任意角的三角函数知识点复习

合集下载

任意角的三角函数⑵

任意角的三角函数⑵

1.任意角的三角函数的(代数表示)-----定义 设 为任意角, p ( x , y )是 终边与单位圆的交点。
y
P (x, y) 正弦: sin
1 余割: csc y

o
x
1 余弦: cos x 正割: sec x 正切: tan y 余切: cot x
y o x
α在第二象限如何?其它象限如何?
五.任意角的三角函数的 (几何表示)----三角函数线
y T P(x,y)

sin y MP
o M A(1,0) x
cos x OM
MP AT tan AT OM OA
1.设的终边与单位圆交于点P(x,y),
2.过点P作x轴的垂线,垂足为M
0
k Z
转化为求00 到3600 角的三角函数值。 可把求任意角的三角函数值,
练习:1.求值 9 1) cos 4

2) sin1470

19 4) sin( 1050 ) 5) tan 3
11 3) tan( ) 6 31 6) tan( ) 4
五.任意角的三角函数的 (几何表示)----三角函数线
y x y tan cos sin x r r
2.若角
3.角

的终边上一点P的坐标为 4a, 3a a 0
2sin cos 的值;
3 8 的终边过点P a, cos 则 a ______ 5

4.角的终边在直线3 x 4 y 0上, 求2sin cos
y T P(x,y)

sin y MP
o M A(1,0) x

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳

完整版)三角函数知识点归纳三角函数一、任意角、弧度制及任意角的三角函数1.任意角1)角的概念的推广角可以按照旋转方向分为正角、负角和零角,也可以按照终边位置分为象限角和轴线角。

2)终边与角α相同的角可写成α+k·360°(k∈Z)。

3)弧度制弧度制是一种角度量,1弧度的角是指长度等于半径长的弧所对的圆心角。

弧度与角度可以互相转换。

2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的距离为r(x^2+y^2),那么角α的正弦、余弦、正切分别是:sinα=y/r,cosα=x/r,tanα=y/x。

3.特殊角的三角函数值特殊角的三角函数值可以通过计算得到,如30度角的正弦为1/2,余弦为√3/2,正切为√3/3,以此类推。

注意:删除了明显有问题的段落,同时对每段话进行了小幅度的改写以提高表达清晰度。

和周期;2掌握三角函数的图像及其性质;3熟练运用诱导公式和基本关系进行化简和求值。

二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系1)平方关系:sin^2α+cos^2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)2)商数关系:sinα/cosα=tanα,cosα/sinα=1/tanα,1+tan^2α=sec^2α,1+ cot^2α=csc^2α。

2.诱导公式公式一:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα其中k∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.公式三:sin(π-α)=sinα,cos(π-α)=-cosα,XXX(π-α)=-tanα.公式四:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.公式五:sin(π/2-α)=cosα,cos(π/2-α)=sinα.公式六:sin(π/2+α)=cosα,cos(π/2+α)=-sinα.诱导公式可概括为k·±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指的奇数22倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍。

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习

《任意角的三角函数、三角函数诱导公式》知识梳理与同步练习一、任意角的三角函数【知识梳理】1.设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0y x xα=≠.2.三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.3.三角函数线:sin α=MP ,cos α=OM ,tan α=AT .4.同角三角函数的基本关系式:(平方关系式)()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;(商数关系式)()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.【典型例题】1.三角函数的定义:例1、已知sinαtanα≥0,则α的取值集合为.例2、角α的终边上有一点P(m,5),且)0(,13cos ≠=m m α,则sinα+cosα=______.例3、已知角θ的终边在直线y =33x 上,则sin θ=;θtan =例4、设θ∈(0,2π),点P (sin θ,cos2θ)在第三象限,则角θ的范围是.例5、求43π角的正弦、余弦和正切值.例6、已知角α的终边经过点P(4,-3),求2sin α+cos α的值;2.三角函数线例1、sin(-1770°)·cos1500°+cos(-690°)·sin780°+tan405°=.例2、化简:ππππ37sin 3149cos 21613tan 3325cos 342222222m n n m --+=.例3、求下列三角函数值:(1)sin(-1080°)(2)tan 13π3(3)cos780°3、三角函数的基本关系一、选择题1、已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是()A.锐角三角形B.钝角三角形C.不等腰直角三角形D.等腰直角三角形2、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为A.51+B.51-C.51±D.51--3、已知sinαcosα=18,则cosα-sinα的值等于()A.±34B.±23C.23D.-234、已知θ是第三象限角,且95cos sin 44=+θθ,则=θθcos sin ()A.32B.32-C.31D.31-二、填空题1、若15tan =α,则=αcos ;=αsin .2、若3tan =α,则αααα3333cos 2sin cos 2sin -+的值为________________.3、已知2cos sin cos sin =-+αααα,则ααcos sin 的值为.4、已知524cos ,53sin +-=+-=m m m m θθ,则m=_________;=αtan .三、解答题1、已知51sin =α,求ααtan ,cos 的值.2、已知22cos sin =+αα,求αα22cos 1sin 1+的值.3、已知51cos sin =+ββ,且πβ<<0.(1)求ββcos sin 、ββcos sin -的值;(2)求βsin 、βcos 、βtan 的值.二、三角函数诱导公式:【基础知识】1、三角函数诱导公式(2k πα+)的本质是:奇变偶不变(对k 而言,指k 取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).2、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正余弦互换,符号看象限.3、诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2k π+α,02απ≤<;(2)转化为锐角三角函数。

任意角的三角函数数学总结

任意角的三角函数数学总结

第一章 三角函数(内容总结)设计人:丁大牛1.1任意角和弧度制1.1.1 任意角1.任意角的两种分类2.和角α 终边相同的角的规律等式是3.等分角)3,2(=n n α的象限规律4.用角度的形式写出终边落在每个象限的角1.1.2 弧度制1.角的两种度量方式: 和2.角的两种度量单位及其规定:角度制弧度制3.换算公式4.角度和弧度转化时候需要注意5.扇形公式1.2 任意角的三角函数1.2.1 任意角的三角函数锐角三角形中=αsin =αcos =αtan终边上一点),(y x P 的三角函数公式=αsin=αcos=αtan终边和单位圆交点),(y x P 的三角函数=αsin=αcos=αtan单位圆上的三角函数线:正弦线、余弦线、正切线各个象限角的三角函数值的符号规律α 第一象限 第二象限 第三象限 第四象限αsinαcosαtan终边相同的角的同一三角函数的值相等:=+)2sin(παk公式 =+)2c o s(παk 公式一的功能: =+)2tan(παk 1.2.2 同角三角函数的基本关系1. 平方和关系:2. 商数关系:3.变化应用:4.正弦、余弦化正切5. ααcos sin ±、ααcos sin ⋅和αtan 的关系6. 求值、化简、证明1.3三角函数的诱导公式公式二 公式二的功能:公式三 公式三的功能:公式四 公式四的功能:公式五 公式五的功能:公式六 公式六的功能:公式一至四可以概括为:公式五、六可以概括为:理解公式记忆口诀:奇变偶不变,符号看象限1.4三角函数的图像与性质正弦函数x y sin 的图像和性质定义域值域周期性性质 单调性 图像最值奇偶性对称性余弦函数x y cos =的图像和性质定义域值域周期性性质 单调性最值 图像奇偶性对称性正切函数x y tan =的性质与图像定义域值域周期性性质 单调性 图像最值奇偶性对称性1.5函数)sin(ϕω+=x A y 的图像一、由函数x y sin =的图像变化到)sin(ϕω+=x A y 的图像1.先平移后伸缩2.先伸缩后平移二、由图像来确定)sin(ϕω+=x A y 中的ϕω,,A1、由图像中的最高点和最低点求A 和b2、由横坐标确定周期进而确定ω的值3、由起始点的坐标进而确定ϕ的值/起始点、最高点、第三点、最低点、起始点。

《任意角的三角函数》知识点总结及典型例题

《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。

(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。

集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。

(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。

②角的集合表示形式是不唯一的。

要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。

要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。

区域角是无数个区间角的集合。

注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。

考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。

(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。

任意角的三角函数基本知识点(要)

任意角的三角函数基本知识点(要)

任意角的三角函数知识点一、终边角:与α终边相同的角表示为。

分别写出终边在下列位置时的角α的集合:1.x轴上2.y轴上3.坐标轴上4.第一象限5.第二象限6.第三象限7.第四象限 8.直线y=x上二、弧度制:1、定义:2、公式:|α|=3、换算:①度换弧度:180°=弧度; 1°=弧度②弧度换度:1弧度=度;扇形:弧长L==,面积S==三、任意角的三角函数:①定义:角α终边的终边与单位圆的交点P(x,y),则sinα= cosα= tanα=角α终边上任意一点交点P(x,y),则r= ,则sinα= cosα= tanα=②三角函数线:角的终边与单位圆交于点P,过点P作轴的垂线,垂足为M,则正弦线是余弦线是即sinα= ,cosα= .过点A(1,0)作交于点T即tonα= .③同角三角函数关系式:④三角函数的符号:(1)商数关系:(2)平方关系:⑤诱导公式:2kπ+α与απ—α与απ+α与α)(βα+C )(βα-C)(βα+S )(βα-S )(βα+T )(βα-T⑧二倍角公式: α2Sα2C α2T三角函数的图象与性质答案一、终边角:与α终边相同的角表为k ·360° + α 。

分别写出终边在下列位置时的角α的集合: 1. x 轴上 {},k k Z ααπ=∈2. y 轴上 ,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭3. 坐标轴上,2k k Z ααπ⎧⎫=∈⎨⎬⎩⎭4. 第一象限22,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭5. 第二象限22,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭6. 第三象限322,2k k k Z παππαπ⎧⎫++∈⎨⎬⎩⎭7. 第四象限3222,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭8. 第一或第三象限,2k k k Z παπαπ⎧⎫+∈⎨⎬⎩⎭9. 第二或第四象限,2k k k Z παπαππ⎧⎫++∈⎨⎬⎩⎭10. 直线y =x 上,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭11. 直线y =-x 上3,4k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭二、 弧度制:1、定义:弧长等于半径的弧所对的圆心角叫一弧度的角.2、 公式:|α|=lr3、 换算:① 度换弧度:180°=π弧度;1°=180π弧度②弧度换度:1弧度=180π度;扇形: 弧长L =180n rπ= r α, 面积S =2360n r π=12lr三、 任意角的三角函数:①定义:角α终边上任意一点P(x ,y),则r =,六个三角函数的定义依次是sin y r α=、cos x r α=、tan y α=cot x α=sec r α=csc r α= ②三角函数线:角的终边与单位圆交于点P ,过点P 作x 轴的垂线,垂足为M ,则正弦线是MP 余弦线是OM即sin α=MP,cos α= OM.过点A(1,0)作 切线交 角的终边或反向延长线 于点T ,则正切线是AT 。

三角函数知识点归纳

三角函数知识点归纳

第一章:三角函数§、任意角一、 正角、负角、零角、象限角的概念. 二、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ.§、弧度制一、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 二、 r l =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π. §、任意角的三角函数一、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin二、 设点(),A x y 为角α终边上任意一点,那么:(设r =sin y r α=,cos xrα=,tan y x α=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP;余弦线:OM; 正切线:AT五、 特殊角.§、同角三角函数的大体关系式一、 平方关系:1cos sin 22=+αα. 二、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα= §、三角函数的诱导公式(归纳为“奇变偶不变,符号看象限”Z k ∈)一、 诱导公式一:二、 诱导公式二:()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+(其中:Z k ∈)3、诱导公式三:4、诱导公式四:()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- 五、诱导公式五: 六、诱导公式六:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛- .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+§、正弦、余弦函数的图象和性质 一、记住正弦、余弦函数图象:二、能够对照图象讲出正弦、余弦函数的相关性质:概念域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为:30010-12022ππππ(,)(,,)(,,)(,,)(,,). §、正切函数的图象与性质一、记住正切函数的图象: 二、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:概念域、值域、对称中心、奇偶性、单调性、周期性.周期函数概念:关于函数()x f ,若是存在一个非零常数T ,使适当x 取概念域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做那个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质图象定义域 R R },2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R 最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=T π2=T π=T奇偶性奇 偶 奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增 在3[2,2]22k k ππππ++上单调递减在[2,2]k k πππ-上单调递增 在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增对称性 Z k ∈对称轴方程:2x k ππ=+对称中心(,0)k π 对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§、函数()ϕω+=x A y sin 的图象 一、关于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .二、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系. ① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减)横坐标不变 ()sin y A x ϕ=+纵坐标变成原先的A 倍纵坐标不变 ()sin y A x ωϕ=+ 横坐标变成原先的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++ (上加下减)① 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变成原先的A 倍纵坐标不变 sin y A x ω= 横坐标变成原先的1||ω倍()sin y A x ωϕ=+(左加右减)平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=.关于sin()y A x ωϕ=+和cos()y A x ωϕ=+来讲,对称中心与零点相联系,对称轴与最值点联系.求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得. 4、由图像确信三角函数的解析式利用图像特点:max min 2A =,max min2y y B +=.ω要依照周期来求,ϕ要用图像的关键点来求.§、三角函数模型的简单应用一、 要求熟悉讲义例题.第三章、三角恒等变换§、两角差的余弦公式§、两角和与差的正弦、余弦、正切公式 一、()βαβαβαsin cos cos sin sin +=+ 二、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-五、()tan tan 1tan tan tan αβαβαβ+-+=. 六、()tan tan 1tan tan tan αβαβαβ-+-=.§、二倍角的正弦、余弦、正切公式一、αααcos sin 22sin =,变形: 12sin cos sin 2ααα=. 二、ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=.变形如下: 升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩ 3、ααα2tan 1tan 22tan -=. 4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§、简单的三角恒等变换1、注意正切化弦、平方降次. 二、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=).。

三角函数总复习(要)

三角函数总复习(要)

图象向左( 向右(
0
)或

0 ) 平移| | 个单位
y sin(x )
1

横坐标伸长( 0 1 )或缩短(
纵坐标不变
1 )到原来的
y sin(x )
纵坐标伸长(A>1 )或缩短( 0<A<1 )到原来的A倍
第二种变换:
横坐标不变
y A sin(x )
值为负的,求出与其绝对值对应的锐角 ③根据x是第几象限角,求出x 若x为第二象限角,即得x= x=
x1
x1 ;若x为第三象限角,即得
x1;若x为第四象限角,即得x= 2 x1
④若x R ,则在上面的基础上加上相应函数的周期的整数倍。
四、主要题型
例1:已知 是第三象限角,且cos
2 360 180
180 1弧度 ( ) 57.30 5718, 1

180

特殊角的角度数与弧度数的对应表

0 30 45 60 90 120
6 4
3 2
2 3
135 150 180 270 360
y=cosx, x [0, ] 的反函数y=arccosx, x [1,1]
2 2
y=tanx, x ( , ) 的反函数y=arctanx, x R
⑵已知角x ( x [0,2 ] )的三角函数值求x的步骤 ①先确定x是第几象限角
2 2

②若x 的三角函数值为正的,求出对应的锐角 x1;若x的三角函数
为第三象限角 解:
2
1 ,求 tan 。 3
1 2 2 2 sin 1 cos 1 ( ) 3 3

三角函数知识点归纳

三角函数知识点归纳

三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。

=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。

是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。

的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。

期末复习一——任意角的三角函数

期末复习一——任意角的三角函数

期末复习一——(任意角的三角函数)一、知识点归纳(1)正角、负角、零角、象限角、终边相同的角、角度制、弧度制; (2)1弧度角的规定、弧长公式、扇形面积公式;(3)任意圆中圆心角弧度的算法; (4)三角函数值的定义; (5)三角函数线:正弦线、余弦线、正切线; (6)三角函数值的符号判定; (7)同角三角函数间的关系公式 ①平方关系:22sin cos 1αα+= 注意: ②商数关系sin tan cos ααα= 公式的逆向使用(8)特殊角的三角函数值。

(必须熟记);(9)诱导公式:奇变偶不变,符号看象限。

二、例题解析例1(1)若弧度数为2的圆心角所对的弦长也是2cm,则这个圆心角所对的弧长是 它们所构成的扇形面积是 。

(2)若角θ满足sin θcos θ<0,cos θ-sin θ<0,则θ为第 象限角例2.(1)角θ的顶点与坐标原点O 重合,其始边与x 轴的正半轴重合,角θ的终边上有一点P(2t, -4t)(其中t ≠0),求sin θ、cos θ、tan θ的值.(2)已知sin 2cos ,θθ=-求sin θ,cos θ,tan θ.例3.求值:(1)sin(-1740°)²cos1470°+cos(-660°)²sin750°+tan405°(2)22251172sin tan ()tan()434πππ+-∙-例4.已知3sin 2cos 0αα-=,求下列各式的值22cos sin cos sin (1);(2)2sin 2sin cos 4cos .cos sin cos sin αααααααααααα-++-++-例5化简44661cos sin ;;(3)1cos sin αααα----任意角的三角函数一、选择题:1.sin600°的值是( )A.21 B.-21 C.23 D.-232.下列转化结果错误的是 ( )A.0367' 化成弧度是π83radB.π310-化成度是-600度C. 150-化成弧度是π67rad D.12π化成度是15度3.扇形的半径变为原来的2倍,而弧长也增加到原来的2倍,则( )A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积增大到原来的2倍D .扇形的圆心角增大到原来的2倍 4、如果sin θ= m,m<0,180°<θ<270°,那么tan θ等于( )A .21m m- B .-21m m- C .±21mm- D .-m m 21-5、若sin θ=53+-m m ,cos θ=524+-m m ,其中θ为第二象限角,则m 的取值范围是 ( )A .m = 8B .3<m<9C .m=0或m=8D .-5<m < 9 6、使0cos sin <⋅αα成立的角α是( )A .第三、四象限角 B.第一、三象限角 C.第二、四象限角 D.第一、四象限角 7、已知θ的终边过点P (4a ,-3a ),且53sin =θ,则=θtan ( )(A )43-(B )34-(C )43(D )34 8、若βα,的终边关于y 轴对称,则必有 ( ) A Z k k ∈+=+,)12(πβα B 2πβα=+C Z k k ∈=+,2πβαD Z k k ∈+=+,22ππβα9、y =xx x x x x tan |tan ||cos |cos sin |sin |++的值域是 ( )A .{1,-1}B . {-1,1,3}C . {-1,3}D .{1,3}二、填空题:10、已知扇形的圆心角是72︒,半径为20cm,则扇形的弧长为面积为11、比较下列大小: sin1、 cos1、 tan1 ; > >12、(1)已知600,sin cos,sin cos169απαααα<<∙=--=则。

高中 任意角的三角函数 知识点+例题 全面

高中 任意角的三角函数 知识点+例题 全面

辅导讲义――任意角的三角函数教学内容任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎨⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x. [试一试]1.若α=k ·180°+45°(k ∈Z ),则α是第______象限角.2.已知角α的终边经过点(3,-1),则sin α=________.1.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想.[练一练]若sin α<0且tan α>0,则α是第______象限角.考点一角的集合表示及象限角的判定 1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.2.终边在直线y =3x 上的角的集合为________.3.在-720°~0°范围内找出所有与45°终边相同的角为________.4.设集合M =⎩⎨⎧ x ⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 4·180°+45°,k ∈Z ,那么集合M ,N 的关系是______.[类题通法]1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.考点二 三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为______. (2)已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2=________.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.[针对训练]已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.考点三扇形的弧长及面积公式[典例](1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[类题通法]弧度制应用的关注点(1)弧度制下l=|α|·r,S=12lr,此时α为弧度.在角度制下,弧长l=nπr180,扇形面积S=nπr2360,此时n为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.[针对训练]已知扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[课堂练通考点]1.如图所示,在直角坐标系xOy中,射线OP交单位圆O于点P,若∠AOP=θ,则点P的坐标是________.2.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.3.已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a的取值范围是________.4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________.5.已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________. 6.已知sin α=13,且α∈⎝⎛⎭⎫π2,π,则tan α=______.第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.2.已知cos θ·tan θ<0,那么角θ是第________象限角.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.5.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan 17π9,其中符号为负的是________(填写序号).6.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.8.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .10.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;第Ⅱ组:重点选做题巩固基础和能力提升训练1.满足cos α≤-12的角α的集合为________. 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.。

任意角的三角函数及基本公式

任意角的三角函数及基本公式

任意角的三角函数及基本公式-CAL-FENGHAI.-(YICAI)-Company One1第 18 讲 任意角的三角函数及基本公式(第课时)任意角的三角函数⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧±±--︒±︒+︒•⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧的函数关系与以及的函数关系与以及的函数关系与的函数关系与诱导公式倒数关系式商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。

难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。

1.了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算;2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。

任意角三角函数的意义,三角函数值的符号;1.角的定义⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。

⑵ 射线逆时针旋转而成的角叫正角。

射线顺时针旋转而成的角叫负角。

射线没有任何旋转所成的角叫零角。

2.弧度制⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。

用“弧度” 作单位来度量角的制度叫做“弧度制”。

注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与︒1sin 、︒2sin 不是一回事。

⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。

正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。

⑶ 设一个角的弧度数为α,则 rl=α (l 为这角所对的弧长,r 为半径)。

⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。

⑸ 1π=︒弧度,1弧度︒=)180(。

(完整版)三角函数知识点归纳

(完整版)三角函数知识点归纳

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。

三角函数的复习

三角函数的复习

3
4
o
5
6

o
270
360
3
2
2
o
o
四.任意角的三角函数
1.定义
设点P(x,y)是角a终边上任一点,P到原点的距离为r(r>0),则
正弦sin =
y
,余弦cos
r
y
=
y
,其中r=
x
说明:正弦、余弦总有意义.当
的终边


x2 + y2.
的终边在 y 轴上时,点P 的
y

横坐标等于0,tan
30
45



6

4
0
o
o
60

o
o
o
135 150 180



o
o
90
o
270
120
360
o
o
特殊角的弧度
角 o
0

30
45
60



6

4

3
0
o
o

o
o
o
135 150 180



o
o
90
o
270
120
360
o
o
特殊角的弧度
角 o
0



0
o
30

6
o
o
45
60
90

4

3

2

o
o

(完整版)三角函数最全知识点总结

(完整版)三角函数最全知识点总结

三角函数、解三角形一、任意角和弧度制及任意角的三角函数1.任意角的概念(1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.①正角:按__逆时针__方向旋转形成的角.②负角:按__顺时针__方向旋转形成的角.③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角.(2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}.(3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限.象限角轴线角2.弧度制(1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__.(2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__.(3)角度与弧度的换算:360°=__2π__rad,1°=__π180=(__180π__)≈57°18′.(4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__,面积S=__12|α|r2__=__12lr__.3.任意角的三角函数定义(1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与原点的距离为r,则sinα=__yr__,cosα=__xr__,tanα=__yx__.(2)三角函数在各象限的符号是:(3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线.4.终边相同的角的三角函数sin(α+k·2π)=__sinα__,cos(α+k·2π)=__cosα__,tan(α+k·2π)=__tanα__(其中k∈Z),即终边相同的角的同一三角函数的值相等.重要结论1.终边相同的角不一定相等,相等角的终边一定相同,在书写与角α终边相同的角时,单位必须一致.2.确定αk(k∈N*)的终边位置的方法(1)讨论法:①用终边相同角的形式表示出角α的范围.②写出αk的范围.③根据k的可能取值讨论确定αk的终边所在位置.(2)等分象限角的方法:已知角α是第m(m=1,2,3,4)象限角,求αk是第几象限角.①等分:将每个象限分成k等份.②标注:从x轴正半轴开始,按照逆时针方向顺次循环标上1,2,3,4,直至回到x轴正半轴.③选答:出现数字m的区域,即为αk所在的象限.如α2判断象限问题可采用等分象限法.二、同角三角函数的基本关系式与诱导公式1.同角三角函数的基本关系式(1)平方关系:__sin 2x +cos 2x =1__. (2)商数关系:__sin xcos x =tan x __.2.三角函数的诱导公式1.同角三角函数基本关系式的变形应用:如sin x =tan x ·cos x ,tan 2x +1=1cos 2x ,(sin x +cos x )2=1+2sin x cos x 等. 2.特殊角的三角函数值表“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k ·π2+α中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k ·π2+α中,将α看成锐角时k ·π2+α所在的象限.4.sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系sin x +cos x 、sin x -cos x 、sin x cos x 之间的关系为(sin x +cos x )2=1+2sin x cos x ,(sin x -cos x )2=1-2sin x cos x ,(sin x +cos x )2+(sin x -cos x )2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值.三、两角和与差的三角函数 二倍角公式1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式 (1)sin2α=__2sin αcos α__;(2)cos2α=__cos 2α-sin 2α__=__2cos 2α__-1=1-__2sin 2α__; (3)tan2α=__2tan α1-tan 2α__(α≠k π2+π4且α≠k π+π2,k ∈Z ). 3.半角公式(不要求记忆) (1)sin α2=±1-cos α2; (2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.重要结论1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2. 2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 1-tan α1+tan α=tan(π4-α);1+tan α1-tan α=tan(π4+α)cos α=sin2α2sin α,sin2α=2tan α1+tan 2α,cos2α=1-tan 2α1+tan 2α,1±sin2α=(sin α±cos x )2.4.辅助角(“二合一”)公式: a sin α+b cos α=a 2+b 2sin(α+φ), 其中cos φ=,sin φ= 5.三角形中的三角函数问题在三角形中,常用的角的变形结论有:A +B =π-C ;2A +2B +2C =2π;A2+B 2+C 2=π2.三角函数的结论有:sin(A +B )=sin C ,cos(A +B )=-cos C ,tan(A +B )=-tan C ,sin A +B 2=cos C 2,cos A +B 2=sin C 2.A >B ⇔sin A >sin B ⇔cos A <cos B .四、三角函数的图象与性质1.周期函数的定义及周期的概念(1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做__周期函数__.非零常数T叫做这个函数的__周期__.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小__正周期__.(2)正弦函数、余弦函数都是周期函数,__2kπ(k∈Z,k≠0)__都是它们的周期,最小正周期是__2π__.2.正弦、余弦、正切函数的图象与性质π重要结论1.函数y =sin x ,x ∈[0,2π]的五点作图法的五个关键点是__(0,0)__、__(π2,1)__、__(π,0)__、__(3π2,-1)__、__(2π,0)__.函数y =cos x ,x ∈[0,2π]的五点作图法的五个关健点是__(0,1)__、__(π2,0)__、__(π,-1)__、__(3π2,0)__、__(2π,1)__.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为T =2π|ω|,函数y =tan(ωx +φ)的最小正周期为T =π|ω|.3.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.而正切曲线相邻两对称中心之间的距离是半周期.4.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.五、函数y =A sin(ωx +φ)的图象及应用1.五点法画函数y =A sin(ωx +φ)(A >0)的图象(1)列表: (2)描点:__(-φω,0)__,__(π2ω-φω,A )__,(πω-φω,0),(3π2ω-φω,-A )__,(2πω-φω,0)__.(3)连线:把这5个点用光滑曲线顺次连接,就得到y =A sin(ωx +φ)在区间长度为一个周期内的图象.(4)扩展:将所得图象,按周期向两侧扩展可得y =A sin(ωx +φ)在R 上的图象2.由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤3.函数y =A sin(ωx +φ)(A >0,ω>0,x ∈[0,+∞)的物理意义 (1)振幅为A . (2)周期T =__2πω__.(3)频率f =__1T __=__ω2π__. (4)相位是__ωx +φ__. (5)初相是φ.重要结论1.函数y =A sin(ωx +φ)的单调区间的“长度 ”为T2.2.“五点法”作图中的五个点:①y =A sin(ωx +φ),两个最值点,三个零点;②y =A cos(ωx +φ),两个零点,三个最值点.3.正弦曲线y =sin x 向左平移π2个单位即得余弦曲线y =cos x .六、正弦定理、余弦定理1.正弦定理和余弦定理 ①a =__2R sin A __,b =__2R sin B __,c =__2R sin C __;②sin A =__a 2R __,sin B =__b2R__,sin C=__c2R __;③ab c =__sin Asin B sin C __④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Aa <b sin A a =b sin A b sin A < a <b a ≥b a >b a ≤b (1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A .(3)S =12r (a +b +c )(r 为内切圆半径).重要结论在△ABC 中,常有以下结论 1.∠A +∠B +∠C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2. 5.tan A +tan B +tan C =tan A ·tan B ·tan C .6.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .7.三角形式的余弦定理sin 2A =sin 2B +sin 2C -2sin B sin C cos A ,sin 2B =sin 2A +sin 2C -2sin A sin C cos B ,sin 2C =sin 2A +sin 2B -2sin A sin B cos C .8.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3. 9.三角形形状的判定方法(1)通过正弦定理和余弦定理,化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等. (2)利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.(3)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.。

任意角的三角函数知识点及练习

任意角的三角函数知识点及练习

任意角的三角函数知识点及练习一、任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

按旋转方向,角可以分为正角、负角和零角。

正角:按逆时针方向旋转形成的角。

负角:按顺时针方向旋转形成的角。

零角:射线没有作任何旋转形成的角。

角的度量单位有弧度制和角度制。

弧度制:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

用弧度作为单位来度量角的单位制叫做弧度制。

角度制:规定周角的 1/360 为 1 度的角,用度作为单位来度量角的单位制叫做角度制。

二、任意角的三角函数设α是一个任意角,它的终边上任意一点 P(x,y)与原点的距离为 r(r =√(x²+ y²) > 0),那么:正弦函数:sinα = y/r余弦函数:cosα = x/r正切函数:tanα = y/x (x ≠ 0)三角函数值在各象限的符号:第一象限:正弦、余弦、正切都是正的。

第二象限:正弦是正的,余弦、正切是负的。

第三象限:正切是正的,正弦、余弦是负的。

第四象限:余弦是正的,正弦、正切是负的。

特殊角的三角函数值:|角度| 0°| 30°| 45°| 60°| 90°| 180°| 270°| 360°||||||||||||弧度| 0 |π/6 |π/4 |π/3 |π/2 |π |3π/2 |2π || sin | 0 | 1/2 |√2/2 |√3/2 | 1 | 0 |-1 | 0 || cos | 1 |√3/2 |√2/2 | 1/2 | 0 |-1 | 0 | 1 || tan | 0 |√3/3 | 1 |√3 |不存在| 0 |不存在| 0 |三、同角三角函数的基本关系平方关系:sin²α +cos²α = 1商数关系:tanα =sinα/cosα (cosα ≠ 0)四、诱导公式诱导公式可以概括为“奇变偶不变,符号看象限”。

三角函数复习

三角函数复习

三角函数一.任意角 1. 角的分类正角:顺时针旋转得到的角 负角:逆时针旋转得到的角 0度角:不旋转 2. 象限角第一象限角 {α| 2k π<α<2k π+2π,k ∈z} 第二象限角 {α| 2k π+2π<α<2k π+π,k ∈z} 第三象限角 {α| 2k π+π<α<2k π+23π,k ∈z} 第四象限角 {α| 2k π+23π<α<2k π+2π,k ∈z}3. 与α终边相同的角 απβ+=k 2 ,k ∈z 二.弧度制1. 弧度制与角度制之间的转换度180=rad π1度π180=radrad 1801π=度2.弧长公式 r l ∙=α 扇形面积公式 r lr S 22121α==三、任意角的三角函数1、 定义:任意角α,它终边与单位圆交点 P (u ,v ),那么u 叫做α的余弦,记作cos α v 叫做α的正弦,记作sin α,vu叫做α的正切,记作tan α。

2、 诱导公式1c o s s i n 22-+αα αααcos sin tan -组数 一 二 三 四 五六角 2k π+α π+α —α π—α απ-2απ+2正弦 sin α —sin α sin α sin α cos α cos α 余弦 cos α —cos α cos α—cos α sin α —sin α正切 tan αtan α—tan α—tan α口诀函数名不变,符号看象限 函数名改变,符号看象限3、 两角和与差三角函数公式βαβαβαs i n c o s c o s s i n )s i n (±-± βαβαβαs i n s i n c o s c o s )c o s( -±βαβαβαt a n t a n 1t a n t a n )t a n ( ±-±4、 y =a sin x +b cos x 型,可引用辅角化为y =a 2+b 2sin(x +φ)(其中tan φ=ba).常见的有 )cos 23sin 21(2cos 3sin x x x x ±=± )cos 21sin 23(2cos sin 3x x x x ±=± )cos 22sin 22(2cos sin x x x x ±=± 5、二倍角公式αααc o s s i n 22s i n- ααααα2222s i n 211c o s 2s i n c o s 2c o s ------ ααα2t a n 1t a n 22t a n-- 四、三角函数的图像与性质 函数 性质 y =sin x y =cos x y =tan x 定义域RR{x |x ≠k π+π2,k ∈Z }图象值域[-1,1][-1,1]R对称性对称轴: x =k π+π2(k ∈Z ); 对称中心: (k π,0)(k ∈Z )对称轴: x =k π(k ∈Z ); 对称中心: (k π+π2,0) (k ∈Z )对称中心:⎝⎛⎭⎫k π2,0 (k ∈Z ) 周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z ); 单调增区间[2k π-π,2k π] (k ∈Z ) ;单调减区间[2k π,2k π单调增区间_(k π-π2,k π+π2)(k ∈Z )单调减区间[2k π+π2,2k π+3π2] (k ∈Z )+π](k ∈Z )奇偶性 奇函数偶函数奇函数五、函数)sin(ϕω+-x A y 的图像1、有关概念)sin(ϕω+-x A y )0,0(>>ωA振幅 周期频率相位 初相Aωπ2-Tπω21--T f ϕω+xϕ2、五点法 x ωϕ-ωϕπ-2ωϕπ- ωϕπ-23ωϕπ-2ϕω+x0 2π π π23 2π )sin(ϕω+-x A yA 0—A3、x y sin -变换得到)sin(ϕω+-x A yx y sin -−−−−−−−→−个单位向左(右)平移ϕ)sin(ϕ+-x y −−−−−−→−倍横坐标变为原来的ω1)sin(ϕω+-x y −−−−−−→−倍纵坐标变为原来的A )sin(ϕω+-x A y −−−−−−−→−个单位向上(下)平移b b x A y ++-)sin(ϕω②x y sin -−−−−−−→−倍横坐标变为原来的ω1x y ωsin -−−−−−−−→−个单位向左(右)平移ωϕ)sin(ϕω+-x y −−−−−−→−倍纵坐标变为原来的A )sin(ϕω+-x A y −−−−−−−→−个单位向上(下)平移b b x A y ++-)sin(ϕω注: 左加右减------针对x 上加下减------针对常数b 横坐标变换------针对x 的系数ω (倍ω1) 纵坐标变换------针对振幅A (A 倍)三角函数练习1.函数y =cos ⎝⎛⎭⎫x +π3,x ∈R ( ).A .是奇函数B .既不是奇函数也不是偶函数C .是偶函数D .既是奇函数又是偶函数 2.函数y =tan ⎝⎛⎭⎫π4-x 的定义域为( ).A .⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π-π4,k ∈Z B .⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠2k π-π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠2k π+π4,k ∈Z 3.函数y =sin(2x +π3)的图象的对称轴方程可能是( )A .x =-π6B .x =-π12C .x =π6D .x =π12【解析】令2x +π3=k π+π2,则x =k π2+π12(k ∈Z )∴当k =0时,x =π12,选D.4.y =sin ⎝⎛⎭⎫x -π4的图象的一个对称中心是( ). A .(-π,0)B .⎝⎛⎭⎫-3π4,0 C.⎝⎛⎭⎫3π2,0D.⎝⎛⎭⎫π2,0解析 ∵y =sin x 的对称中心为(k π,0)(k ∈Z ),∴令x -π4=k π(k ∈Z ),x =k π+π4(k ∈Z ),由k=-1,x =-34π得y =sin ⎝⎛⎭⎫x -π4的一个对称中心是⎝⎛⎭⎫-3π4,0. 答案 B5.下列区间是函数y =2|cos x |的单调递减区间的是( )A.(0,π)B.⎝⎛⎭⎫-π2,0C.⎝⎛⎭⎫3π2,2π D .⎝⎛⎭⎫-π,-π2 6.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对任意x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )【解析】当x ∈R 时,f (x )≤|f (π6)|恒成立,∴f (π6)=sin(π3+φ)=±1可得φ=2k π+π6或φ=2k π-5π6,k ∈Z∵f (π2)=sin(π+φ)=-sin φ>f (π)=sin(2π+φ)=sin φ ∴sin φ<0 ∴φ=2k π-5π6由-π2+2k π≤2x -5π6≤π2+2k π 得x ∈[k π+π6,k π+2π3](k ∈Z ),选C.7.已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,将该函数的图象向左平移π6个单位后,得到的图象对应的函数为奇函数,则f (x )的图象( )A .关于点(π12,0)对称B .关于直线x =5π12对称C 关于点(5π12,0)对称D .关于直线x =π12对称8.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为2π B .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数解析 ∵y =sin ⎝ ⎛⎭⎪⎫x -π2=-cos x ,∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数,图象关于y 轴对称,为偶函数. 答案 D9.要得到⎪⎭⎫⎝⎛-=42cos 3πx y 的图象,可以将函数y = 3 sin2 x 的图象向左平移_8π__单位.10..y =2-3cos ⎝⎛⎭⎫x +π4的最大值为___5_____,此时x =_____34π+2k π,k ∈Z _________. 11.函数f (x )=sin 2x +3sin x cos x 在区间[π4,π2]上的最大值是 .【解析】∵f (x )=1-cos2x 2+32sin2x =32sin2x -12cos2x +12=sin(2x -π6)+12,又π4≤x ≤π2,∴π3≤2x -π6≤5π6. ∴当2x -π6=π2即x =π3时,f (x )取最大值32. 12.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈[0,π2],则f (x )的取值范围是____32⎡⎤-⎢⎥⎣⎦,3___________.13.函数y =lg(sin x )+cos x -12的定义域为____(2k ,2k ]3πππ+(k ∈Z )_________.14.(1)求函数y =2sin ⎝⎛⎭⎫2x +π3 (-π6<x <π6)的值域; (2)求函数y =2cos 2x +5sin x -4的值域.解 (1)∵-π6<x <π6,∴0<2x +π3<2π3,∴0<sin ⎝⎛⎭⎫2x +π3≤1, ∴y =2sin ⎝⎛⎭⎫2x +π3的值域为(0,2]. (2)y =2cos 2x +5sin x -4=2(1-sin 2x )+5sin x -4=-2sin 2x +5sin x -2=-2⎝⎛⎭⎫sin x -542+98. ∴当sin x =1时,y max =1,当sin x =-1时,y min =-9, ∴y =2cos 2x +5sin x -4的值域为[-9,1].15.设函数f (x )=2cos x (sin x +cos x )-1,将函数f (x )的图象向左平移α个单位,得到函数y =g (x )的图象.(1)求函数f (x )的最小正周期;(2)若0<α<π2,且g (x )是偶函数,求α的值.【解析】(1)∵f (x )=2sin x cos x +2cos 2x -1=sin2x +cos2x =2sin(2x +π4),∴f (x )的最小正周期T =2π2=π.(2)g (x )=f (x +α)=2sin[2(x +α)+π4]=2sin(2x +2α+π4),g (x )是偶函数,则g (0)=±2=2sin(2α+π4),∴2α+π4=k π+π2,k ∈Z .α=k π2+π8(k ∈Z ),∵ 0<α<π2,∴α=π8.16、已知向量m =(3sin2x -1,cos x ), n =(1,2cos x ),设函数f (x )=m n ⋅,x ∈R.(1)求函数f (x )图象的对称轴方程; (2)求函数f (x )的单调递增区间.【解析】(1)f (x )=m ·n =3sin2x -1+2cos 2x =3sin2x +cos2x =2sin(2x +π6)∴对称轴方程为:2x +π6=k π+π2,即x =k π2+π6(k ∈Z ).(2)由-π2+2k π≤2x +π6≤π2+2k π得-π3+k π≤x ≤k π+π6∴f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).。

(完整版)任意角的三角函数定义、三角函数线重点、难点题型

(完整版)任意角的三角函数定义、三角函数线重点、难点题型

任意角的三角函数定义、三角函数线重点、难点题型知识梳理:1.任意角三角函数的定义 任意角三角函数的定义如图所示,以任意角α的顶点O 为坐标原点,以角α的始边的方向作为x 轴的正方向,建立直角坐标系.设P (x ,y )是任意角α终边上不同于坐标原点的任意一点.其中,r =OP =x 2+y 2>0.定义:x r 叫做角α的余弦,记作cos α,即cos α=x r;y r 叫做角α的正弦,记作sin α,即sin α=y r ; y x 叫做角α的正切,记作tan α,即tan α=y x. 另外,角α的正割:sec α=1cos α=rx ;角α的余割:csc α=1sin α=ry ;角α的余切:cot α=1tan α=xy.2.六种三角函数值在各象限的符号3.三角函数的定义域三角函数 定义域 sin α,cos α tan α,sec αcot α,csc α题型一:三角函数定义的应用 例1. 已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.思维启迪:对m 的讨论必须全面,不能遗漏m=0例2. 角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5跟踪练习:已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求sin cos αα+感悟:1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.符号sin α、cos α、tan α是一个整体,离开“α”,“sin ”、“cos ”、“tan ”不表示任何意义,更不能把“sin α”当成“sin ”与“α”的乘积.题型二 符号规律的应用 例3.判断下列各式的符号:(1)sin α·cos α(其中α是第二象限角); (2)sin 285°cos(-105°);(3)sin 3·cos 4·tan(-23π4).例4.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________跟踪练习:1. 若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2. 已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是( )A .{-3,-1,1,3}B .{-3,-1}C .{1,3}D .{-1,3} 3..代数式:sin 2cos 3tan 4的符号是________ 4.若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .tan θ2D .cos 2θ能力提升:1若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.2. 若角α的终边过点0(2sin 30,2cos30)-,则sin α=______3. 角α的终边过点P 43(,)55m m --,且cos 0tan αα<,求sin tan αα+的值题型三:单位圆与三角函数线的应用1.单位圆与三角函数的定义一般地,我们把半径为1的圆叫做单位圆.2.三角函数线三角函数线是表示三角函数值的有向线段,线段的方向表示了三角函数值的正负,线段的长度表示了三角函数值的绝对值.图 示正弦线 有向线段MP 即为正弦线 余弦线 有向线段OM 即为余弦线正切线有向线段A T 即为正切线例5在单位圆中画出适合下列条件的角α终边的范围,并由此写出角α的集合.(1)sin α≥32; (2)cos α≤-12.能力提升: 求下列函数的定义域. f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22 例6.已知点P (sin cos ,tan )ααα-在第一象限,在[]0,2π内,求α的取值范围例7.若如何利用三角函数线证明下面的不等式?当α∈⎝⎛⎭⎫0,π2时,求证:(1)sin α<α<tan α.(2)1sin cos 2παα<+<跟踪练习:1.已知5,44x ππ⎛⎫∈⎪⎝⎭,则sin x 与cos x 的大小关系是( ) (A )sin cos x x ≥(B )sin cos x x ≤ (C )sin cos x x >(D )sin cos x x <2.下列四个命题中:(1)α一定时,单位圆中的正弦线一定; (2)单位圆中,有相同正弦的角相等; (3)α与απ+有相同的正弦线(4)具有相同正切线的两个角终边在同一直线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角的三角函数
任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐
标为(,)x y ,它与原点的距离为(0)r r ==>,那么
sin y r α=
;cos x r α=;tan y x
α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

求解三角函数值
一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角
)
Z (tan )2tan()Z (cos )2cos()
Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。

练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。

例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6
π
-

练:
.____________tan600o
的值是 D 3.D 3.C 3
3
.B 33.A --
例3.确定下列三角函数值的符号:
(1)cos
250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3
π

练: 确定下列三角函数值的符号
(1)cos250︒; (2)sin()4
π
-; (3)tan(672)︒-;
(4)tan 3π.
例4 若θ是第二象限角,则( )
A.sin 2
θ
>0 B.cos
2
θ
<0 C.tan
2
θ
>0 D.cot
2
θ<0
2.三角函数线的定义:
设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交
与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .
我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

例.作出下列各角的正弦线、余弦线、正切线。

(1)3
π; (2)23π-;
同步练习
一、选择题 1.有下列命题:
①终边相同的角的三角函数值相同; ②同名三角函数的值相同的角也相同;
③终边不相同,它们的同名三角函数值一定不相同; ④不相等的角,同名三角函数值也不相同. 其中正确的个数是( ) A.0
B.1
C.2
D.3
2.已知角α的终边经过点p(—1,3),则ααcos sin +的值是( )
A.
213+ B.213- C.2
3
1- D.213+-
3.若角a 的终边过点(-3,-2),则( )
A .sinatana >0
B .cosatana >0
C .sinacosa >0
D .sinacota >0
4.α是第二象限角,其终边上一点P (x ,5),且cos α=42
x ,则sin α的值
为( )
A .410
B .46
C .42
D .-410
5.使lg (cos θ〃tan θ)有意义的角θ是( )
A .第一象限角
B .第二象限角
C .第一或第二象限角
D .第一、二象限角或终边在y 轴上
6..________
,0cos sin 在则若θθθ>
第二、四象限 第一、四象限第一、三象限
第一、二象限.D .C .B .A
7.____
0sin20cos 的终边在则若 θθ<>θ,且
第二象限 第四象限 第三象限 第一象限.D .C .B .A
8.若角α、β的终边关于y 轴对称,则下列等式成立的是( )
A.sin α=sin β
B.cos α=cos β
C.tan α=tan β
D.cot α=cot β
9.设角α属于第二象限,且,2
cos 2cos α
α-=,则角2α属于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 二、填空题
1.若角α的终边经过P (-3,b ),且cos α=-5
3
,则b = ,sin α=_ 2.在(0,2π)内满足x 2cos =-cos x 的x 的取值范围是 3.已知角α的终边在直线y =-3x 上,则10sin α+3cos α= . 4.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限. 5.计算
=-
65sin π ,=413cos π ,=43sin π ,=-3
2sin π
, 三、解答题:
1.已知角a 的终边过P (-3,4),求角a 的三角函数值
2.若点(6,)P t 是角α终边上的一点,且满足0t >,3
cos 5
α=,求sin α,tan α的值
3.已知角α的终边上有一点(3,4)(0)P t t t -≠,求sin α,cos α,tan α的值;。

相关文档
最新文档