工具进行精确的测量。

确保物体在垂直方向上的位置符合要求。

6.拆卸物体:完成调整后,可以拆卸固定夹具,取出已调整好的物体。

应用领域泛达产品线-垂直理线器广泛应用于各行业的生产线上,主要应用领域包括但不限于:•电子制造:用于垂直放置电子元件和电路板。

公司推行mentor实施方案

公司推行mentor实施方案

公司推行mentor实施方案随着企业发展的不断壮大,员工的职业发展和成长也成为了企业管理的重要内容。

为了更好地帮助员工提升自身能力和职业发展,公司决定推行mentor实施方案,以期能够更好地指导和帮助员工在工作中取得更好的成绩。

一、mentor实施方案的概念。

mentor,即导师,是指在职场上拥有丰富经验和知识的人,他们愿意分享自己的经验,帮助他人成长。

mentor实施方案是指公司为员工提供mentor服务,通过与mentor的交流和指导,帮助员工提升自身能力,实现职业发展目标。

二、mentor实施方案的重要性。

1. 促进员工成长,mentor可以根据自身经验和知识,为员工提供指导和建议,帮助员工更好地应对工作中的挑战,提升工作能力。

2. 建立良好的企业文化,mentor实施方案可以促进企业内部的交流和合作,建立良好的企业文化和团队精神。

3. 提高员工满意度,通过mentor实施方案,员工可以感受到公司对他们职业发展的重视,提高员工的工作满意度和忠诚度。

三、mentor实施方案的具体措施。

1. 确定mentor候选人,公司可以根据员工的职业发展需求和导师的经验和知识来确定mentor候选人,确保mentor能够为员工提供有效的指导和帮助。

2. 建立mentor制度,公司可以建立mentor制度,明确mentor的角色和责任,规范mentor与员工之间的交流和指导方式。

3. 培训mentor,公司可以为mentor提供相关培训,帮助他们更好地理解自己的角色和责任,提升mentor的指导能力和水平。

4. 定期评估和调整,公司可以定期对mentor实施方案进行评估,根据员工的反馈和实际情况进行调整和改进,确保mentor实施方案的有效性和可持续性。

四、mentor实施方案的预期效果。

1. 员工能力提升,通过mentor实施方案,员工可以获得更多的指导和帮助,提升自身能力和水平,更好地适应工作的挑战和变化。

MentorCES使用介绍

MentorCES使用介绍

Mentor CES使用介绍本介绍从我们使用Expeditionpcb的流程角度介绍如何利用CES快速设置物理规则和电气规则。

对于Allegro转换的Expedition数据,原先CES是不支持的。

从2005SP1起,CES已支持Allegro转换过来的数据。

因此现在我们可以在协同设计流程中,直接采用Mentor的CES对进行转换过来的规则进行检查、纠正和输入复杂的高速电气规则。

关于200SP1和CES使用的基本情况,可参见《Expedition2005SP1和AllExp2WayAssit使用说明》,本介绍重点在于电气规则的设置。

希望能够通过该介绍使得能够理解CES设置规则机理,输入正确的合适并能够为工具所支持的规则,既简单能够使得布线工具支持,同时也能很好地符合电气要求。

本介绍分为三个部分:1 CES界面和基本设置 2 物理规则设置 3 电气规则设置。

1.CES 界面和基本设置将数据从Allegro转换到Expedition后,启动Expeditionpcb后,点击Setup -Project Intergration,按下图所示,勾选使用CES。

然后点击Setup-Constraints启动CES,我们可以看到Setup菜单条的发生了变化,Net Class和Net Properties菜单条项现场变成了一个Constraints。

点击Constraints,就启动了CES。

现在我们可以通过CES来方便地设置所有物理规则和电气规则。

如果Allegro 已经设置了一些物理规则和差分对定义,这时,使用者可以在CES看到原来在Allegro设置的线宽和间距规则,也可以看到在Specctraquest中定义的差分线定义、匹配对。

由于目前版本的转换器并不能完全100%地将Specctraquest中定义的所有约束一一传递到CES中,使用者需要在CES中重新检查、补充相应的约束。

为此,建议不要在SQ设置过多的高速约束,一切移到CES设置,这样可以节约时间。

Mentor公司产品线介绍

Mentor公司产品线介绍
PCB Browser PCB设计浏览器 PCB Browser 是Expedition PCB 设计浏览器。为团队设计中原理图设计工程师、结构设计工程师、或其 他相关项目人员提供PCB设计浏览工具。具备常规PCB浏览功能,支持所见即所得的设计输出。
BetaSoft 板级热分析 BetaSoft 对印刷电路板的热效应进行准确而可靠的分析。通过确定印刷电路板的温度及其梯度分布,器 件和焊点的温度,设计工程师可以方便地定位并且解决设计中潜在的散热问题。由于采用局部变步长的有 限元微分算法,计算速度与传统有限元算法比较有了迅速提升。针对热传导,对流和辐射等情况,并考虑、 器件加装散热片、芯片风扇及导热垫等散热装置的影响,BetaSoft可以迅速建立复杂的三维气流与热场模 型。
Design Capture 原理图输入 Design Capture可作为CAD/CAE设计的前端输入工具,通过与Mentor的其它设计工具紧密集成,可完成复杂 的FPGA和PCB设计。设计师利用Design Capture, 既可用传统的基于原理图的输入方法,也可以利用先进 的图形化设计工具,同时使用状态图、流程图、真值表定义自己的设计,HDL Writer提供的高效的VHDL、 VerilogHDL的输入方法。设计支持多层次结构。与Part Manager组合可以参数化选择元件。在进入后续 的设计周期之前Design Capture提供了设计规则检查以标明错误所在,以便在设计早期消除错误。Design Capture与Microsoft环境相兼容,可在Microsoft工具中剪贴对象至Design Capture输入环境,并且在OLE 的作用下直接在原理图输入环境中插入或编辑任何格式的Windows文件。 主要特点: •原理图、状态图、流程图、真值表、HDL文本多重输入方法; •支持设计的层次化和模提供设计规则验证;

Mentor

Mentor

Mentor Expedition PCB设计的基本步骤Mentor的EE就不⽤我介绍了把,如果您是做电脑主板设计,应该会接触得到它。

因为intel某些公版设计都是⽤它做的。

国内介绍EE的书太少,介绍⽐较详细的就只有周润景先⽣的《mentor ⾼速电路板设计与仿真》。

本E想说的是,很感谢周先⽣写了这本书,但如果你英语有4级左右的话,不建议买,直接看帮助⽂档就可以了。

因为该书有很多基本概念都没有说,仅仅是⼀本操作指导书⽽已。

我在这⾥就先给⼤家补充PCB设计,事先应该知道的⼀些概念。

好让像我这样的初学者头脑⾥不再似是⽽⾮。

⽆论什么PCB设计软件,现在都引⼊流程化。

简单来说就是:设计库⽂档---原理图设计---PCB图设计。

设计库⽂件:库⽂件⼜包括原理图设计时⽤的库,和PCB图设计时⽤的库。

你可以⼀开始就打开原理图设计⼯具,边设计原理图,边设计每个元件库,也是可以的。

原理图设计时⼀般⽤到的是符号库,就像初中学到的||就是元件电容符号。

原理图设计:如果你⽤的DxDesigner,那么在后来的PCB设计当中,可以使⽤Expedition PCB ,Boardstation PADS等软件。

也就是DxDesigner更加开放,⽀持Mentor的其他产品。

⽽Design capture是为了兼容以前WG2004⽽保留的,如果你是新接触EE的,直接⽤DxDesigner吧。

编辑原理图,你需要知道电路元器件的使⽤等。

PCB设计:⾥⾯也是有⼀定步骤的(假设已经有相关的芯⽚封装库,焊盘等等),先布局,再布线,最后覆铜和检测。

仿真:顾名思义,就是在电脑⾥模仿电路真实的状况。

布线前,布线后都可以进⾏仿真。

学前有兴趣,平时多练,⽇后⼲活定会游刃有余的。

加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2页
Mentor公司产品线介绍.txt
Boardstation系列 为全球化的客户进行复杂的系统设计和验证提供了高度集成的企业级解决方案。面对步伐加快的现实世 界,该流程的灵活性、可伸缩性、以及流程驱动的设计方法保证了客户的成功。与数据管理系统和库管理 系统的紧密集成,BoardStation系列为全球化分散管理的设计队伍提供了整个设计流程的通臂合作的环 境,无论是高速复杂的PCB设计,还是要求极为特殊的RF设计以及IC设计, Mentor Graphics的Board Station都是全球化团队系统设计最好的工具。基于库管理和数据管理系统,设计师首先选用Design Architect或者Board Architect (面向PCB设计系统的前端环境),进行系统定义和原理图输入。并根据系 统的特点,可以进行数模混合仿真或者选择lCX系列产品进行高速系统的设计规划和预测以及时序分析。 对于含有的微带电路混合系统,还可以选择参数化设计的RF Architect工具进行射频电路设计。对于包含 可编程器件的系统设计,还可以选用Mentor Graphics的FPGA On Board一体化的设计解决方案{包括 HDLDesigner、 ModelSim仿真器、以及复杂FPGA器件引脚自动映射的FPGA进技术BoardLink},可极大提高 设计的效率,保证设计质量。前端系统设计完成后,即可进入PCB设计阶段。采用业界唯一的基于电气规则 驱动设计的lCX高速电路验证与设计系统以及屡获大奖的当今性能最优异的RE布线系统,充分利用系统提 供的团队设计技术、模块化设计(设计复用)、派生设计以及高速电路的验证与优化等最先进的设计方法, 可以最大限度保证客户的复杂、高速、高密系统设计的性能以及设计周期。最后,使用Fablink产生生产 加工数据,并可选用Scepter进行DFM验证,提高产品的设计质量。Mentor Graphics的库管理和设计数据管 理是目前EDA中最成熟、规范化程度最高的系统,多年来为全球许多大的电子公司提供了电子设计数据管 理的解决方案。
PCB Viewer 高速PCB审核工具 PCB Viewer支持布局布线阶段的工程设计审核,只读的PCB Viewer环境配合HyperLynx确保布局布线过程 中的PCB设计观察与设计分析的同步进行。因此可以直接以电子文档方式进行设计的审核,无需费时以及 高成本的硬拷贝输出方式。确保设计工程师团队尽早发现和解决设计中的问题提高设计生产力。
PCB Planner 电路前仿真与布局布线工具 高速PCB设计中初始的器件布局,关键器件和关键网络的布线至关重要。PCB Planner协助设计工程师实现 关键器件的布局和重要网络的布线,配合HyperLynx实施传输线仿真和信号完整性分析;在布局布线早期阶 段通过器件布局以及关键网络布线实施what-if分析,识别并且解决有关时序和信号噪声方面的问题,选择 最佳的解决方案。因而在设计前期为关键信号提供约束,减少昂贵的设计反复与ECO。
Design Capture 原理图输入 Design Capture可作为CAD/CAE设计的前端输入工具,通过与Mentor的其它设计工具紧密集成,可完成复杂 的FPGA和PCB设计。设计师利用Design Capture, 既可用传统的基于原理图的输入方法,也可以利用先进 的图形化设计工具,同时使用状态图、流程图、真值表定义自己的设计,HDL Writer提供的高效的VHDL、 VerilogHDL的输入方法。设计支持多层次结构。与Part Manager组合可以参数化选择元件。在进入后续 的设计周期之前Design Capture提供了设计规则检查以标明错误所在,以便在设计早期消除错误。Design Capture与Microsoft环境相兼容,可在Microsoft工具中剪贴对象至Design Capture输入环境,并且在OLE 的作用下直接在原理图输入环境中插入或编辑任何格式的Windows文件。 主要特点: •原理图、状态图、流程图、真值表、HDL文本多重输入方法; •支持设计的层次化和模块化; •与流程工具紧密集成; •参数化选择器件; •提供t •保持库数据的一致性和可靠性; •中心库的结构保持了用户对库数据的控制; •在单一环境下调用相应工具可完成设计库的创建和维护;
Analog Designer 模拟电路仿真器 Analog Designer采用Mentor Graphics公司独有的仿真引擎ASE,具有很高的仿真性能,并且收敛速度极 快。大量仿真模型满足仿真实际设计的需要,设计工程师可以修改库中的元器件参数来满足设计要求,也 可以根据模板来建立自己的仿真模型,还可以直接对SPICE2G6的SPICE网表进行仿真,同时支持BSlM3V3、 EKV等最新的FET模型。提供开关电源模块(SM PS)实现电源设计的快速仿真。Analog Designer的仿真内 核可实现时域、频域、直流工作点、参数扫描、噪声与失真分析。也支持广泛的高级分析特性:考察温度 对设计影响的强度分析;时域及频域的灵敏度分析;蒙特卡洛分析及七种统计分析和自建分布的最坏情况 模拟等统计分析方法。
Expedition PCB 设计及自动布线 Expedition PCB为设计师提供了用于复杂PCB物理设计、分析和加工一整套可伸缩的工具,它将交互设计 和自动布线有机地整合到一个设计环境中。设计师可以定义所有设计规则,包括高速布线约束,创建板型, 布局,交互布线和自动布线,直到加工文件生成。Expedition PCB没有任何设计规模的限制,没有层的限 制、器件数量、网线数量和引脚数的限制,提供给设计师最大的设计空间。Expedition PCB的核心-获业 界大奖的Auto Active自动布线器是基于形状的无网格布线器,布线速度极快,布线的可加工性首屈一指。 它实现真正的45度布线,并完全支持当今各种复杂封装如BGA、CSP、COB和微过孔、埋孔、盲孔等加工工 艺。其器件放置推挤后自动线调整,大面积覆铜处理方法皆独一无二。与前端设计工具Design Capture 、信号完整性分析工具有机结合,以及与标准DXF、IDF双向接口,Expedition PCB为电子设计师复杂PCB设 计提供了全线解决方案。 主要特点: •灵活的、可伸缩的PCB设计工具; •设计规则驱动的交互、自动设计方法; •支持各种复杂器件封装; •真正的实时45度自动布线和交互布线 •支持高速布线规则与布线
Design View 原理图输入及集成管理环境 Design View为工程师提供了一个独立的设计中心环境,它追踪整个PCB设计流程中所有数据,同时,不同设 计阶段的设计小组可在同一环境中根据需要转向各个子流程而保持数据相关,设计验证、仿真、FPGA和 PCB工程师可协同工作。每一个用户皆有自己的设计根目录以保持相对独立。Design View包括整套标准 的前端设计工具,并将设计数据直接传给相应的后继工具以完成验证和物理设计。选用Part Manager,还 可以参数化选择器件以节省大量的人工耗费。Design View包括设计规则检查以便在设计早期识别错误并 加以消除。FPGA BoardLink为FPGA和PCB设计搭建了一座桥梁,无须手工映射封装引脚,即可自动同步PCB 和FPGA的引脚定义。Design View提供了丰富的数据接口,如HDL 标准PCB网表、EDIF数据,以便与CAE/CAD 工具交换数据。Design View还与Microsoft环境兼容,通过剪贴和OLE方式,用户可充分利用Microsoft的 各种工具。 主要特点: •DesignCentric为板级设计,验证,物理设计提供了一个中心; •多类型、项目驱动的设计将所有的源文件置于一个简单易懂的层次结构中;, •图示化的设计层次显示整个系统; •设计控制允许用户控制和深入各个设计空间; •进程相关性驱动相应数据进入后续CAD/CAE工具中;
PCB Browser PCB设计浏览器 PCB Browser 是Expedition PCB 设计浏览器。为团队设计中原理图设计工程师、结构设计工程师、或其 他相关项目人员提供PCB设计浏览工具。具备常规PCB浏览功能,支持所见即所得的设计输出。
BetaSoft 板级热分析 BetaSoft 对印刷电路板的热效应进行准确而可靠的分析。通过确定印刷电路板的温度及其梯度分布,器 件和焊点的温度,设计工程师可以方便地定位并且解决设计中潜在的散热问题。由于采用局部变步长的有 限元微分算法,计算速度与传统有限元算法比较有了迅速提升。针对热传导,对流和辐射等情况,并考虑、 器件加装散热片、芯片风扇及导热垫等散热装置的影响,BetaSoft可以迅速建立复杂的三维气流与热场模 型。
Mentor公司产品线介绍.txt
Mentor公司产品线介绍 Expedition系列 采用业界最先进的AutoActive技术,实现了复杂设计的操作易用性和高级功能的单一环境的集成。 AutoActive技术提供了无可比拟的手工布线性能以及完全可定制的自动布线控制,其实时45度角无网格布 线技术,可大大提高设计的可制造性、设计质量,缩短设计的时间。Expedition的紧密集成的系统设计环 境,使之与其他竞争对手区别开来。采用统一数据库和同一用户界面和设计规则,从而可消除完成一个设 计需管理多种工具的困扰。数据的完整性从设计概念到生产数据的产生在整个设计流程中得到持续的维 护,可奇迹般地缩短复杂ECO的时间,缩短整个设计时间,避免设计错误造成的昂贵代价。首先,工程师可使 用Design Capture或者Design View进行原理图设计,并根据设计要求,定义相应的应用配置.为后继的仿 真产生对应文件和网表。对于模拟电路,可进行SPICE仿真、瞬态分析和统计分析。对于高速数字电路,可 以选择lCX 信号完整性分析工具和Tau静态时序分析工具进行设计规划和设计预测,给出恰当的设计规则 和电路解决方案;对于系统中包含可编程器件的设计,更可以采用 Graphics的FPGA On Board完整解决方 案,实现FPGA器件的图形化设计输入、仿真、综合,利用该系统的FPGA BoardLink模块,可将FPGA器件的引 脚的逻辑定义自动映射到整个板级系统中,从而将以前易错的、耗时数天的FPGA On Board的ECO工作,缩 短到几秒钟,大大提高设计的效率。 PCB设计模块为Expedition B,可实现交互设计和自动设计,设计数据 规模没有任何的限制。其高效的AutoActive技术,无论是交互布线、自动布线、高速布线、数据总线布线 还是敷铜的处理,在同类工具中都是首屈一指的,可广泛应用于当今高密度、高复杂度、高速系统和HDl的 PCB设计,应用领域覆盖了通讯、计算机、各种军工产品以及消费类电子产品的设计。在整个PCB设计过程 中,可利用ICX进行高速设计验证或者选用Beta Soft进行整板的热分析,保证设计的质量。为了与后端生 产无缝连接,CAM Manager可配置设计和加工文档的格式、要求,工程师只要调用该模块,即可自动生成所 有需要的设计档案。Expedition系列采用中心库架构的库管理模式以及与企业ERP、PDM紧密集成的DMS. 设计数据管理系统,并且在整个设计流程中,大量采用模板化的设计方法,可大大提高公司的电子产品的设 计管理能力,为设计的规范化、标准化提供了完美的解决方案。
相关文档
最新文档