同济大学弹性力学课件 (1)
弹性力学课件
弹性力学的研究对象主要是弹性 体,即在外力作用下能够发生变 形,当外力去除后又能恢复到原 来形状的物体。
弹性体基本假设与约束条件
基本假设
弹性体在变形过程中,其内部各点间 距离的变化是微小的,且这种变化不 影响物体的整体形状和大小。
约束条件
弹性体的变形受到外部约束条件的限 制,如支撑、连接等,这些约束条件 对弹性体的变形和内力分布产生影响 。
2
例题2
无限大平板受均布载荷作用下的应力分 析。利用弹性力学理论求解无限大平板 在均布载荷作用下的应力分布,并讨论 平板厚度对应力分布的影响。
3
例题3
圆柱体受内压作用下的应力分析。通过 解析法或数值法求解圆柱体在内压作用 下的应力分布,并讨论不同材料属性和 几何参数对应力分布的影响。
03
弹性体变形协调方程与几何方程
3
讨论
通过对比各向同性和各向异性材料的力学行为, 加深对材料本构关系的理解。
05
平面问题求解方法与应用举例
平面问题定义及分类
平面应力问题
长柱形物体受平行于横截面的外力作用,横截面尺寸远小于轴向 尺寸。
平面应变问题
平面或板状物体受平行于中面的外力作用,中面尺寸远大于厚度。
平面问题的简化
忽略体力,将空间问题简化为平面问题。
各向异性材料本构关系简介
各向异性假设
材料在各个方向上具有不同的力学性质。
本构关系特点
应力与应变之间的关系复杂,需要考虑材料的方 向性。
典型各向异性材料
纤维增强复合材料、层合板等。
典型例题解析与讨论
1 2
例题一
求解各向同性材料在简单拉伸条件下的应力和应 变。
例题二
分析各向异性材料在复杂应力状态下的力学行为 。
同济大学弹性力学讲义
同济大学结构工程与防灾研究所
(李遇春编)
§1-2 弹性力学的基本假设 (1)连续性假设 假定所研究的固体材料是连续无间隙(无空洞)的介质,从微观上讲,固体材料中的原子与原子之
间是有空隙的,固体在微观上是间断的(或不连续的);而从宏观上看,即使是很小一块固体,里面也 挤满了成千上万的原子,宏观上的固体看起来是密实而连续的,弹性力学正是从宏观上研究固体的弹性 变形及应力状态。根据这一假设,可以认为物体中的位移、应力与应变等物理量都是连续的,可以表示 为空间(位置)坐标的连续函数。
同济大学结构工程与防灾研究所
(李遇春编)
第一篇 弹性力学
第一章 弹性力学绪论
§1-1 弹性力学的研究对象与任务 弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、
温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。 土木工程中的结构物设计是与力学是息息相关、紧密联系的。我们已学过材料力学及结构力学,那
如图 1-8 所示的物体,在水平力作用下,物体产生如虚线所示的变形,最大弹性变形 δ 与物体(最
小)尺寸相比很小,可忽略不计,物体与物体(最小)尺寸相比很小
(4)完全弹性假设 假设固体材料是完全弹性的,首先材料具有弹性性质,服从 Hooke(虎克)定律,应力与应变呈线 性关系,同时物体在外部作用下产生变形,外部作用去除后,物体完全恢复其原来的形状而没有任何残 余变形,即完全的弹性。 (5)无初始应力假设 假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外 部作用(荷载、温度等)所引起的。若物体中已有初始应力存在,则由弹性力学所求得的应力加上初 始应力才是物体中的实际应力。
弹性力学大大扩展了解决土木结构问题的范围。理论上,弹性力学包容材料力学及结构力学,可以 说弹性力学是土木工程中最基本的力学工具。
(同济大学)第1讲_弹性力学及有限元方法概述
有限元分析
的一般规律物体在空间的位置随时间的改变
对象内容
任务
对象内容
任务
概述
ANSYS 静力分析z起重机械有限元应用
整机模态分析
车辆安全性
工件淬火3.06 min 时的温度、组织分布(NSHT3D)
同济大学
同济大学
金属反挤压成型:温度分布和变化铸造成型:温度变化和气泡
速度
压力导流管分析
超音速飞行压力分布汽车气动分析
高速导弹气动
同济大学
两根热膨胀系数不同的棒焊接在一起,加热后的变形情况
子结构方法分析大型结构的早期应用法
梁单元
建模时充分利用重复性。
弹性力学_同济大学
变形前p x, y,变形后 pxu,yv.
思考题
1. 试画出正负 y 面上正的应力和正的面力 的方向。
2. 在d x d y 1的六面体上,试问x面和y面 上切应力的合力是否相等?
第一章 绪 论
研究方法
§1-3 弹性力学中基本假定
弹性力学的研究方法,在体积V 内: 由微分体的平衡条件,建立平衡微分方程;
正应变 x , y,以伸长为正。
切应变 xy, 以直角减小为正,用弧度表示。
第二节 弹性力学中的几个基本概念
正的正应力对应于正的线应变, 正的切应力对应于正的切应变。
oz
x
P
yx α
B y
α
A
xy
C
第二节 弹性力学中的几个基本概念
位移
位移 -- 一点位置的移动,用 u, v表示,
第一节 弹性力学的内容 第二节 弹性力学中的几个基本概念 第三节 弹性力学中的基本假定
第一章 绪 论
定义
§1-1 弹性力学的内容
弹性力学 --研究弹性体由于受外力、边 界约束或温度改变等原因而发生的应力、形 变和位移。
研究弹性体的力学,有材料力学、结构 力学、弹性力学。它们的研究对象分别如下:
第一节 弹性力学的内容
(表示) σ x-- x 面上沿 x向正应力, xy-- x 面上沿 y向切应力。
(符号)应力成对出现,坐标面上的应 力以正面正向,负面负向为正。
第二节 弹性力学中的几个基本概念
例:正的应力
O(z)
y
x
yx
xy
x
x
xy
yx
y
y
第二节 弹性力学中的几个基本概念
《弹性动力学引论》PPT课件
均匀性假设
• 假设弹性物体是由同一类型的均匀材料组成,认为弹性体 内不同点处的材料具有相同的性质。
•
弹性常数不随坐标的位置改变而改变;
• • 作用 可以取出物体的任意一个小部分讨论,
•
然后将分析结果应用于整个物体
• • 应用与整个弹性动力学方程建立的。
各向同性假设
假定物体内一点的弹性性质在所有各个方向都相同。
弹性力学的发展
到19世纪末和20世纪初,又应当提到的是另外 两个人,一位是英国人乐甫,他是总结到他那 时全部弹性力学成果的一位大师,并且奠定了 薄壳理论的基础,以及系统将弹性力学成功地 应用于地球物理的第一人。另一位是苏联学者 穆斯海利什维利,他终生致力于用复变函数求 解弹性力学。
弹性力学的发展
§1-2 弹性力学的研究内容
应力分析 位移和应变分析 • 弹性动力学的研究内容 应力和应变的关系
弹性波的传播
§1-3 弹性力学中的基本假定
• 问题的提出
由于工程实际问题的复杂性是由多方面因素构成 的,如果不分主次地考虑所有因素,问题是十分 复杂的,数学推导将困难重重,以至于不可能求 解。因此根据问题性质建立力学模型时,必须作 出一些基本假设,忽略部分可以暂时不予考虑的 因素,使研究的问题限制在一个方便可行的范围 之内。对于弹性力学分析,这是十分必要的。
(4) 应力
(1) 一点应力的概念
(1) 物体内部分子或原子间的相互作
内力
用力;
(不考虑)
(2) 由于外力作用引起的相互作用力.
lim s
Q
(1) P点的内力面分布集度 ----P点的应力
A0 A (2) 应力矢量. Q的极限方向
由外力引起的在 P点的某一面上内力分布集度
同济大学弹性力学课件
应力-应变关系不再一一对应,
且一般是非线性的
单轴应力应变曲线
• 弹性、塑性 • 线性、非线性
典型的塑性本构模型
• 理想弹塑性模型 • 强化弹塑性模型 • 软化弹塑性模型
1)理想弹塑性模型
2)强化弹塑性模型
3)软化弹塑性模型
弹塑性力学基本方程
• 弹塑性力学的基本方程是:
• • • (1)平衡方程; (2)几何方程。 (3)本构方程。
1.3 塑性力学的主要内容
• (1)建立屈服条件。 • 对于给定的应力状态和加载历史,确定材料是否超出 弹性界限而进入塑性状态,即材料是否屈服 • (2)判断加载、卸载。 • 加载和卸载中的应力应变规律不同,需要建立准则进 行判断。 • (3)描述加载(或变形)历史。 • 应变不仅取决应力状态,还取决于达到该状态的历史, 在加载过程中必须对其历史进行记录。
形成独立学科: • 岩土塑性力学最终形成于20世纪50年代末期; • 1957年Drucker指出要修改Mohr-Coulomb准则,以 反映平均应力或体应变所导致的体积屈服; • 1958年剑桥大学的Roscoe等提出土的临界状态概念, 于1963年提出剑桥粘土的弹塑性本构模型,开创了 土体实用计算模型 • 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。 • 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
1.4 塑性力学的研究方法
• 宏观塑性理论 • 以若干宏观实验数据为基础,提出某些假设 和公设,从而建立塑性力学的宏观理论。特 点是: • 数学上力求简单,力学上能反映试验结果的 主要特性。 • 实验数据加以公式化,并不深入研究塑性变 形过程的物理化学本质。
弹性力学基础教学课件PPT
目录
• 引言 • 弹性力学基本概念 • 弹性力学基本方程 • 弹性力学问题解法 • 弹性力学应用实例 • 总结与展望
01
引言
课程简介
弹性力学基础是一门介绍弹性力学基本原理和方法的课程,旨在为学生提供解决 工程问题中弹性力学问题的能力。
本课程将介绍弹性力学的基本概念、基本原理、基本方法以及在工程实践中的应 用,帮助学生建立对弹性力学的基本认识,培养其解决实际问题的能力。
弹性力学基本方程
平衡方程
静力平衡方程
描述了弹性体在力的作用下保持平衡的状态,表达了物体内 部各点的应力与外力之间的关系。
运动平衡方程
在考虑了物体运动的情况下,描述了弹性体在力的作用下保 持运动的平衡状态,涉及到速度和加速度。
几何方程
应变与位移关系
描述了物体在受力变形过程中,位移 与应变之间的关系。
应变与速度关系
描述了物体在受力变形过程中,速度 与应变之间的关系。
本构方程
弹性本构方程
描述了弹性体在受力变形过程中,应力与应变之间的关系,涉及到弹性模量和泊松比等 参数。
塑性本构方程
描述了塑性体在受力变形过程中,应力与应变之间的关系,涉及到屈服准则和流动法则 等参数。
04
弹性力学问题解法
总结词
弹性梁的弯曲问题
总结词
实际工程应用
详细描述
在建筑工程、机械工程和航空航天工程等领域,弹性梁的弯曲问题具有广泛的应用。例如,在桥梁和建筑结构中, 梁是主要的承载构件,其弯曲变形会影响结构的稳定性和安全性。通过掌握弹性力学的基本原理和方法,可以更 加准确地分析梁的弯曲问题,优化梁的设计和计算。
弹性薄板的弯曲问题
越广泛。未来可以进一步研究和发展更加高效、精确的数值计算方法,
弹性力学ppt课件
应变定义
物体在外力作用下产生的 形变,表示物体尺寸和形 状的变化。
应力与应变关系
应力与应变之间存在一一 对应关系,通过本构方程 来描述。
广义胡克定律及应用
1 2
广义胡克定律 又称作弹性本构关系,表示应力与应变之间的线 性关系。
广义胡克定律的应用 用于计算弹性体在复杂应力状态下的应力和应变, 是弹性力学中的重要基础。
弹性力学ppt课件
contents
目录
• 弹性力学概述 • 弹性力学基本原理 • 线性弹性力学问题求解方法 • 非线性弹性力学问题简介 • 弹性力学实验方法与技术应用 • 弹性力学在相关领域拓展应用
01 弹性力学概述
弹性力学定义与研究对象
弹性力学定义
弹性力学是研究弹性体在外力和其他 外界因素作用下产生的变形和内力, 从而在变形与外力之间建立一定关系 的科学。
有限元法在弹性力学中应用
有限元法基本原理
将连续体离散化为有限个单元,每个单元用简单的函数近似表示,通 过变分原理得到有限元方程。
有限元法求解过程
包括网格划分、单元分析、整体分析、边界条件处理和求解有限元方 程等步骤。
有限元法的优缺点
有限元法可以求解复杂几何形状、非均质材料和非线性问题,但存在 网格划分和计算精度等问题。
布。
弹性模量和泊松比测定实验
拉伸法
通过对标准试件进行拉伸实验,测量试件的应力和应变,从 而计算得到弹性模量和泊松比。
压缩法
通过对标准试件进行压缩实验,测量试件的应力和应变,进 而计算弹性模量和泊松比,适用于脆性材料的测量。
弯曲法
通过对梁式试件进行三点或四点弯曲实验,测量试件的挠度 和应力,从而推算出弹性模量,特别适用于细长构件的测量。
弹性力学PPT课件
符号规定: 正面:截面上的外法线
z
C
z
沿坐标轴的正方向
zx
zy
正面上的应力以沿坐标 轴的正方向为正,沿坐
yx y
yz P
xzxy x zy
x
xz xy
zx
yz
标轴的负方向为负。
yx y 负面:截面上的外法线 B 沿坐标轴的负方向
A
z
O
负面上的应力以沿坐标 y轴的负方向为正,沿坐
(不考虑位置, 把应力当作均匀应力)标轴的正方向为负。
材料力学:虽然也考虑这几个方面的的条件,但不是 十分严格。
一般地说, 由于材料力学建立的是近似理论, 因此 得出的是近似的解答。但对于细长的杆件结构而言, 材料力学力解答的精度是足够的, 符合工程的要求。
--
4
© 2006.Wei Yuan. All rights reserved.
q
例如:
M(x) y
Ⅱ
A
F p
P
limF p
ΔV0 A
Ⅰ
o
y
x
p: 极限矢量,即物体在截面mn上的、在P点的应力。 方向就是F的极限方向。
应力分量:,
量纲:N/m2=kg∙m/s2∙m2=kg/m∙s2 即:L-1MT-2
--
17
© 2006.Wei Yuan. All rights reserved.
PA=x, PB=y , PC=z x, y, z, xy, xz, yx, yz, zx, zy,
x
C z
yx y
yzP
A
zx
xzxy x a
zy
zy x
b xz
xy zx
z
弹性力学课件 第1章 绪论
3. 各向同性(isotropy)假设
*假定物体在各个不同的方向上具有相同的物理性质 物体的弹性常数将不随坐标方向的改变而变化。 *宏观假设,材料性能是显示各向同性 *木材,竹子以及纤维增强材料等,属于各向异性材料 *这些材料的研究属于复合材料力学研究的对象。
4.完全弹性(线弹性linear elasticity)假设
n阶张量:有n个自由指标的量,如四阶弹性系数Dijkl
3. 应变 (1) 一点应变的度量
是描述物体受力后发生变形的相对概念的力学量 正应变——棱边的伸长和缩短
x , y , z
xy , yz , zx
z C
切应变——棱边之间夹角(直角)改变 应变的正负: 线应变:伸长时为正,缩短时为负;
*对应一定的温度,如果应力和应变之间存在一一对 应关系,而且这个关系和时间无关,也和变形历史 无关,称为完全弹性材料。 材料弹性常数不随应力或应变的变化而改变 *完全弹性分为线性弹性和非线性弹性 *弹性力学研究限于线性的应力与应变关系
5. 小变形(small deformation)假设
*假设在外力或者其他外界因素(如温度等)的影响下, 物体的变形与物体自身几何尺寸相比属于高阶小量。 *在弹性体的平衡等问题讨论时,可以不考虑因变形 所引起的尺寸变化 *忽略位移、应变和应力等分量的高阶小量,使基本 方程成为线性的偏微分方程组。
铁木辛柯(S.P.Timoshenko)做出了贡献。
中国科学家钱伟长,钱学森,徐芝伦,胡海昌,等在弹性
力学的发展,特别是在中国的推广应用做出了重要贡献。
钱学森
钱伟长
胡海昌
徐芝伦
杨桂通
弹性力学——促进数学和自然科学基本理论的建立和发展 广泛工程应用——造船、建筑、航空和机械制造等。 发展——形成了一些专门的分学科; 现代科学技术和工程技术——仍然提出新的理论和工程问题。 对于现代工程技术和科研工作者的培养——对于专业基础, 思维方法以及独立工作能力都有不可替代的作用。
弹性力学-01
均匀连续、各向同性、理想 弹性、小变形;平截面假定、 纵向纤维互不挤压。
构件的
整体截面
弹 物理关系。 力
均匀连续、各向同性、理 想弹性、小变形;
精品资料
构件的无限 小的微元体
a) 块体 (kuài tǐ)
b) 平板(píngbǎn)
c) 壳体 d,e) 杆件— 直杆、曲杆
精品资料
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
结力: 杆件)系统(或结构)
弹力: 一般弹性实体结构: 三维弹性固体、板状结构、杆件等
(2)研究方法 材力: 借助于直观和实验现象作一些假定,如平面 假设等,然后由静力学、几何关系、物理方 程三方面进行分析。
结力: 与材力类同。
弹力: 仅由静力平衡、几何方程、物理方程三方面 分析,放弃了材力中的大部分假定。
lim F
F —— 面力分布(fēnbù)集度
S0 S (矢量)
z
F Xi Yj Zk
X Y Z —— 面力矢量在坐标轴上投影
单位: 1N/m2 =1Pa (帕)
k
F
Z
X S Y
1MN/m2 = 106Pa = 1MPa (兆帕) i O j
y
(1) F 是坐标的连续分布函数;
x
说明: (2) F 的加载方式是任意的;
精品资料
(2)下列对象不属于弹性力学研究对象的 是(D ) A、杆件 B、板壳 C、块体(kuài tǐ) D、质点
(3)弹性力学研究物体在外力作用下,处于(弹 性)阶段的(应力)、(应变)和(位移)
精品资料
§1-1 弹性力学(lì xué)的研究
1. 研究内容
内容
材力: (内容)杆件在外力或温度作用下的应力(yìnglì)、
2024版弹性力学ppt课件[1]
弹性力学ppt课件•弹性力学基本概念与原理•弹性力学分析方法与技巧目录•一维问题分析与实例讲解•二维问题分析与实例讲解•三维问题分析与实例讲解•弹性力学在工程领域应用探讨01弹性力学基本概念与原理弹性力学定义及研究对象定义弹性力学是研究弹性体在外力作用下产生变形和内力分布规律的科学。
研究对象弹性体,即在外力作用下能够发生变形,当外力去除后又能恢复原状的物体。
弹性体基本假设与约束条件基本假设连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件几何约束(物体形状和尺寸的限制)、物理约束(物体材料属性的限制)。
单位面积上的内力,表示物体内部的受力状态。
应力物体在外力作用下产生的变形程度,表示物体的变形状态。
应变物体上某一点在外力作用下的位置变化。
位移应力与应变之间存在线性关系,位移是应变的积分。
关系应力、应变及位移关系虎克定律及其适用范围虎克定律在弹性限度内,物体的应力与应变成正比,即σ=Eε,其中σ为应力,ε为应变,E为弹性模量。
适用范围适用于大多数金属材料在常温、静载条件下的力学行为。
对于非金属材料、高温或动载条件下的情况,需考虑其他因素或修正虎克定律。
02弹性力学分析方法与技巧0102建立弹性力学基本方程根据问题的具体条件和假设,建立平衡方程、几何方程和物理方程。
选择适当的坐标系和坐标…针对问题的特点,选择合适的坐标系,如直角坐标系、极坐标系或柱坐标系,并进行必要的坐标系转换。
求解基本方程采用分离变量法、积分变换法、复变函数法等方法求解基本方程,得到位移、应力和应变的解析表达式。
确定边界条件和初始条件根据问题的实际情况,确定位移边界条件、应力边界条件以及初始条件。
验证解析解的正确性通过与其他方法(如数值法、实验法)的结果进行比较,验证解析解的正确性和有效性。
030405解析法求解思路及步骤将连续体离散化为有限个单元,通过节点连接各单元,建立单元刚度矩阵和整体刚度矩阵,求解节点位移和单元应力。
同济大学硕士弹性力学第1讲_绪论、张量简介
硕士研究生课程弹塑性力学II(C)第一讲绪论、张量分析简介同济大学地下建筑与工程系《弹性力学》,徐芝伦,高等教育出版社,2006v4《弹性力学》,杨桂通,高等教育出版社,1998《弹塑性力学引论》,杨桂通,清华大学出版社2004《塑性力学》,夏志皋,同济大学出版社,1991《塑性力学基础》,王仁等,科学出版社,1982《塑性力学基础》,北川浩,高等教育出版社,1982《岩土塑性力学原理》,郑颖人等,建筑工业出版社,2002相关书籍Timoshenko S.P, Goodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill Book Co, 1970 (徐芝伦译)Chen W.F. Limit analysis and soil plasticity. 1975, New York: Elsevier Scientific Publishing Company;J. C. Simo, T. J. Hughes. Computational Inelasticity.1998,Springer.弹性力学部分目录§1.1弹性力学的任务、内容和方法§1.2弹性力学的基本假设§1.3弹性力学的发展简史§1.1弹性力学的任务、内容和方法•弹性力学,也称弹性理论,是固体力学学科的一个分支基本任务:解决构件的强度、刚度和稳定问题。
最大限度解决并统一经济与安全的矛盾。
研究对象:完全弹性体(包括构件、实体)。
主要研究内容:在外界因素(载荷或温度变化)作用下,弹性体的应力和变形问题。
•弹性是变形固体的基本属性。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
•“完全弹性”是对弹性体变形的抽象。
弹性力学PPT课件
(2) z 0
z
E
( x
y)
(2)平面应变问题的物理方程
由于平面应变问题中 z yz zx 0
x
1 E
x
( x
z)
由式(2-13)第三式,得 z ( x y )
x
1 2
E
(
x
1
y)
y
zx
2
z t 0 2
沿 z 轴方向不变。 可认为整个薄板的
zy z t 0 各点都有:
z 0
zx 0 zy 0
y
a
y
2
由剪应力互等定理,有
zx
xz
0
zy
yz
0 y
结论: 平面应力问题只有三个应力分量:
yx
x x (x, y) y y (x, y) xy yx xy (x, y)
§2-2 平衡微分方程
基本思路:过弹性体内任意一点P截取一微小的正平行六面体
(微分体) 把应力(内力)和体力(外力)作用在该微
分体上
考虑其平衡,列出力的平衡条件
得到平
衡微分方程
2.2 平衡微分方程
x 平面问题的平衡微分方程: O
注:这xyxx里xxy 用y了x小yyyxy变形YX假定00、(连2续-2)性假定yyx和均匀xyy性x xdP假yBy定Dy。YyXyCxAyy xxdyyxxxxydxdx
0
2u
热传导方程(热力学、扩散问题):
x
2
2u y 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土塑性理论形成
早期研究: • 1773年Coulomb提出土质破坏条件,其后推广为
Mohr- Coulomb准则; • 1857年Rankine研究半无限体的极限平衡,提出滑移
• 19世纪20年代,法国的纳维(C. I. M. H. Navier )、柯西(A. I. Cauchy)和圣维南(A. J. C. B. de Saint Venant)等建立了弹性理论
• 1864年特雷斯卡(H. Tresca)提出最大剪应力屈 服条件。
• 1871年列维(M. Levy)将塑性应力应变关系推 广到三维情况。
面概念; • 1903年Kötter建立滑移线方法; • 1929年Fellenius提出极限平衡法; • 1943年Terzaghi发展了Fellenius的极限平衡法; • 1952~1955年Drucker和Prager发展了极限分析方法; • 1965年Sokolovskii发展了滑移线方法。
弹性和塑性变形的特点
弹性变形的特点: • 应力-应变之间具有一一对应的关系, • 且在许多情况下可以近似地按线性关系处理。 塑性变形的特点: • 应力-应变关系不再一一对应, • 且一般是非线性的
单轴应力应变曲线
• 弹性、塑性 • 线性、非线性
典型的塑性本构模型
• 理想弹塑性模型 • 强化弹塑性模型 • 软化弹塑性模型
区别
• 研究问题的范围:材料力学仅研究杆状构件, 结构力学主要研究杆状构件组成的结构系统, 弹塑性力学涉及各种固体结构。
• 研究问题的深度:材料力学和结构力学主要 局限于弹性阶段,而弹塑性力学研究从弹性 阶段到塑性阶段,直至最后破坏的整个过程。
• 研究问题的简化程度:材料力学和结构力学 除了采用与弹塑性力学相同的一些基本假定 外,还要对杆件的应力分布和变形状态作一 些附加的假定。如梁横力弯曲的平截面假定 等,得到的结果比较近似。而弹塑性力学则 不作该假定。
弹塑性力学
课程安排
• 授课方式:讲座,讨论,练习 • 考试方式:闭卷或开卷
参考书目
• ≤应用弹塑性力学≥,徐秉业、刘信声、著, 北京:清华大学出版社,1995
• ≤岩土塑性力学原理≥,郑颖人、沈珠江、龚 晓南著,北京:中国建筑工业出版社,2002
• ≤弹塑性力学引论≥,杨桂通编著,北京:清 华大学出版社,2004
1)理想弹塑性模型
2)强化弹塑性模型
3)软化弹塑性模型
弹塑性力学基本方程
• 弹塑性力学的基本方程是: • (1)平衡方程; • (2)几何方程。 • (3)本构方程。 • 前两类方程与材料无关,塑性力学与弹性力学的主要
区别在于第三类方程
1.2 弹塑性力学发展历史
• 1678年胡克(R. Hooke)提出弹性体的变形和所 受外力成正比的定律。
• 精确解法对形状简单的物体比较有效,但对 复杂形状的物体难以列出方程;有限元数值 解法是近似方法,将列出方程的难度转移到 复杂几何形状的模拟上。
1.5 与初等力学理论的联系
• 材料力学、结构力学
• 从研究对象、基本任务来看,弹塑性力学与 它们都是相同的;
• 从处理问题的方法来看,都是从静力学、几 何学、本构关系三个方面进行分析。
• 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。
• 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
1.3 塑性力学的主要内容
• (1)建立屈服条件。 • 对于给定的应力状态和加载历史,确定材料是否超出
弹性界限而进入塑性状态,即材料是否屈服 • (2)判断加载、卸载。 • 加载和卸载中的应力应变规律不同,需要建立准则进
形成独立学科:
• 岩土塑性力学最终形成于20世纪50年代末期;
• 1957年Drucker指出要修改Mohr-Coulomb准则,以 反映平均应力或体应变所导致的体积屈服;
• 1958年剑桥大学的Roscoe等提出土的临界状态概念, 于1963年提出剑桥粘土的弹塑性本构模型,开创了 土体实用计算模型
• ≤弹性与塑性力学≥,陈惠发、A. F. 萨里普 著,北京:建筑工业出版社,2004
目录
• 一、绪论 • 二、矢量张量 • 三、应力分析 • 四、应变分析 • 五、本构方程 • 六、弹塑性力学问题 • 七、能量原理及变分法 • 八、塑性极限分析
ቤተ መጻሕፍቲ ባይዱ
一、绪论
• 1.1 基本概念 • 1.2 弹塑性力学的发展历史 • 1.3 塑性力学的主要内容 • 1.4 塑性力学的研究方法 • 1.5 与初等力学理论的联系 • 1.6 弹塑性力学的发展趋势
1.1 基本概念
• 弹塑性力学是固体力学的一个重要分支,是 研究弹性和弹塑性物体变形规律的一门科学。 应用于机械、土木、水利、冶金、采矿、建 筑、造船、航空航天等广泛的工程领域。
• 目的:(1)确定一般工程结构受外力作用时 的弹塑性变形与内力的分布规律;(2)确定 一般工程结构物的承载能力;(3)为进一步 研究工程结构物的振动、强度、稳定性等力 学问题打下必要的理论基础。
行判断。 • (3)描述加载(或变形)历史。 • 应变不仅取决应力状态,还取决于达到该状态的历史,
在加载过程中必须对其历史进行记录。
1.4 塑性力学的研究方法
• 宏观塑性理论 • 以若干宏观实验数据为基础,提出某些假设
和公设,从而建立塑性力学的宏观理论。特 点是: • 数学上力求简单,力学上能反映试验结果的 主要特性。 • 实验数据加以公式化,并不深入研究塑性变 形过程的物理化学本质。
• 细微观塑性理论
• 从细微观的层次来看,具有内部细微结构, 如位错、微裂纹和微孔洞等。
• 从细微结构的改变过程推求宏观塑性变形性 质
宏观塑性理论的求解方法
• 精确解法。满足弹塑性力学中全部数学方程 的解;
• 近似解法。采用合理简化假设,获得近似结 果。如差分法、有限元法、加权残值法等。
• 实验方法。采用机电方法、光学方法、声学 方法等来测定应力和应变的分布规律。