去括号与添括号法则
如何快速理解添括号与去括号
如何快速理解添括号与去括号
一、法则
添括号法则:
如果括号前面是加号,加上括号后,括号里面的符号不变。
如果括号前面是减号,加上括号后,括号里面的符号全部改为与其相反的符号。
去括号法则:
括号前面是加号,把括号和它前面的加号去掉,括号里各项都不变号;括号前面是减号,把括号和它前面的减号去掉,括号里各项要改变符号.
二、讲解
因为正负数可以表示相反意义的量,所以我们可以用“好”和“坏”来表示“正”和“负”。
带正号的括号我们比喻成一个好国家,比如中国。
带负号的括号我们比喻成一个坏国家,比如日本。
在一个国家里有好人(正数)和坏人(负数)。
在我们中国(带正号的括号里),好人(正数)就是好人(正数),坏人(负数)就是坏人(负数)。
在日本(带负正号的括号里)所谓的好人,其实是坏人,所谓坏人反而是好人。
现在我们来理解添括号法则:
带正号的情况好理解,我们重点说添上带负号的括号:好人(正数)到了日本(带负号的括号里)会被认为是坏人(负数),而坏人(负数)到了日本(带负正号的括号里)反而成了好人(正数)。
现在我们来理解去括号法则:
去掉带正号的括号情况好理解,我们重点说去带负号的括号:日本国里(带负正号的括号里)所谓的好人(正数),去掉括号后,其实是坏人(负数);日本国里(带负正号的括号里)所谓的坏人(负数),去掉括号后,其实是好人(正数)。
括号法则
括号法则1. 去括号的法则是:括号前面是“+”号,去括号时,括号里的各项都不变;括号前面是“-”号,去括号时,括号里的各项都变号.例如;5a+(4b-3a)-(2b+a)=5a+4b-3a-2b-a=a+2b.练习题:5246-(246+694)= 354+(229+46)=(23+56)+47 = 125×(3+8)=2. 添括号的法则是:添括号时,括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号.例如:4a-3b-2c=4a-(3b+2c);7a+2b-5c=7a+(2b-5c).练习题:582-157-182= 2354-456-544=45627-258-742-1627= 458-45—155括号前面是加号时,去掉括号,括号内的算式不变。
括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。
法则的依据实际是乘法分配律注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.去括号时应将括号前的符号连同括号一起去掉.要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.遇到多层括号一般由里到外,逐层去括号,也可由外到里.数"-"的个数.3. 一定要注意,若括号前面是除号,不能直接去除除号.小学数学巧算,移位凑合法法交换律两个数相加,交换加数的位置,和不变。
a+b=b+a加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)减法的性质减去一个数,等于加这个数的相反数。
a-b=a+(-b)连续减去两个数,等于减去这两个数的和。
a-b-c=a-(b+c)减去一个数再加上一个数,等于减去这两个数的差。
四年级数学去添括号
1
1.加减法去括号和添括号的法则 在只有加减运算的算式里,
如果括号前面是“+”号, 则不论去掉括号或添上括号, 括号里面的运算符号都不变;
如果括号前面是“-”号,
则不论去掉括号或添上括号,
括号里面的运算符号都要改变,
“+”变“-”,“-”变“+”。
大家好
2
1.加减法去括号和添括号的法则
• 即:
• 即:
• a × (b × c)=a × b × c • a × (b ÷ c)=a × b ÷ c • a ÷ (b × c )=a ÷ b ÷ c • a ÷ (b ÷ c)=a ÷ b × c
大家好
8
例4. 150×36÷6 = 150×(36÷6 ) = 150 ×6 = 900
(63×25)×(40÷7) = 63÷7×(25 ×40 ) = 9 ×1000 = 9000
• a+(b+c)=a+b+c
• a+(b-c)=a+b-c • a-(b+ c )=a-b-c • a-(b-c)=a - b + c
大家好
3
例1. 178+(229+122) =178+229+122 =178+122+229 = 300+229 =529
• 295+(214-195) =295 + 214 - 195 = 295 - 195 + 214 =100+214 =314
大家好
4
例2. 618-243-157 = 618-(243+157) = 618-400
= 218
174-(41+74) = 174-74 - 41 =100- 41
= 59
大家好
突破去括号与添括号难点
添括号 -a-b+c-d-e (把前两项后三项括在括号内) 原式 (把后四项括在括号内) 原式 (把前三项后两项括在括号内) 原式
添括号 -a-b+c-d-e (把前两项后三项括在括号内) 原式=(-a-b)+(c-d-e) =-(a+b)+(c-d-e) (把后四项括在括号内) 原式=-a+(-b+c-d-e) =-a-(b-c+d+e) (把前三项后两项括在括号内) 原式=(-a-b+c)+(-d-e) =-(a+b-c)-(d+e)
2 2 ( 30 y 15 y 5 ) ( 30 y 12 ) ( 3 30 y ) 解:原式 30 y 2 15 y 5 30 y 12 3 30 y 2
15 y 4
当y=-3时,上式值为
-15X(-3)+4 =45+4=49
2 2
先添括号,再合并 同类项,可以降低 错误率
注意事项
添括号是为了达到某个目的预备手段,若 被括号第一项为“+”,则括号前选择“+” 号,被括各项不变号;若被括号第一项为 “-”号,则括号前选择“-”号,被括各项都 变号
练习化简求值:
2xx=1,y=-1.
2
练习化简求值:
2x y 4x y 3xy 5xy
同步练习 2 1)
2) 3)
a 2 ab b b
2
2
x
2
7a b 4a b 5ab 2 2a b 3ab
2 2 2
y 3 2x 3 y
2 2
去括号和添括号的法则G
③100-(30-10)=100-30+10=80
例2计算下面各题:
①100+10+20+30=100+(10+20+30)=100+
60=160
②100-10-20-30=100-(10+20+30)=100-60=40
③100-30+10=100-(30-10)=100-20=80
一
如果括号前面是“+”号,则不论去掉括号或添上括号,括号里
面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号
或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,
即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例1
①100+(10+20+30)=100+10+20+30=160
①1320×500÷250=1320×(500÷250)=1320×2=2640
②4000÷125÷8=4000÷(125×8)=4000÷1000=4
③5600÷(28÷6)=5600÷28×6=200×6=1200
④372÷162×54=372÷(162÷54)=372÷3=124
⑤2997×729÷(81×81)=2997×729÷81÷81
注意:
带符号“搬家”
例3计算325+46-125+54=325-125+46+54
=(325-125)+(46+54)=200+100=300
注意:
每个数前面的运算符号是这个数的符号.如+46,
-125,+
去括号和添加括号法则练习
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
整式的加减法去括号和添括号的用法(一)
整式的加减法去括号和添括号的用法(一)整式的加减法去括号和添括号的用法本文将介绍整式的加减法去括号和添括号的用法,并详细讲解以下几个方面:1.去括号和添括号的定义2.整式去括号的规则和示例3.整式添括号的规则和示例4.注意事项和常见错误1. 去括号和添括号的定义•去括号:将一个整式中的括号内的表达式按照括号前的符号进行分配运算,去掉括号。
•添括号:在一个整式中提取其中的一部分进行括号,用于改变运算顺序或减少计算量。
2. 整式去括号的规则和示例•去括号的规则:–括号前有正号或无符号:将括号内的每一项与括号前的符号相乘。
–括号前有负号:将括号内的每一项与括号前的符号相乘,并改变项内的符号。
•示例1:–原式:2(3x + 5y)–去括号后:6x + 10y•示例2:–原式:-3(2x - 4y)–去括号后:-6x + 12y3. 整式添括号的规则和示例•添括号的规则:–可以在整式中的任意位置添加括号,但需保持运算的正确性。
–添括号可以改变整式的运算顺序,提高计算效率。
•示例1:–原式:3x + 2y + 4z - 5w–添括号后:(3x + 2y) + (4z - 5w)•示例2:–原式:2x^2 + 3x - 5–添括号后:2x^2 + (3x - 5)4. 注意事项和常见错误•注意事项:–在运算中,括号的使用必须符合数学运算的法则。
–添括号时要注意运算顺序,确保计算的正确性。
•常见错误:–在去括号过程中,忽略了括号前的符号,导致计算错误。
–在添括号过程中,未保持原式的运算顺序,导致计算结果不正确。
这些是整式的加减法去括号和添括号的常用用法和规则,希望可以帮助你更好地理解和运用整式的运算。
在实际运算中,需要根据具体的情况和题目要求灵活运用这些方法。
3.4.3 去括号与添括号
3.化简: (1)x-3(1-2x+x2)+2(-2+3x-x2) (2)(3x2-5xy)+{-x2-[-3xy+2(x2-xy)+y2]} 解:(1)原式=x-3+6x-3x2-4+6x-2x2 =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7 (2)原式=3x2-5xy+{-x2-[-3xy+2x2-2xy+y2]} =3x2-5xy+{-x2+3xy-2x2+2xy-y2} =3x2-5xy-x2+3xy-2x2+2xy-y2 =(3x2-x2-2x2)+(-5xy+3xy+2xy)-y2=-y2
[典例] 已知A=4x2-4xy+y2,B=x2+xy-5y2,求A-B。
错解:A-B=4x2-4xy+y2-x2+xy-5y2=3x2-3xy-4y2 正解:A-B=(4x2-4xy+y2)-(x2+xy-5y2) =4x2-4xy+y2-x2-xy+5y2 =3x2-5xy+6y2
评析:本题产生错误的原因是把A、B代入所求式子时,丢掉 了括号,导致后两项的符号错误。因为A、B表示两个多项式, 它是一个整体,代入式子时必须用括号表示,尤其是括号前 面是“-”时,如果丢掉了括号就会发生符号错误,今后遇到 这类问题,一定要记住“添括号”。
[典例] 计算2a2b-3ab2+2(a2b-ab2)
错解:原式=2a2b-3ab2+2a2b-ab2 =2a2b+2a2b-3ab2-ab2=4a2b-4ab2 正解:原式=2a2b-3ab2+2a2b-2ab2 =2a2b+2a2b-3ab2-2ab2=4a2b-5ab2 评析:去括号时,要按照乘法分配律把括号前面的 数和符号一同与括号内的每一项相乘,而不是只乘 第一项。
去括号和添括号的法则
去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。
去括号法则适用于求和、求差和乘法运算。
下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。
例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。
2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。
例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。
3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。
例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。
这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。
二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。
添加括号可以改变表达式的结构和优先级。
下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。
例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。
2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。
例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。
添括号法则在对表达式进行化简、分解或重组时非常有用。
它可以帮助我们更好地理解和计算复杂的代数运算。
三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。
使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。
示例2:重组表达式考虑以下代数表达式:a*b+c*d。
去括号和添括号的法则GG
一.在加减混合运算中如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c)=a+b+c a-(b+c)=a-b-c a-(b-c)=a-b+c例1① 72+(28-20-30)② 153-(53-20-40)③ 566-(38+66)例2 计算下面各题:①666+13+22+65②666-11-22-33③633-78+45二.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。
即a×(b÷c)=a×b÷c a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c从左往右看是去括号,从右往左看是添括号。
例4 ①1320×500÷250=1320×(500÷250)=1320×2=2640②4000÷125÷8=4000÷(125×8)=4000÷1000=4③5600÷(28÷6)=5600÷28×6=200×6=1200④372÷162×54=372÷(162÷54)=372÷3=124⑤2997×729÷(81×81)=2997×729÷81÷81=(2997÷81)×(729÷81)=37×9=333练习600-128-72 248+(152-127) 286+879-67929×125×8 5600÷25÷4 250÷8×4 58+(124-24×3)2100÷25÷4 58+(124-24×3) 8157-(103+157+597)30600÷25÷4= 6015-(518+699)-2783= 6076-875-(805+3320)=5898-(2065-102)= 113600÷100÷4=453×8×125=4928-(871+1928)= 1526+(938-526)= 803×12×25=812-700÷(9+31×11)(136+64)×(65-345÷23)85+14×(14+208÷26)(284+16)×(512-8208÷18)120-36×4÷18+35 (58+37)÷(64-9×5)选择题1.与(2a-b+c) (2a+b-c)不相等的是()(A)[2a+(c-b)][2a-(c-b)](B)[2a-(-b-c)] [2a+(b-c)](C)[2a+(-b+c)][2a-(-b+c)](D)[2a+(b-c)][2a-(b-c)]2.下列添括号中,错误的是()(A)a2-b2-(b-a)=(a2-b2)+(a-b)(B)a-b=-(b-a)(C)(a+b-c)(a-b+c)=[a+(b-c)][ a-(b-c)](D)a-b+c-d=(a-d)-(c-b)3.化简-{-[-(2a-b)]}的结果是()(A)2a-b (B)2a+b (C)-2a+b (D)-2a-b4.化简x-{-x+[2x-(-x)]}的结果是()(A)-x (B)x (C)5x (D)-5x5.下列去括号正确的是()(A)2a-(3b-c)= 2a-3b-c(B)m+2(n-f)= m+2n-f(C)x+(y-z)=xy-z(D)-(5a2-3ab)-(2a-c)=-5a2+3ab-2a+c二、填空题6.去括号法则是。
七年级数学去括号和添括号知识精讲 人教义务代数
七年级数学去括号和添括号知识精讲 人教义务代数 重点、难点重点:1.掌握去括号与添括号法则:(1)去括号法则:①括号前面是“+”号时,把括号连同它前边的“+”号都去掉,括号里的各数符号不变。
②括号前面是“-”号时,把括号连同它前边的“-”号都去掉,括号里的各数都变号。
(2)添括号法则:①添上带有“+”号的括号时,括号里的各数都不变号。
②添上带有“-”号的括号时,括号里的各数都变号。
2.会在有理数的加减法混合运算中,正确使用去添括号,使题目简化。
难点:正确应用去、添括号,使有理数的混合运算简便。
[讲一讲]例1:去括号(1)m-(a+b-c) (2)m+(a+b-c)分析:(1)中某个数减去若干数的和等于逐一减去各个加数(2)中某个数加上若干数的和等于逐一加上各个加数,因此可得结果。
解:(1)原式=m-(+a)-(+b)-(-c)=m-a-b+c(2)原式=m+(a+b-c)=m+(+a)+(+b)+(-c)=m+a+b-c这样就完成了去括号的目的,(1)与(2)即去括号法则,以后可以直接用结果。
.例2:计算:(1))]25.25187(4323[49--- (2))]32()243211(43[32+--+---分析:解题时先将括号去掉,转成代数和的形成,再用添括将易计算的项放在一起,可使计算过程简化,减少出错率解:(1)原式]41251874323[49+--= 4125187432349-+-= =49-49+187=187(2)原式]3224321143[32-+----= )322211(32-+---=32221132+-+-=21-=例3:按下列要求,把3a-2b+c 添上括号(1)把它放在前面带“+”号的括号里(2)把它放在前面带“-”号的括号里。
分析:这是一个简单的练习,通过它来掌握法则的应用,注意法则(2)中变号的问题。
解:(1)3a-2b+c=+(3a-2b+c)(2)3a-2b+c=-(-3a+2b-c)例4:已知:a=13,b=54,c= -83,d= -68。
去括号和添括号的法则G
去括号和添括号的法则G在数学中,括号是一个非常重要的符号,它用于表示运算的顺序以及改变运算的优先级。
在数学中有一个叫做"括号和添括号法则G"的规则,它可以帮助我们去掉或者添加括号以简化数学表达式。
本文将详细介绍括号和添括号法则G。
首先,让我们来考虑如何去掉括号。
在数学中,去掉括号通常是为了简化运算,合并相似的项,或者改变运算的顺序。
下面是几个常见的去括号法则:1.去分配律:当一个括号前面有负号时,可以通过去分配律将负号分配给括号内的每一项。
例如,-(a+b)=-a-b。
2.去结合律:当一个括号前面没有符号时,可以通过去结合律将括号内的项合并。
例如,a+(b+c)=a+b+c。
3.去合并同类项:当括号内有多项并且它们具有相同的指数或者是相同的变量时,可以通过合并同类项的方法将这些项合并。
例如,3x+(2x+4x)=3x+6x=9x。
接下来,让我们来考虑如何添括号。
在数学中,添括号通常是为了明确运算的顺序,提高运算的清晰度以及简化计算。
下面是几个常见的添括号法则:1.添结合律:为了明确运算的顺序,可以通过添结合律将一些项放在一个括号内。
例如,a+b+c可以改写为(a+b)+c。
2.添分配律:为了改变运算的优先级,可以通过添分配律将一些项乘以一个因子后放在一个括号内。
例如,3(a+b)可以改写为3a+3b。
3.添开平方:为了简化计算,可以通过添开平方将一些项开平方后放在一个括号内。
例如,√(a+b)可以添开平方为√a+√b。
通过运用上述的去括号法则和添括号法则,我们可以简化数学表达式,提高计算效率,减少错误的发生。
当我们进行运算时,需要仔细观察表达式中的括号,判断是否需要去掉括号或者添上括号。
同时,根据具体问题的情况,也可以运用其他的去括号和添括号的方法。
总结起来,括号和添括号法则G是数学中一个重要的规则,它可以帮助我们去掉或者添加括号以简化数学表达式。
通过运用这些法则,我们可以提高运算的效率,减少错误的发生。
整式——去括号与添括号
整式——去括号与添括号姓名:知识要点:1. 去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号一起去掉,括号里各项都不变符号。
(2)括号前是“-”号,把括号和它前面的“-”号一起去掉,括号里各项都改变符号。
2. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号。
(2)添括号后,括号前面是“-”号,括到括号里的各项都改变符号。
【典型例题】[例1] 先去括号,再合并同类项。
(1)(2)[例2] 按要求,把多项式添上括号。
(1)把后三项括到前面带有“-”号的括号里。
(2)把前两项括到前面带有“+”号的括号里,后两项括到前面带有“-”号的括号里。
(3)把四次项括到前面带有“+”号的括号里,把二次项括到前面带有“-”号的括号里。
[例3] 化简:[例4] 有理数、、在数轴上的位置如图所示,化简[例5] 先化简,再求值。
,其中是最小的正整数,是绝对值最小的负整数,,且[例6] 已知,,求多项式的值。
【模拟试题】(答题时间:40分钟)一. 填空:1. ,。
2. ()3.4. 已知,则。
5. 当时,化简。
6. 的相反数是。
二. 选择:3. 的相反数是()A. B. C. D.4. 式子去括号后应为()A. B. C. D.5. (),则括号内所填的代数式为()A. B. C. D.6. 如果,那么的结果是()A. B. C. D.三. 解答题:1. 化简:(1)(2)(3)2. 先化简,再求值。
(1)当时,求多项式的值。
(2)求代数式的值,其中,。
3. 已知,求的值。
4. 已知,求的值。
去(添)括号法则以及混合运算的运算顺序
3000 8 125
1.36 0.25 0.4
第3页共4页
翰林学堂 78 36 78 64
56 103 56 3
30 4 70 4
120 8 20 8
562 397 281 397
1.4 5.5 2 3.24
104 4 2.4 0.3 1.5 0.75 0.25
9.9 9 1.5 1.2 0.8 3.2 0.8 0.15
8-(4-3.5)÷0.25
7.8 32 1 0.625
0.84÷[(2.3+0.5)×0.6]
[8.95-(0.65+0.8)]÷2.5
第4页共4页
a b c a b c 例如: 378 78 39 378 78 39
3. 乘除法同级运算中括号前是乘号 括号前是乘号,去完括号后,原来括号中的运算符号不改变。(与加法类似)
字母表示: a (b c) a b c 例如: 4 25 38 4 25 38
a (b c) a b c 例如: 40 25 4 40 25 4
4. 乘除法同级运算中括号前是除号 括号前是除号,去完括号后,原来括号中的运算符号改变。(与减法类似)
字母表示: a (b c) a b c 例如: 4200 42 25 4200 42 25
a b c a b c 例如: 38 62 48 38 62 48
2. 加减法同级运算中括号前是减号 括号前是减号,去完括号后,原来括号中的运算符号改变。
字母表示: a b c a b c 例如:159 59 26 159 59 26
去括号与添括号重难点题型
去括号与添括号-重难点题型【知识点1 去括号的法则】(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;①a-(b-c)=a-b+c,括号前是“-”号,去括号时连同它前面的“-”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;①去括号时改变了式子的形式,但并没有改变式子的值.【题型1 去括号】【例1】(2020秋•越秀区期末)下列去括号运算正确的是()A.﹣(3x﹣2y+1)=3x﹣2y+1B.(2x﹣3y)﹣(5z﹣1)=2x﹣3y+5z﹣1C.﹣(3a+2b)﹣(c+d)=﹣3a﹣2b﹣c﹣dD.﹣(a﹣2b)﹣(2c﹣d)=﹣a+2b﹣2c﹣d【变式1-1】(2020秋•微山县月考)下面去括号错误的是()A.a2﹣(a﹣b+c)=a2﹣a+b﹣cB.5+a﹣2(3a﹣5)=5+a﹣6a+5C.3a−13(3a2−2a)=3a−a2+23aD.a3﹣[a2﹣(﹣b)]=a3﹣a2﹣b【变式1-2】(2020秋•西城区校级期中)下列各式中去括号错误的是()A.x﹣(3y+14)=x﹣3y−14B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.−12[4x+(6y﹣3)]=﹣2x﹣3y﹣3D.(a+12b)﹣(−25c+34)=a+12b+25c−34【变式1-3】(2021秋•海州区校级期中)下列去括号正确吗?如有错误,请改正.(1)+(﹣a﹣b)=a﹣b;(2)5x﹣(2x﹣1)﹣xy=5x﹣2x+1+xy;(3)3xy﹣2(xy﹣y)=3xy﹣2xy﹣2y;(4)(a+b)﹣3(2a﹣3b)=a+b﹣6a+3b.【知识点2 添括号的法则】添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.【题型2 添括号】【例2】(﹣a+2b+3c)(a+2b﹣3c)=[2b﹣()][2b+(a﹣3c)].【变式2-1】a﹣b﹣c+d=a﹣b﹣()=a+()=a﹣().【变式2-2】按下列要求,给多项式3x3﹣5x2﹣3x+4添括号:(1)把多项式后三项括起来,括号前面带有“+”号;(2)把多项式的前两项括起来,括号前面带“﹣”号;(3)把多项式后三项括起来,括号前面带有“﹣”号;(4)把多项式中间的两项括起来.括号前面“﹣”号.【变式2-3】把多项式a3+2a2b﹣2ab2﹣b3中含有a,b项的放在前面带有“﹣”号的括号里,其他项放在前面带有“+”号的括号里.【题型3 利用去括号法则化简代数式】【例3】先去括号,再合并同类项:6a 2﹣2ab ﹣2(3a 2−12ab );2(2a ﹣b )﹣[4b ﹣(﹣2a +b )];9a 3﹣[﹣6a 2+2(a 3−23a 2)];2t ﹣[t ﹣(t 2﹣t ﹣3)﹣2]+(2t 2﹣3t +1).【变式3-1】先去括号,后合并同类项:(1)x +[﹣x ﹣2(x ﹣2y )];(2)12a ﹣(a +23b 2)+3(−12a +13b 2); (3)2a ﹣(5a ﹣3b )+3(2a ﹣b );(4)﹣3{﹣3[﹣3(2x +x 2)﹣3(x ﹣x 2)﹣3]}.【变式3-2】去括号,合并同类项(1)﹣3(2s ﹣5)+6s ;(2)3x ﹣[5x ﹣(12x ﹣4)]; (3)6a 2﹣4ab ﹣4(2a 2+12ab );(4)﹣3(2x 2﹣xy )+4(x 2+xy ﹣6)【变式3-3】先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2−72(a+b)−54(a+b)2+(﹣3)2(a+b).【题型4 利用添括号与去括号求值】【例4】(2020秋•北碚区校级期中)若代数式2mx2+4x﹣2(y2﹣3x2﹣2nx﹣3y+1)的值与x的取值无关,则m2019n2020的值为()A.﹣32019B.32019C.32020D.﹣32020【变式4-1】已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1B.5C.﹣5D.﹣1【变式4-2】观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣1,求﹣1+a2+b+b2的值.【变式4-3】先阅读下面的文字,然后按要求解题:例:1+2+3+…+100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98=…=50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题的解题过程;(2)计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b)+(a+100b)。
三年级数学-去添括号
例5. 180×(2÷60) = 180×2÷60 = 360÷60 = 60 540÷(9×6) = 540÷9 ÷ 6 = 60 ÷ 6 = 10
a+(b+c)=a+b+c a+(b-c)=a+b-c a-(b+ c )=a-b-c
• •
•
a-(b-c)=a - b + c
例1. 78+(29+122) =78+29+122 =78+122+29 = 200+29 =229 • 134+(82-34) =134+82 - 34 =134- 34+82 =100+82 =182
• 即:
•
• • •
a × (b × c)=a × b × c a × (b ÷ c)=a × b ÷ c a ÷ (b × c )=a ÷ b ÷ c a ÷ (b ÷ c)=a ÷ b × c
例4. 7×81÷9
= 7×(81÷9 ) = 7 ×9 = 63 210÷42×6 = 210÷(42 ÷ 6) = 210 ÷ 7 = 30
= 392
2.乘除法去括号和添括号的法则 在只有乘除法运算的算式里, 如果括号前面是“× ”号, 则不论去掉括号或添上括号, 括号里面的运算符号都不变; 如果括号前面是“÷ ”号, 则不论去掉括号或添上括号, 括号里面的运算符号都要改变, 除法去括号和添括号的法则
例2. 85-(36-15) = 85-36+15 = 85+15-36 = 100-36 = 64 127-(27+50) = 127-27 - 50 =100- 50 = 50
例3. 875-29-371 = 875-(29+371) = 875-400 =475
去括号和添加括号法则及练习(精排版)
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示:a +(b + c)= a + b + c例如:23+(77+56)=23+77+56a +(b - c)= a + b - c例如:38+(62-48)=38+62-482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示:a -(b + c)= a - b - c例如:159-(59+26)=159-59-26a -(b - c)= a - b + c例如:378-(78-39)=378-78+393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
去括号和添加括号法则及练习(精排版)
去括号添括号法则及练习一、去括号法则:1、括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;字母表示: a b c a b c例如: 23 77 5623 77 56a b c a b c例如: 38 62 4838 62 482、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变为相反的符号;字母表示: a b c a b c例如:15959 26 1595926a b c a b c例如:37878 3937878393、去括号时,应将括号前的符号连同括号一起去掉. 要注意,括号前面是"-"时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.x+(y-z)-(-y-z-x) =4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.a+3(2b+c-d)=5、遇到多层括号一般由里到外,逐层去括号,也可由外到里,数"-"的个数.24-(176+24)+[276-72-(134-72)+234]例题:4+(5+2) 4-(5+2)= =a+(b+c) a-(b+c)= =去括号练习:(1)a+(-b+c-d)=(2)a-(-b+c-d) =(3)-(p+q)+(m-n)=(4)(r+s)-(p-q) =(5)x+(y-z)-(-y-z-x) =(6)(2x-3y)-3(4x-2y)=下列去括号有没有错误?若有错,请改正:(1)a2-(2a-b+c) (2)-(x-y)+(xy-1)=a2-2a-b+c =-x-y+xy-1二、添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号。
例1、按要求,将多项式3a-2b+c添上括号:(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“-”号的括号里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
(一)知识目标:
1.通过生活实际,让学生感受有括号产生的实际背景和引入的必要性.
2.能掌握去括号与添括号法则;并能说出现由.
(二)能力训练目标:
1.让学生从实际背景的活动,感受去括号与添括号的必要性和合理性,培养学生感受数学来自生活。
2.通过学生进出教室这一实例,能正确地进行推理和判断去括号与添括号法则,训练他们的思维判断能力.
(三)情感与价值观目标:
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.了解去括号与添括号法则后,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.
教学重点
1.让学生经历学生进出教室这一事例.感知生活中确实存在着没有括号与有括号的重要性.
2.掌握去括号与添括号法则,并能熟练应用
教学难点
1.从学生走出教室的实例,让学生理解括号前是个“-”的理由。
2.添上“-”与括号,括到括号里各项都要变号。
教学方法
教师引导,主要由学生分组讨论得出结果.
教学过程
一、创设问题情境,引入新课
[师]同学们,由于你们上体育课后,教室里原有a个学生,走进来了第一批学生是b个学生,又走进来第二批学生是c个学生,现在教室里有几个学生?相反呢?
[生]表示:a+b+c;或者a+(b+c), a_b_c或者a_(b+c)。
[生]发现:a+b+c=a+(b+c),a_(b+c)=a_b_c. [师]对,我们在小学里用过括号,但没有进一步探究,今天我们来一起探究有括号与没有括号的区别在于什么,下面我们就来共同研究这个问题.
二、讲授新课
1.问题的提出
[师]请大家四个人为一组,探究下列四个等式:a+(b+c)= a+b+c,a_(b+c)= a_b_c 或者:a+b+c= a+(b+c),a_b_c= a_(b+c)。
有什么规律,下面开始探究。
教学目标
(一)知识目标:
1.通过探究活动,让学生感受去括号与添括号实际背景和引入的必要性.
2.能判断去括号与添括号的正确性。
并能说出现由.
(二)能力训练目标:
1.让学生亲自动探究活动,感受去括号与添括号的规律,培养大家的合作精神.
2.通过学习去括号与添括号的法则后,能正确地进行推理和判断,识别某些去括号与添括号是否正确,训练他们的思维判断能力.
(三)情感与价值观目标:
1.激励学生积极参与教学活动,提高大家学习数学的热情.
2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.
3.掌握去括号与添括号的法则的有关知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神. [生]好.(学生非常高兴地投入活动中).
[师]经过大家的共同努力,每个小组都完成了任务,请各组把所发现的问题用一句话描述一下,同学们非常踊跃地举手回答.
[师]现在我们一齐把大家所描述的总结一下:添括号法则:添上“+”号和括号,括到括号里的各项都不变号;添上“-”号和括号,括到括号里的各项都改变符号;
例1 按要求,将多项式3a-2b+c添上括号:
(1)把它放在前面带有“+”号的括号里;(2)把它放在前面带有“-”号的括号里
此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a-2b+c=+( )=-( )的形式,再让学生往里填空,特别注意,添“-”号和括号,括到括号里的各项全变号
解:3a-2b+c=+(3a-2b+c)=-(-3a+2b-c)
紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的回答,并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样。
例2 在下列( )里填上适当的项:(1)a+b+c-d=a+( );
(2)a-b+c-d=a-( ); (3)x+2y-3z=2y-( )(4)(a+b-c)(a-b+c)=[a+( )][a-( )];
(5)-(a3-a2)+(a-1)=-a3-( )
本题找学生回答
解:(1)原式=a+(b+c-d);(2)原式=a-(b-c+d);
(3)原式=2y-(3z-x);(4)原式=[a+(b-c)][a-(b-c)];(5)原式=-a3-(-a2-a+1)
三.质疑再探:例3 按下列要求,将多项式x3-5x2-4x+9的后两项用( )括起来:
(1)括号前面带有“+”号;(2)括号前面带有“-”号。
解:(1)x3-5x2-4x+9 (2)x3-5x2-4x+9
=x3-5x2+(-4x+9); =x3-5x2-(4x-9).
说明:1.解此题时,首先要让学生确认x 3-5x 2-4x+9的后两项是什么——是-4x 、+9,要特别注意每一项都包括前面的符。
。
四.运用拓展:
课堂练习
1、用括号把mx+nx-my-ny 分成两组,使其中含m 的项结合,含n 的项结合(两个括号用“+连接)
2、在多项式m 4-2m 2n 2-2m 2+2n 2+n 4中添括号:
(1)把四次项结合,放在前面带有“+”号的括号里; (2)把二次项结合
,放在前面带有“-”号的括号里 3、把多项式10x 3-7x 2y+4xy 2+2y 3-5写成两个多项式的和,使其中一个不含字母y
4、把三项式31-x 2+x 写成单项式与二项式的差
5、把21b 3-31b 2+41b-6
1写成两个二项式的和.
小结 1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变。
2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据。
板书设计
3.5去括号(2)
(一)情景引入 (三)课堂练习 (五)作业
(二)新课讲解 (四)课堂小结。