初二数学上册数学教案

合集下载

八年级数学上册学习步骤与教案全集(优秀7篇)

八年级数学上册学习步骤与教案全集(优秀7篇)

八年级数学上册学习步骤与教案全集(优秀7篇)八年级数学上册教案篇一教学目标知识与能力:1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.2.理解平行四边形的另一种判定方法,并学会简单运用.过程与方法:1.经历平行四边行判别条件的'探索过程,在有关活动中发展学生的合情推理意识.2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.情感、态度与价值观:通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.教学方法启发诱导式教具三角尺教学重点平行四边形判定方法的探究、运用.教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用教学过程:第一环节复习引入:问题1:1.平行四边形的定义是什么?它有什么作用?2.判定四边形是平行四边形的方法有哪些?(1)两组对边分别平行的四边形是平行四边形。

(2)一组对边平行且相等的四边形是平行四边形。

(3)两条对角线互相平分的四边形是平行四边形。

第二环节探索活动活动:工具:两对长度分别相等的木条。

动手:能否在平面内用这四根笔摆成一个平行四边形?思考1.1:你能说明你所摆出的四边形是平行四边形吗?已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形。

思考1.2:以上活动事实,能用文字语言表达吗?学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.(2)通过观察、实验、猜想到:两组对边分别相等的四边形是平行四边形.在此活动中,教师应重点关注:(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;(3)学生能否通过独立思考、小组合作得出正确的证明思路.第三环节巩固练习例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=壹五,CE=DF=9,图中有哪些互相平行的线段?随堂练习1.判断下列说法是否正确(1)一组对边平行且另一组对边相等的四边形是平行四边形( )(2)两组对角都相等的四边形是平行四边形( )(3)一组对边平行且一组对角相等的四边形是平行四边形( )(4)一组对边平行,一组邻角互补的四边形是平行四边形( )2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.4.如图:AD是ΔABC的边BC边上的中线。

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。

八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。

已知点的坐标,能在平面直角坐标系中描出点。

3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)八年级上册数学教案(篇1)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.算一算已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.剪剪拼拼把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:议一议→释一释→忆一忆→找一找议一议:已知,请问:① 可能是整数吗?② 可能是分数吗?释一释:释1.满足的为什么不是整数?释2.满足的为什么不是分数?忆一忆:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础找一找:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:画一画1→画一画2→仿一仿→赛一赛画一画1:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段画一画2:在右2的正方形网格中画出四个三角形(右1) 2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数仿一仿:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的赛一赛:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级上册数学教案(篇2)教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入问题牵引请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2._2-4=()();3._2-2_y+y2=()2.师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究问题牵引(1)下列各式从左到右的变形是否为因式分解:①(_+1)(_-1)=_2-1;②a2-1+b2=(a+1)(a-1)+b2;③7_-7=7(_-1).(2)在下列括号里,填上适当的项,使等式成立.①9_2(______)+y2=(3_+y)(_______);②_2-4_y+(_______)=(_-_______)2.四、随堂练习,巩固深化课本练习.探研时空计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知复习交流下列从左到右的变形是否是因式分解,为什么?(1)2_2+4=2(_2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)_2+4_y-y2=_(_+4y)-y2;(4)m(_+y)=m_+my;(5)_2-2_y+y2=(_-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4_2-_和_y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4_2-_中的公因式是_,在_y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法教师提问多项式4_2-8_6,16a3b2-4a3b2-8ab4各项的公因式是什么?师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学例1把-4_2yz-12_y2z+4_yz分解因式.解:-4_2yz-12_y2z+4_yz=-(4_2yz+12_y2z-4_yz)=-4_yz(_+3y-1)例2分解因式,3a2(_-y)3-4b2(y-_)2思路点拨观察所给多项式可以找出公因式(y-_)2或(_-y)2,于是有两种变形,(_-y)3=-(y-_)3和(_-y)2=(y -_)2,从而得到下面两种分解方法.解法1:3a2(_-y)3-4b2(y-_)2=-3a2(y-_)3-4b2(y-_)2=-[(y-_)23a2(y-_)+4b2(y-_)2]=-(y-_)2 [3a2(y-_)+4b2]=-(y-_)2(3a2y-3a2_+4b2)解法2:3a2(_-y)3-4b2(y-_)2=(_-y)23a2(_-y)-4b2(_-y)2=(_-y)2 [3a2(_-y)-4b2]=(_-y)2(3a2_-3a2y-4b2)例3用简便的方法计算:0.84×12+12×0.6-0.44×12.教师活动引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.探研时空利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知问题牵引请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).学生活动动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.学生活动从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1把下列各式分解因式:(投影显示或板书)(1)_2-9y2;(2)16_4-y4;(3)12a2_2-27b2y2;(4)(_+2y)2-(_-3y)2;(5)m2(16_-y)+n2(y-16_).思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.学生活动分四人小组,合作探究.解:(1)_2-9y2=(_+3y)(_-3y);(2)16_4-y4=(4_2+y2)(4_2-y2)=(4_2+y2)(2_+y)(2_-y);(3)12a2_2-27b2y2=3(4a2_2-9b2y2)=3(2a_+3by)(2a_-3by);(4)(_+2y)2-(_-3y)2=[(_+2y)+(_-3y)][(_+2y)-(_-3y)] =5y(2_-y);(5)m2(16_-y)+n2(y-16_)=(16_-y)(m2-n2)=(16_-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.探研时空1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3) _2-0.01y2.八年级上册数学教案(篇3)一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.《三角形综合应用》精讲精练1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )A.5B.6C.7D.103.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).《11.2与三角形有关的角》同步测试4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE 中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?八年级上册数学教案(篇4)单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1 认识直棱柱第 1 课时 / 共课时教学目标(含重点、难点)及设置依据教学目标1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型教学过程内容与环节预设、简明设计意图二度备课(即时反思与纠正)一、创设情景,引入新课师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的加、减、乘、除运算规则。

教学内容:有理数的定义及分类。

有理数的加法、减法、乘法、除法运算规则。

教学步骤:1. 引入有理数的概念,解释有理数的定义及分类。

2. 通过示例演示有理数的加法、减法、乘法、除法运算规则。

3. 让学生进行练习,巩固所学的运算规则。

1.2 代数式教学目标:理解代数式的概念及其组成。

掌握代数式的运算规则。

教学内容:代数式的概念及其组成。

代数式的运算规则。

教学步骤:1. 引入代数式的概念,解释代数式的组成。

2. 通过示例演示代数式的运算规则。

3. 让学生进行练习,巩固所学的运算规则。

第二章:几何基础2.1 点、线、面教学目标:理解点、线、面的概念及其关系。

教学内容:点、线、面的概念及其关系。

教学步骤:1. 引入点、线、面的概念,解释它们之间的关系。

2. 通过示例展示点、线、面的特征和性质。

3. 让学生进行练习,巩固所学的概念。

2.2 直线与角教学目标:理解直线和角的概念及其性质。

教学内容:直线和角的概念及其性质。

教学步骤:1. 引入直线和角的概念,解释它们的性质。

2. 通过示例展示直线的特征和角的性质。

3. 让学生进行练习,巩固所学的概念。

第三章:方程与不等式3.1 方程的概念与解法教学目标:理解方程的概念及其解法。

教学内容:方程的概念及其解法。

教学步骤:1. 引入方程的概念,解释方程的解法。

2. 通过示例演示方程的解法。

3. 让学生进行练习,巩固所学的解法。

3.2 不等式的概念与解法教学目标:理解不等式的概念及其解法。

教学内容:不等式的概念及其解法。

教学步骤:1. 引入不等式的概念,解释不等式的解法。

2. 通过示例演示不等式的解法。

3. 让学生进行练习,巩固所学的解法。

第四章:函数与图像4.1 函数的概念与性质教学目标:理解函数的概念及其性质。

教学内容:函数的概念及其性质。

教学步骤:1. 引入函数的概念,解释函数的性质。

八年级数学上册学习步骤与教案全集(优秀6篇)

八年级数学上册学习步骤与教案全集(优秀6篇)

八年级数学上册学习步骤与教案全集(优秀6篇)初二数学上册教案篇一教学目标1.掌握正方形的定义、性质和判定及它们初步应用。

2.理解正方形与平行四边形、矩形、菱形的内在联系。

3.通过正方形与平行四边形、矩形、菱形的联系的教学来提高学生的逻辑思维能力。

教学重点和难点重点是正方形的定义及正方形与矩形、菱形的联系;难点是正方形与矩形、菱形的关系及正方形的性质、判定的灵活运用。

教学过程设计一、通过知识结构的教学,学习正方形的知识。

1.复习平行四边形、矩形、菱形的定义。

学生边回答,教师边用活动教具演示平行四边形演变成矩形、菱形的过程,并画出它们之间的内在联系图。

(画出图4-50(a)中的四边形,平行四边形、矩形、菱形及箭头)2.类比联想,用运动方式得出正方形的定义。

问:既然矩形、菱形都能由平行四边形运动变化得到,那么正方形呢?启发学生将小学熟悉的正方形与平行四边形作比较,用教具演示出平行四边形形成正方形的过程,同时归纳出正方形的定义。

教师板书定义并画出图4-50中的正方形及箭头①.3.完善特殊的平行四边形的知识结构。

(1)师生共同分析正方形定义的三个要点:①是平行四边形;②有一个角是直角;③有一组邻边相等。

(2)对比正方形与矩形、菱形的定义,得出它们的联系:①由正方形定义①,②条件可知正方形是特殊的矩形。

(画出图中的箭头②及正方形集合A5和矩形集合A1)②由正方形定义的①,③条件可知正方形是特殊的菱形。

(画出图4-50中的箭头③及菱形集合A2)③由正方形的定义的所有条件可知,正方形又是特殊的平行四边形。

(画出图4-50中的集合A3)④平行四边形、矩形、菱形、正方形都是特殊的四边形。

(画出图4-50(b)中四边形集合A4)而且从以上过程可知,正方形既是矩形又是菱形。

(集合A2与A1的公共部分)4.从整体知识结构出发,研究正方形的性质和判定。

(1)正方形的性质。

引导学生由正方形与矩形、菱形的关系得知:正方形具有矩形和菱形的一切性质。

初二数学上册教案优秀3篇

初二数学上册教案优秀3篇

初二数学上册教案优秀3篇初二数学上册教案最新范文一一、教材分析本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的根底上进行教学的。

角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了根底。

因此,本节内容在数学知识体系中起到了承上启下的作用。

同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。

二。

教学内容本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用。

内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力。

作角的平分线是几何作图中的根本作图。

角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据。

因此,本节内容在数学知识体系中起到了承上启下的作用。

三、教学目标1、根本知识:了解尺规作图的原理及角的平分线的性质。

2、根本技能(1)会用尺规作图作角的平分线。

(2)会利用全等三角形证明角平分线的性质。

(3)能运用角的平分线性质定理解决简单的几何问题3、数学思想方法:从特殊到一般4、根本活动经验:体验从操作、测量、猜测、验证的过程,获得验证几何命题正确性的一般过程的活动经验目标解析:通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。

四、学情分析刚进入初二的学生观察、操作、猜测能力较强,但归纳、运用数学意识的思想比拟薄弱,思维的广阔性、敏捷性、灵活性比拟欠缺,需要在课堂教学中进一步加强引导。

根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过比照教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习。

人教版八年级数学上册教案5篇

人教版八年级数学上册教案5篇

人教版八年级数学上册教案5篇作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢下面是小编整理的人教版八年级数学上册教案,欢迎大家分享。

人教版八年级数学上册教案1教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:①、蚂蚁怎么走最近出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少(π的值取3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么你画对了吗(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)A→A′→B;(2)A→B′→B;(3)A→D→B;(4)A—→B.哪条路线是最短呢你画对了吗第(4)条路线最短.因为“两点之间的连线中线段最短”.②、做一做:教材14页。

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。

教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。

【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。

二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。

八年级上册数学教案(优秀5篇)

八年级上册数学教案(优秀5篇)

八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕八年级上册数学教案〔优秀5篇〕1 一、教学目的:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的打破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的打破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中假如数据分布较为均匀时,比方教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,假设分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=0。

而用组中值51去乘以频数20恰好为1020≈0,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比拟合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

〔1〕、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

〔2〕、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比方组、组中值及频数在表中的详细意义。

2、教材P140的考虑的意图。

〔1〕、使学生通过考虑这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题〔2〕、帮助学生理解表中所表达出来的信息,培养学生分析数据的才能。

八年级上册数学教案(优秀6篇)

八年级上册数学教案(优秀6篇)

八年级上册数学教案(优秀6篇)初二数学上册教案篇一教学目标1.等腰三角形的概念。

2.等腰三角形的性质。

3.等腰三角形的概念及性质的应用。

教学重点:1.等腰三角形的概念及性质。

2.等腰三角形性质的应用。

教学难点:等腰三角形三线合一的性质的理解及其应用。

教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,Ⅰ并且能够作出一个简单平面图形关于某一直线的轴对称图形,Ⅰ还能够通过轴对称变换来设计一些美丽的图案。

这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。

来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是。

问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,Ⅰ也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

Ⅰ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。

相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。

同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴。

2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?Ⅰ底边上的高所在的直线呢?结论:等腰三角形是轴对称图形。

它的对称轴是顶角的平分线所在的直线。

因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

初二上册数学优秀教案5篇

初二上册数学优秀教案5篇

初二上册数学优秀教案5篇初二上册数学优秀教案篇1教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

初中八年级数学上册备课教案5篇

初中八年级数学上册备课教案5篇

初中八年级数学上册备课教案5篇初中八年级数学上册备课教案篇1分式方程教学目标1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点:将实际问题中的等量关系用分式方程表示教学难点:找实际问题中的等量关系教学过程:情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 kg和15000 kg。

已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每公顷的产量。

你能找出这一问题中的所有等量关系吗?(分组交流)如果设第一块试验田每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________二、讲授新课从甲地到乙地有两条公路:一条是全长600 km的普通公路,另一条是全长480 km的高速公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。

求该客车由高速公路从甲地到乙地所需的时间。

这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。

根据题意,可得方程_ _____________________。

学生分组探讨、交流,列出方程.三.做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。

如果设第一次捐款人数为人,那么满足怎样的方程?四.议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程分式方程与整式方程有什么区别?五、随堂练习(1)据联合国《20_年全球投资报告》指出,中国20_年吸收外国投资额达530亿美元,比上一年增加了13%。

八年级数学上册课堂教案5篇

八年级数学上册课堂教案5篇

八班级数学上册课堂教案5篇八班级数学上册课堂教案1教学目标1.理解并把握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。

2.培育同学的分析力量和类推力量。

3.体验所学学问与现实生活的联系,能应用所学学问解决生活中简洁的问题,从中获得价值体验。

教学重难点教学重点:理解并把握除数是整数的小数除法的计算方法。

教学难点:理解商的小数点定位问题。

教学工具ppt课件教学过程一、复习引入1.填空:(PPT课件)2.(PPT课件出示)(1)引导同学列式:224÷4(2)为什么这样列式?(路程÷时间=速度)(3)说一说:224÷4这道题是怎样计算的?(老师板演)【设计意图】通过复习整数除法,唤醒同学对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。

二、探究新知(一)教学例11.出示例1,引导理解题意。

(PPT课件演示。

)(1)题目中告知了我们什么?(坚持晨练可以熬炼身体,王鹏坚持晨练,他方案4周跑步22.4 km。

)(2)题目中要我们求什么?(按方案他平均每周应跑多少千米?)2.尝试列式,分析数量关系。

(1)要求“他平均每周应跑多少千米”,应当怎样列式?(同学口头列式,老师板书或PPT课件演示:22.4÷4。

)(2)引导思考:为什么用“22.4÷4”?(路程÷时间=速度)3.揭示新课,感受学习价值。

(1)请同学们观看这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。

)(2)揭示课题:看来,在实际生活中经常遇到需要用小数除法计算的问题,这节课我们就来争辩新的课题──除数是整数的小数除法。

(3)板书课题:除数是整数的小数除法。

4.提出问题,自主思考算法。

(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?(2)同学先独立思考,再在小组里沟通自己的想法。

(老师巡察,了解同学思维活动,参与小组沟通,赐予适当指导。

八年级上册数学教案优秀11篇

八年级上册数学教案优秀11篇

八年级上册数学教案优秀11篇八年级数学上册教案篇一教学目标知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

教学重难点重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

教学过程一、创设情境,故事引入情境设置教师请一位学生讲一讲《狗熊掰棒子》的故事学生活动1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

教师归纳听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?学生回答多项式乘以多项式。

教师激发大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的。

错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

问题牵引计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

学生活动分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

教师活动请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

学生活动讨论教师引导刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?学生回答可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇哪里有数,哪里就有美。

思维自疑问和惊奇开始。

一个数学家越超脱越好。

数学是锻炼思想的体操。

这里给大家分享一些关于新人教版八年级数学上册全册名师教案,供大家参考学习。

新人教版八年级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。

二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)一定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案【篇2】一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

人教版八年级上册数学教案教师用书六篇

人教版八年级上册数学教案教师用书六篇

人教版八年级上册数学教案教师用书六篇【篇1】人教版八年级上册数学教案教师用书一,教材分析教材从全面提高学生素质的要求出发,在知识选材上,适当加强联系实际,适当降低难度,既考虑现代生产发展与社会生活的需要,又考虑当前大多数初中学生的学习水平的实际可能。

在处理方法上,适当加强观察实验,力求生动活泼,既有利于掌握知识,又有利于培养能力,情感和态度,使学生在学习物理的同时,获得素质上的提高。

教材把促进学生全面发展作为自己的目标。

在内容选配上,注意从物理知识内部发掘政治思想教育和品德教育的潜能,积极推动智力因素和非智力因素的相互作用。

在学习方法上,积极创造条件让学生主动学习参与实践,通过学生自己动手,动脑的实际活动,实现学生的全面发展。

教科书采用了符合学生认知规律的由易到难,由简到繁,以学习发展水平为线索,兼顾到物理知识结构的体系。

这样编排既符合学生认知规律,又保持了知识的结构性。

教科书承认学生是学习的主体,把学生当作第一读者,按照学习心理的规律来组织材料。

全书共14章以及新增添的物理实践活动和物理科普讲座,每章开头都有几个问题,提示这一章的主要内容并附有章节照片,照片的选取力求具有典型性,启发性和趣味性,使学生学习时心中有数。

章下面分节,每节内都有些小标题,帮助学生抓住中心。

在引入课题,讲述知识,归纳总结等环节,以及实验,插图,练习中,编排了许多启发性问题,点明思路,引导思考,活跃思维。

许多节还编排了想想议议,提出了一些值得思考讨论的问题,促使学生多动脑,多开口。

二,学生分析我所承担的是二年级的物理教学。

共有69人,学生的基础差异比较大,其中共3人基础知识掌握较好,有50%的学生基础薄弱,有些学生讨厌理科学习,经过了解测试后个别学生小学物理知识都未掌握。

学生学习兴趣不浓,作业马虎了事,抄袭作业严重且作业格式不正确,写字不认真。

部分学生学习虽然刻苦,但十分吃力,效果不好,这主要是学生学习方式方法问题。

培养学生物理学习兴趣,形成正确的学习习惯,抓好基础知识,是物理教学工作的重点。

八年级上册数学教案简单(精选6篇)

八年级上册数学教案简单(精选6篇)

八年级上册数学教案简单(精选6篇)八年级上册数学教案简单篇1教学建议知识结构重难点分析本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.教法建议1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解教学设计示例一、教学目标1.掌握中位线的概念和三角形中位线定理2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力5.通过一题多解,培养学生对数学的兴趣二、教学设计画图测量,猜想讨论,启发引导.三、重点、难点1.教学重点:三角形中位线的概论与三角形中位线性质.2.教学难点:三角形中位线定理的证明.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具六、教学步骤【复习提问】1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).2.说明定理的证明思路.3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.4.什么叫三角形中线?(以上复习用投影仪打出)【引入新课】1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)2.三角形中位线性质了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的.方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).(l)延长DE到F,使,连结CF,由可得ADFC.(2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.(3)过点C作,与DE延长线交于F,通过证可得ADFC.上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.(证明过程略)例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.(由学生根据命题,说出已知、求证)已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA 的中点.求证:四边形EFGH是平行四边形.‘分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.证明:连结AC.∴(三角形中位线定理).同理,∴GHEF∴四边形EFGH是平行四边形.【小结】1.三角形中位线及三角形中位线与三角形中线的区别.2.三角形中位线定理及证明思路.七、布置作业教材P188中1(2)、4、7八年级上册数学教案简单篇2一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学上册数学教案【篇一:人教版八年级上册数学三角形教案】第十一章三角形全章教案教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。

三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。

0教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于180的基础上,进行推理论证,从而得出三角形外角的性质。

接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。

这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。

最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标〔知识与技能〕1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;03、会证明三角形内角和等于180,了解三角形外角的性质。

4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。

5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。

〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和0等于180的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。

课时分配7.1与三角形有关的线段 ??????????????? 2课时7.2 与三角形有关的角 ???????????????? 2课时7.3多边形及其内角和 ???????????????? 2课时7.4课题学习镶嵌 ????????????????? 1课时本章小结 ?????????????????????? 2课时11.1.1三角形的边【教学目标】1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。

2、过程与方法:⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。

⑵培养学生数学分类讨论的思想。

3、情感态度与价值观:⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。

⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。

【重点】掌握三角形三边关系【难点】三角形三边关系的应用[教学过程]一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。

那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

注意:三条线段必须①不在一条直线上,②首尾顺次相接。

bc a(1)c组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。

三角形abc用符号表示为△abc。

三角形abc的顶点c所对的边ab 可用c 表示,顶点b所对的边ac可用b表示,顶点a所对的边bc可用a表示.三、三角形三边的不等关系探究:[投影7]任意画一个△abc,假设有一只小虫要从b点出发,沿三角形的边爬到c,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从b→c,(2)从b→a→c;不一样, ab+ac>bc ①;因为两点之间线段最短。

同样地有ac+bc>ab ②ab+bc>ac ③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。

按角分类:三角形 ? 直角三角形 ?? 斜三角形 ? 锐角三角形 ??钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。

三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。

底角底边底角显然,等边三角形是特殊的等腰三角形。

按边分类:三角形 ? 不等边三角形 ?? 等腰三角形 ? 底和腰不等的等腰三角形 ?? 等边三角形五、例题例用一条长为18㎝的细绳围成一个等腰三角形。

(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)“边长为4㎝”是什么意思?解:(1)设底边长为x㎝,则腰长2 x㎝。

x+2x+2x=18解得x=3.6所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.(2)如果长为4㎝的边为底边,设腰长为x㎝,则4+2x=18解得x=7如果长为4㎝的边为腰,设底边长为x㎝,则解得x=10因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。

由以上讨论可知,可以围成底边长是4㎝的等腰三角形。

五、课堂练习课本65面练习1、2题。

六、课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。

作业:课本69面1、2、6;70面7题。

11.1.2三角形的高、中线与角平分线【学习目标】1、知识目标:认识三角形的高、中线与角平分线.2、能力目标:会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.3、情感目标:采用自学与小组合作学习相结合的方法,培养自己主动参与、勇于探究的精神。

【重点难点】重点:(1)了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.(2)了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别.(2)钝角三角形高的画法.(3)不同的三角形三条高的位置关系.〔教学过程〕一、导入新课我们已经知道什么是三角形,也学过三角形的高。

三角形的主要线段除高外,还有中线和角平分线值得我们研究。

c 二、三角形的高请你在图中画出△abc的一条高并说说你画法。

abdc从△abc的顶点a向它所对的边bc所在的直线画垂线,垂足为d,所得线段ad叫做△abc的边bc上的高,表示为ad⊥bc于点d。

注意:高与垂线不同,高是线段,垂线是直线。

请你再画出这个三角形ab 、ac边上的高,看看有什么发现?三角形的三条高相交于一点。

如果△abc是直角三角形、钝角三角形,上面的结论还成立吗?现在我们来画钝角三角形三边上的高,如图。

e c显然,上面的结论成立。

请你画一个直角三角形,再画出它三边上的高。

上面的结论还成立。

三、三角形的中线如图,我们把连结△abc的顶点a和它的对边bc的中点d,所得线段ad叫做△abc的边bc上的中线,表示为bd=dc或bd=dc=1/2bc或2bd=2dc=bc.ab请你在图中画出△abc的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

四、三角形的角平分线如图,画∠a的平分线ad,交∠a所对的边bc于点d,所得线段ad叫做△abc的角平分线,表示为∠bad=∠cad或∠bad=∠cad=1/2∠bac或2∠bad=2∠cad=∠bac。

adc思考:三角形的角平分线与角的平分线是一样的吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。

请你在图中再画出另两个角的平分线,看看有什么发现?三角形三个角的平分线相交于一点。

如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。

上面的结论还成立。

想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。

五、课堂练习课本66面练习1、2题。

六、课堂小结1、三角形的高、中线、角平分线的概念和画法。

2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。

作业:课本69面3、4;70面8、9题。

11.1.3三角形的稳定性【学习目标】bdc【篇二:最新(人教版)八年级数学上册教学设计】八年级上目录及教案第十一章全等三角形11.1 全等三角形11.2 三角形全等的判定阅读与思考全等与全等三角形 11.3 角的平分线的性质教学活动小结复习题11第十二章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形教学活动小结复习题12第十三章实数13.1 平方根13.2 立方根13.3 实数教学活动小结复习题13第十四章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等式14.4 课题学习选择方案教学活动小结复习题14第十五章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法教学活动小结复习题15第十一章全等三角形11.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,?重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,?如果本图11.1─2△abc和△dbc全等,点a和点d,点b和点b,点c和点c是对应顶点,?记作△abc≌△dbc.【问题提出】课本图11.1─1中,△abc≌△def,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本p4练习.【探研时空】1.如图1所示,△acf≌△dbe,∠e=∠f,若ad=20cm,bc=8cm,你能求出线段ab的长吗?与同伴交流.(ab=6)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本p4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,?公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).11.2.1三角形全等的判定(sss)教学内容本节课主要内容是探索三角形全等的条件(sss),?及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,?你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1?的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,?剪下模板就可去割玻璃了.【理论认知】如果△abc≌△a′b′c′,那么它们的对应边相等,对应角相等.?反之,?如果△abc与△a′b′c′满足三条边对应相等,三个角对应相等,即ab=a′b′,bc=b′c′,ca=c′a′,∠a=∠a′,∠b=∠b′,∠c=∠c′.这六个条件,就能保证△abc≌△a′b′c′,从刚才的实践我们可以发现:?只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△abc,再画一个△a′b′c′,使a′b′=ab,b′c′=bc,c′a′=ca.把画出的△a′b′c′剪下来,放在△abc上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△a′b′c′,使a′b′=ab′,a′c′=ac,b′c′=bc:【篇三:2015北师大版八年级上册数学全册教案】第一章勾股定理1.1 探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

相关文档
最新文档