勾股定理的逆定理专题练习
勾股定理及其逆定理,经典过关题及练习题(含答案)
![勾股定理及其逆定理,经典过关题及练习题(含答案)](https://img.taocdn.com/s3/m/3bdf55f40b4e767f5bcfce70.png)
CBAFEDCB A勾股定理及其逆定理(讲义)一、 知识点睛1. 11-19的平方:_______________________________________________________________________________________________________.2. 勾股定理:_______________________________________________________________________________________________________. 3. 勾股定理的验证:4. 勾股定理逆定理:_______________________________________________________________________________________________________.5. 勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有______________;______________;_______________;________________;________________;_________________.二、精讲精练1. 一个直角三角形两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长是________.S 3S 2S 1AB C86C3. 已知:如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF长为12cm ,则正方形CDEF 的面积为_________.4. 如图,在△ABC 中,∠ABC =90°,分别以BC ,AB ,AC 为边向外作正方形,面积分别记为S 1,S 2,S 3.若S 2=4,S 3=6,则S 1=___________.5. 如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.6. (1)等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三角形较长的直角边长都为a ,较短的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为c 2,也可以表示为4×12ab +(a -b )2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则a 2+b 2=c 2.图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形的两直角边长为3和4,则斜边上的高为________. 7. 如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F . (1)求证:DE ⊥AB ;(2)若已知BC =a ,AC =b ,AB =c ,你能借助本题提供的图形证明勾股定理吗?试一试吧.图2图1b ba ED A ABDEFc c图2b aba ED CBAlcba8. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_________.第8题图 第9题图9. 如图,在△ABC 中,∠ACB =90°,AC >BC ,分别以AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,正方形BCMN ,正方形CAFG ,连接EF ,GM ,ND .设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 110. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.11. 如图,从电线杆离地面8m 处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m ,那么需要多长的 钢索?12. 小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,子拉到离旗杆底端5米处,发现此时绳子底端距离打结处1米.法算出旗杆的高度.13. 下列各组数中不能作为直角三角形三边长的是( )DCBAAB C DE F GH图3图2图1h 26246b 106c 125A .B .C .D .7152024257202425715202425252420157图2图1DCBAA .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,4114. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 15. 若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.16. 将直角三角形的三边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形17. 三边长分别是15,36,39的三角形是_______三角形.18. 如图,求出下列直角三角形中未知边的长度:c =____,b =____,h =_____.19. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )20. 一个零件的形状如图1中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边长如图2请说明理由.勾股定理及其逆定理(随堂测试)1.有一块土地形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7BAD CB .A .c b c a b a a b c a b c c b a c b a A BCD EF D .c b a a b c C .米,则这块地的面积为__________.2.若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④0.3,0.4,0.5;⑤2n +1,2n ,2n 2+2n +1(n 为正整数).则其中能构成直角三角形的是_____________.3.如图,在四边形ABCD 中,AD =3,AB =4,BC =12,CD =13,∠BAD =90°. (1)求BD 的长; (2)证明:BD ⊥BC ; (3)求四边形ABCD 的面积.勾股定理及其逆定理(作业)1. 以下列长度的三条线段为边,不能组成直角三角形的是( )A .1.5,2,2.5B .9,12,15C .7,24,25D .1,1,22. 若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④11,60,61;⑤22(+)12(+)(+)+1m n m n m n ,,(m ,n 为正整数).其中能构成直角三角形的有( )A .2个B .3个C .4个D .5个3. 下列选项中,不能用来证明勾股定理的是( )4. 已知甲、乙两人从同一点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距______.5. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为____________.DC BAF E D CB A 6. 记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( A .S l +S 2>S 3 B .S l +S 2< S 3C .S 1+S 2=S 3D .S 12+S 22=S 327. 中最大的正方形的边长为7cm ,则正方形A ,B ,___________cm 2.8. 如图,每个小方格都是边长为1的正方形,则四边形ABCD 的面积为_________.9. 如图,在正方形ABCD 中,AB =4,AE =2,DF =1,则图中共有直角三角形________个.10. 11. 如图,一架长25(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4方向上滑动了几米?12. 已知一个三角形的三边长分别是5cm ,12cm ,13cm ,你能算出这个三角形的面积吗?b915勾股定理及其逆定理【参考答案】➢ 课前预习1. 大于,互余;2. 121,144,169,196,225,256,289,324,3613. 16A S =9B S = 25C S =A B C S S S +=➢ 知识点睛1. 直角三角形两直角边的平方和等于斜边的平方.2. 略3. 三角形两边的平方和等于第三边的平方,直角三角形.4. 3,4,5;5,12,13;7,24,25;8,15,17;9,40,41;11,60,61.➢ 精讲精练1. C2. 169 cm 23. 24.245. 证明略6. 167. 148. AD =12 cm ,AC =15 cm 9. B 10. B 11. 90 12. 直角 13. C14. 符合要求,理由略15. (1)同位角相等,两直线平行.逆命题成立.(2)如果两个实数的积是正数,那么这两个实数是正数.逆命题不成立. (3)锐角三角形是等边三角形.逆命题不成立.(4)到一条线段两个端点距离相等的点在这条线段的垂直平分线上.逆命题成立.。
(完整版)勾股定理的逆定理_习题训练(含答案)
![(完整版)勾股定理的逆定理_习题训练(含答案)](https://img.taocdn.com/s3/m/b0932311b9f3f90f77c61b52.png)
4Education intelligently快乐学习 健康成长细节决定未来-1 -勾股定理的逆定理、基础巩固1•满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为 1 : 2 : 3B.三边长的平方之比为 1 : 2 : 3C.三边长之比为 3 : 4 : 5D.三内角之比为 3 : 4 : 52•如图18-2-4所示,有一个形状为直角梯形的零件 ABCD , AD // BC ,斜腰DC 的长为10 cm , / D=120°3•如图18-2-5,以Rt △ ABC 的三边为边向外作正方形,其面积分别为 AB 的长为 __________ .14•如图18-2-6,已知正方形 ABCD 的边长为4, E 为AB 中点,F 为AD 上的一点,且 AF= — AD ,试 4判断△ EFC 的形状•5•一个零件的形状如图 18-2- 7,按规定这个零件中/ A 与/ BDC 都应为直角,工人师傅量得零件各边 尺寸:AD=4 , AB=3,BD=5 , DC=12 , BC=13,这个零件符合要求吗?图 18-2- 76•已知△ ABC 的三边分别为 k 2- 1, 2k , k 2+1 ( k > 1),求证:△ ABC 是直角三角形启智教育则该零件另一腰AB 的长是cm (结果不取近似值)图 18 — 2- 4图 18 - 2-6S 1、S 2、S 3,且 S 1=4, S 2=8,则A 1)A FD启智教育Education intelligently 快乐学习健康成长、综合应用7•已知a、b、c是Rt△ ABC的三边长,△ A i B i C i的三边长分别是2a、2b、2c,那么△ A i B i C i是直角三角形吗?为什么?8•已知:如图i8- 2-8,在△ ABC中,CD是AB边上的高,且CD2=AD・BD.求证:△ ABC是直角三角形•图i8 —2-89•如图i8-2 - 9所示,在平面直角坐标系中,点A、B的坐标分别为A ( 3, i), B (2, 4), △ OAB是直角三角形吗?借助于网格,证明你的结论•iO.阅读下列解题过程:已知a、b、c ABC的三边,且满足a2c2- b2c2=a4- b4,试判断△ ABC的形状•解:■/ a2c2- b2c2=a4—b4, (A) /• c2(a2- b2)=(a2+b2)(a2- b2), (B) /. c2=a2+b2, (C)「.A ABC 是直角三角形• 问:①上述解题"过程是从哪一步开始出现错误的?请写出该步的代号_________ ;②错误的原因是r_____________ ;③本题的正确结论是 __________ •ii・已知:在△ ABC中,/ A、/ B、/ C的对边分别是a、b、c,满足a2+b2+c2+338=i0a+24b+26c・试判断△ ABC的形状•启智教育细节决定未来-2 -Education intelligently快乐学习 健康成长细节决定未来-3 -12.已知:如图 18-2 — 10,四边形 ABCD , AD // BC , AB=4 , BC=6, CD=5 , AD=3.求:四边形 ABCD 的面积.图 18— 2 —10参考答案一、基础巩固1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半由A得有一个角是直角;B、C满足勾股定理的逆定理,所以应选D.答案:D2•解:过D点作DE // AB交BC于E,则△ DEC是直角三角形•四边形ABED是矩形,••• AB=DE.•••/ D=120,•/ CDE=30 .又•••在直角三角形中,30°所对的直角边等于斜边的一半,• CE=5 cm.根据勾股定理的逆定理得,DE= 102525、3 cm.•- AB= . 10252 5.3 cm.3. 思路分析:因为△ ABC是Rt △,所以BC2+AC2=AB2,即S+S2=S3,所以S3=12,因为S3=AB 2,所以AB= . S^ 12 2 3.答案:2.34. 思路分析:分别计算EF、CE、CF的长度,再利用勾股定理的逆定理判断即可.解:••• E 为AB 中点,• BE=2.•- CE2=BE2+BC2=22+42=20.同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25.••• CE2+EF2=CF2,• △ EFC是以/ CEF为直角的直角三角形.5. 分析:要检验这个零件是否符合要求,只要判断△ADB 和厶DBC是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ ABD 中,AB2+AD 2=32+42=9+16=25=BD 2,所以△ ABD 为直角三角形,/ A =90°.在厶BDC中,BD2+DC 2=52+122=25+144=169=13 2=BC2. 所以△ BDC是直角三角形,/ CDB =90 .启智教育Education intelligently快乐E学习健康成长因此这个零件符合要求6•思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可证明:••• k2+i>k2—1,k2+i —2k=(k - 1)2>0,即k2+1>2k ,二k2+1 是最长边.••• (k2—1)2+(2k )2=k4—2k2+i+4k2=k4+2k2+1=(k2+1)2,•••△ ABC是直角三角形.二、综合应用7•思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证).8•思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可证明:••• AC2=AD2+CD2,BC2=CD2+BD2,•AC 2+BC 2=AD 2+2CD 2+BD 2=AD 2+2AD - BD+BD 2=(AD+BD ) 2=AB 2.•△ ABC是直角三角形.9•思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△ OAB是否是直角三角形即可.解:••• OA2=OA I2+A I A2=32+12=10,OB2=OB I2+B I B2=22+42=20,AB 2=AC 2+BC2=12+32=10,•- OA2+AB 2=OB2•••△OAB是以OB为斜边的等腰直角三角形•10. 思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B)②没有考虑a=b这种可能,当a=b时厶ABC是等腰三角形:③厶ABC是等腰三角形或直角三角形.11. 思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0; (3)已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形解:由已知可得a2—10a+25+b2—24b+144+c 2—26c+169=0,配方并化简得,(a—5)2+(b —12)2+(c —13)2=0. ••• (a—5)2》0,(- 12)2》0,(- 13)2为.启智教育Education intelligently快乐学习 健康成长细节决定未来-8 -a — 5=0,b — 12=0,c — 13=0. 解得 a=5,b=12,c=13. 又••• a 2+b 2=169=c 2, •••△ ABC 是直角三角形.12. 思路分析:(1 )作DE // AB ,连结BD ,则可以证明 △ ABD ◎△ EDB (ASA );(2)DE=AB=4 , BE=AD=3 , EC=EB =3; (3)在△ DEC 中,3、4、5 为勾股数, △ DEC 为直角三角形, DE 丄BC ; (4)利用梯形面积公式,或利用三角形的面积可解 解:作 DE // AB ,连结BD ,则可以证明 △ ABD EDB (ASA ),• DE=AB=4 , BE=AD=3. •/ BC=6, • EC=EB=3.T DE 2+CE 2=32+42=25=CD 2,• △ DEC 为直角三角形. 又••• EC=EB=3,• △ DBC 为等腰三角形,DB=DC=5. 在厶 BDA 中 AD 2+AB 2=32+42=25=BD • △ BDA 是直角三角形$△ BDA = 1 X 3X 4=6^DBC 」怡X=12.2 2• S 四边形 ABCD =S △ BDA +S A DBC =6+12=18.它们的面积分别为。
2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)
![2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)](https://img.taocdn.com/s3/m/842700d0c9d376eeaeaad1f34693daef5ef71311.png)
2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。
专题1.2 勾股定理的逆定理【八大题型】(举一反三)(人教版)(解析版)
![专题1.2 勾股定理的逆定理【八大题型】(举一反三)(人教版)(解析版)](https://img.taocdn.com/s3/m/19ea5a35f11dc281e53a580216fc700abb6852c6.png)
专题1.2 勾股定理的逆定理【八大题型】【北师大版】【题型1 判断三边能否构成直角三角形】 (1)【题型2 图形上与已知两点构成直角三角形的点】 (3)【题型3 在网格中判断直角三角形】 (6)【题型4 勾股数的探究】 (9)【题型5 利用勾股定理的逆定理证明】 (13)【题型6 利用勾股定理的逆定理求解】 (16)【题型7 勾股逆定理的应用】 (19)【题型8 勾股定理及其逆定理的综合】 (23)【知识点 勾股定理的逆定理】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.【题型1 判断三边能否构成直角三角形】【例1】(2023春·黑龙江哈尔滨·八年级哈尔滨德强学校校考期中)由线段a 、b 、c 组成的三角形是直角三角形的是( )A .a =5,b =3,c =3B .a =13,b =15,c =14C .a =6,b =4,c =5D .a =7,b =24,c =25【答案】D【分析】根据勾股定理的逆定理,进行计算即可解答.【详解】解:A 、32+32=18≠52,故不能组成直角三角形,故不合题意;B +=41400≠,故不能组成直角三角形,故不合题意;C 、42+52=41≠62,故不能组成直角三角形,故不合题意;D 、72+242=625=252,故不能组成直角三角形,故不合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.【变式1-1】(2023春·湖北孝感·八年级统考期中)一个三角形的三边长分别为a ,b ,c ,且满足(a +b )(a−b )=c2,则这个三角形是()A.等腰三角形B.直角三角形C.锐角三角形D.不确定【答案】B【分析】将原式整理为a2=b2+c2,即可判断.【详解】解:∵(a+b)(a−b)=c2,∴a2−b2=c2,∴a2=b2+c2,∴这个三角形是直角三角形;故选:B.【点睛】本题考查了勾股定理的逆定理和平方差公式,熟练掌握勾股定理逆定理、得出a2=b2+c2是解题的关键.【变式1-2】(2023春·八年级单元测试)如图,以△ABC的两边BC、AC分别向外作正方形,它们的面积分别是S1,S2,若S1=2,S2=3,AB2=5,则△ABC的形状是________三角形.【答案】直角【分析】根据正方形的面积公式结合勾股定理的逆定理即可得出答案.【详解】解:∵S1=2,S2=3,∴BC2=2,AC2=3,∵AB2=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,故答案为:直角.【点睛】本题考查了勾股定理的逆定理和正方形面积的应用,理解勾股定理的逆定理的内容是解题的关键.【变式1-3】(2023春·广东惠州·八年级校考期中)有四种说法:①三个内角之比为5:6:1;②三边形长分③三边之长为9、40、41;④三边之比为1.5∶2∶3.其中是直角三角形的有___________(填序号).【答案】①②③【分析】根据三角形内角和定理和勾股定理进行求解即可.【详解】解:∵三角形三个内角之比为5:6:1,=90°,∴三角形最大的内角为180°×6561∴该三角形为直角三角形,故①正确;∵2+=2,∴该三角形为直角三角形,故②正确;∵92+402=412,∴该三角形为直角三角形,故③正确;∵1.52+22≠32,∴该三角形不是直角三角形,故④错误;故答案为:①②③.【点睛】本题主要考查了三角形内角和定理,勾股定理得逆定理,熟知三角形内角和为180度和勾股定理的逆定理是解题的关键.【题型2图形上与已知两点构成直角三角形的点】【例2】(2023春·全国·八年级专题练习)同一平面内有A,B,C三点,A,B两点之间的距离为5cm,点C 到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有______个.【答案】8【分析】该题存在两种情况;(1)AB为斜边,则∠C=90°;(2)AB为直角边,AC=2cm或BC=2cm;【详解】(1)当AB为斜边时,点C到直线AB的距离为2cm,即AB边上的高为2cm,符合要求的C点有4个,如图:(2)当AB为直角边时,AC=2cm或BC=2cm,符合条件的点有4个,如图;符合要求的C点有8个;故答案是8.【点睛】本题主要考查了勾股定理的应用,准确分析判断是解题的关键.【变式2-1】(2023春·八年级单元测试)在如图所示的5×5的方格图中,点A和点B均为图中格点.点C 也在格点上,满足△ABC为以AB为斜边的直角三角形.这样的点C有()A.1个B.2个C.3个D.4个【答案】D【分析】结合网格的性质和直角三角形的判定找到对应点即可.【详解】解:如图,满足条件的点C共有4个,故选D.【点睛】此题主要考查了勾股定理逆定理,正确进行讨论,把每种情况考虑全,是解决本题的关键.【变式2-2】(2023春·全国·八年级专题练习)点A(2,m),B(2,m-5)在平面直角坐标系中,点O为坐标原点.若△ABO是直角三角形,则m的值不可能是()A.4B.2C.1D.0【答案】B【分析】分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况考虑:当∠OAB=90°时,点A在x轴上,进而可得出m=0;当∠OBA=90°时,点B在x轴上,进而可得出m=5;当∠AOB=90°时,利用勾股定理可得出关于m的一元二次方程,解之即可得出m的值.综上,对照四个选项即可得出结论.【详解】解:分三种情况考虑(如图所示):当∠OAB=90°时,m=0;当∠OBA=90°时,m−5=0,解得:m=5;当∠AOB=90°时,AB2=OA2+OB2,即25=4+m2+4+m2−10m+25,解得:m1=1,m2=4.综上所述:m的值可以为0,5,1,4.故选B.【点睛】本题考查了坐标与图形性质以及勾股定理,分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况求出m的值是解题的关键.【变式2-3】(2023春·全国·八年级专题练习)如图,方格纸中的每个小正方形的边长均为1,点A,B在小正方形的顶点上,在图中画ΔABC(点C在小正方形的顶点上),使ΔABC为直角三角形,并说明理由.(要求画出两个,且两个三角形不全等)【答案】ΔABC为直角三角形,理由详见解析.【分析】根据勾股定理逆定理和勾股定理进行判断即可.【详解】解:如图所示.图1图2如图1,在ΔABC中,AC=5,BC=3,AB2=32+52=34因为AC2+BC2=52+32=34=AB2,所以∠ACB=90°,即ΔABC为直角三角形.如图2,在RtΔACD中,AC2=CD2+AD2=12+12=2.在RtΔBCE中,CB2=CE2+BE2=42+42=32.在RtΔABF中,AB2=AF2+BF2=32+52=34.所以AC2+CB2=AB2,所以∠ACB=90°,即ΔABC为直角三角形.【点睛】考核知识点:根据勾股定理逆定理画直角三角形.掌握勾股定理逆定理并会运用是关键.【题型3在网格中判断直角三角形】【例3】(2023春·北京西城·八年级校考期中)如图,在正方形网格中,每个小正方形的边长为1,△ABC 的三个顶点A,B,C都在格点上,AD是BC边上的中线,那么AD的长为()A.2.5B.3C.D【答案】A【分析】由勾股定理可得AC2=5,BC2=25,AB2=20,则AC2+AB2=BC2,即△ABC是直角三角形,然后由直角三角形斜边上的中线等于斜边的一半即可解答.【详解】解:由勾股定理可得AC2=5,BC2=25,AB2=20,∴AC2+AB2=BC2,即△ABC是直角三角形,∵AD是BC边上的中线,BC=2.5.∴AD=12故选:A.【点睛】本题主要考查了勾股定理、直角三角形斜边上中线的性质等知识点,根据勾股定理逆定理判定△ABC是直角三角形是基础,掌握斜边上的中线的性质是解题的关键.【变式3-1】(2023春·广东湛江·八年级校考阶段练习)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为_________.【答案】45°【分析】根据勾股定理得到AB,BC,AC的长度,再判断△ABC是等腰直角三角形,进而得出结论.【详解】解:如图,连接AC,由题意,AC=,BC=AB∴AC=BC,AB2=AC2+BC2,∴△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=∠CAB=45°.故答案为:45°.【点睛】本题主要考查了勾股定理及其逆定理,等腰直角三角形的判定与性质,判断出△ABC是等腰直角三角形是解决本题的关键.【变式3-2】(2023春·广东惠州·八年级校考阶段练习)如图,每个小正方形的边长为1.(1)求四边形ABCD的面积与周长;(2)求证:∠BCD=90°.【答案】(1)周长为:32(2)见解析【分析】(1)借助正方形的小格,根据勾股定理分别计算四边形的各边的长,从而求得四边形的周长;(2)在△ABC中,根据勾股定理的逆定理进行判定.【详解】(1)解:根据勾股定理可知AB=3BC=CD=AD=5∴四边形ABCD的周长为+面积为:8×8−12×3×3−12×5×5−12×5×3−12×3×5=32.(2)证明:连接BD,∵BC=CD=DB=∴BC2+CD2=BD2.∴△BCD是直角三角形,即∠BCD=90°.【点睛】本题主要考查了勾股定理的运用以及勾股定理逆定理的运用,掌握勾股定理是解题的关键.【变式3-3】(2023春·八年级单元测试)如图所示的是2×5的正方形网格,点A,B,P都在网格点上,则∠APB=________.【答案】135°【分析】根据勾股定理和勾股定理的逆定理可得△PCB是等腰直角三角形,可得∠BPC=45°,即可求解.【详解】解:延长AP至C,连接BC,CP=CB=BP∵2+2=2,即CP2+CB2=BP2,∴△PCB是等腰直角三角形,∴∠BPC=45°,∴∠APB=180°−45°=135°,故答案为:135°.【点睛】本题考查了勾股定理和勾股定理的逆定理,关键是得到△PCB是等腰直角三角形.【题型4勾股数的探究】【例4】(2023春·安徽阜阳·八年级统考期末)法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(___________),(___________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2−1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.【答案】(1)5,12,13;7,24,25(2)证明见解析【分析】(1)根据x2+y2=z2,即可得出5,12,13、7,24,25是勾股数;(2)根据勾股定理的逆定理,可得答案.【详解】(1)∵52+122=169,132=169,∴52+122=132,∴5,12,13是勾股数;∵72+242=625,252=625,∴72+242=252,∴7,24,25是勾股数;故答案为:5,12,13;7,24,25;(2)证明:∵x=2n,y=n2−1,∴x2+y2=(2n)2+(n2−1)2=4n2+n4−2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.∴以x,y,z为三边的三角形为直角三角形.【点睛】此题考查勾股逆定理的证明,勾股数的规律探究,掌握勾股逆定理的证明,根据勾股定理得出勾股数是解题的关键.【变式4-1】(2023春·四川达州·八年级校考期中)以下列各组数据中的三个数,其中是勾股数的是()A.B.6,8,10C.D.2,3,4【答案】B【分析】根据勾股数的定义进行分析,从而得到答案.【详解】解:A+=7=5,7≠5,故此选项错误;B、62+82=100,102=100,且100=100,故此选项正确;C、12+=3=3,3=3D、22+32=13,42=16,13≠16,故此选项错误.故答案为:B.【点睛】此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,满足a2+b2=c2.【变式4-2】(2023春·全国·八年级专题练习)一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”,这三个整数叫做一组“勾股数”老师给出了下表(其中m,n为正整数,且m>n):m23344…n11212…a22+1232+1232+2242+1242+22…b4612816…c22−1232−1232−2242−1242−22…(1)探究a,b,c与m,n之间的关系并用含m,n的代数式表示:a=______,b=______,c=______.(2)以a,b,c为边长的三角形是否一定为直角三角形?请说明理由.【答案】(1)m2+n2,2mn,m2−n2(2)以a,b,c为边长的三角形一定为直角三角形,理由见解析【分析】(1)根据给出的数据总结即可;(2)分别计算出a2、b2、c2,根据勾股定理逆定理进行判断.【详解】(1)解:观察可得a=m2+n2,b=2mn,c=m2−n2,故答案为:m2+n2,2mn,m2−n2;(2)以a,b,c为边长的三角形一定为直角三角形,理由如下:a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4−2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.【点睛】本题考查了勾股数,勾股定理的逆定理,熟练掌握:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.【变式4-3】(2023春·重庆北碚·八年级西南大学附中校考期中)勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2a和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.【答案】(1)见解析;(2)a=9730b,a=31,b=4;(3)见解析7【分析】(1)根据勾股定理:利用(m2+n2)2﹣(m2﹣n2)2,解得另一条直角边长为2mn,因为m,n为正整数,所以2mn也为正整数,即可得证;(2)首先根据勾股定理求出a关于b的代数式,再根据被开方数需大于等于0,即可求得a、b的范围,且a、b 均为正整数,将b的可能值:1,2,3,4分别代入,即可求得符合条件的正整数a、b;(3)观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,而252=152+202,故存在.【详解】(1)证明:∵(m2+n2)2﹣(m2﹣n2)2=(m2+n2+m2﹣n2)•(m2+n2﹣m2+n2)=2m2•2n2=(2mn)2,∴(2mn)2+(m2﹣n2)2=(m2+n2)2,∵m,n为正整数,且m>n,∴2mn,m2﹣n2,m2+n2均为正整数,∴该直角三角形一定为“整数直角三角形”;(2)由勾股定理得:7a﹣7+(150﹣30b)=16×15,∴a=9730b7,由题意可知:7a﹣7>0,150﹣30b>0,∴a>1,0<b<5,∵a和b均为正整数,∴b的可能值为:1,2,3,4,当b=1时,a=97307=1277,不是正整数,故b=1不符合题意;当b=2时,a=1577,不是正整数,故b=2不符合题意;当b=3时,a=97907=1877,不是正整数,故b=3不符合题意;当b=4时,a=971207=2177=31==∵2+2=240,4=240,∴2+2=4,∴b=4符合题意,∴a=9730b7,a=31,b=4;(3)证明:观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,152+202=225+400=625,252=625,∴152+202=252.∴存在一个整数直角三角形,其斜边长为c1•c2.【点睛】本题目考查勾股定理,难度一般,也是中考的常考知识点,熟练掌握勾股定理的应用以及二次根式的相关性质是顺利解答此题的关键.【题型5利用勾股定理的逆定理证明】【例5】(2023·江苏·八年级假期作业)如图,已知CD⊥AB,垂足为D,BD=1,CD=2,AD=4.求证:∠ACB=90°.【答案】见解析【分析】根据勾股定理得出BC2,AC2,进而利用勾股定理的逆定理解答即可.【详解】证明:∵CD⊥AB,垂足为D,BD=1,CD=2,AD=4,∴BC2=BD2+CD2=12+22=5,AC2=AD2+CD2=42+22=20,∵AB=AD+BD=4+1=5,∴AB2=25=AC2+BC2=20+5,∴△ABC是直角三角形,∴∠ACB=90°.【点睛】此题考查勾股定理及其逆定理,掌握勾股定理与其逆定理的区别是解题的关键.【变式5-1】(2023·江苏·八年级假期作业)在△ABC的三边分别是a、b、c,且a=n2−1,b=2n,c=n2+1,判断△ABC的形状,证明你的结论.【答案】直角三角形,理由见解析【分析】根据勾股定理的逆定理判断即可.【详解】解:∵a=n2−1,b=2n,c=n2+1∴a2=(n2−1)2=n4−2n2+1,b2=(2n)2=4n2,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,故△ABC是直角三角形.【点睛】本题考查了勾股定理的逆定理、完全平方公式,会利用勾股定理的逆定理判定三角形是否为直角三角形是解答的关键.【变式5-2】(2023春·八年级课时练习)如图,以△ABC的每一条边为边作三个正方形.已知这三个正方形构成的图形中,绿色部分的面积与蓝色部分的面积相等,则△ABC是直角三角形吗?请证明你的判断.【答案】△ABC是直角三角形,证明见解析【分析】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,【详解】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,然后根据绿色部分的面积与蓝色部分的面积相等列式得到(a+d)+(b+e)=c+d+e,然后由a+d=AC2,b+e=BC2求解即可..∵绿色部分的面积与蓝色部分的面积相等∴a+b=c∴a+b+d+e=c+d+e∴(a+d)+(b+e)=c+d+e∵a+d=AC2,b+e=BC2∴c+d+e=AB2∴AC2+BC2=AB2∴△ABC是直角三角形.【点睛】此题考查了勾股定理的逆定理的运用,解题的关键是熟练掌握勾股定理的逆定理.【变式5-3】(2023春·江苏盐城·八年级统考期中)如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD=ED=12.(1)求证:△CDE≌△BDA;(2)证明:CE⊥AE;(3)求△ABC的面积.【答案】(1)见解析(2)见解析(3)84【分析】(1)根据SAS证明△CDE≌△BDA即可;(2)结论:△ACE是直角三角形;首先根据△CDE≌△BDA,推出CE=AB=7,最后根据勾股定理的逆定理即可证明;(3)由全等三角形的性质得出S △ABC =S △ACE ,所以计算△ACE 的面积,即可得出△ABC 的面积.【详解】(1)证明:∵AD 是边BC 上的中线,∴BD =CD ,在△BDA 和△CDE 中,AD =BD ∠ADB =∠EDC BD =CD,∴△CDE≌△BDA (SAS ),(2)结论:△ACE 是直角三角形;理由:由(1)知:△CDE≌△BDA ,∴CE =AB =7,∵AD =ED =12,∴AE =24,∵AE 2+CE 2=242+72=625,AC 2=252=625,∴AE 2+CE 2=AC 2,∴∠E =90°,∴△ACE 是直角三角形;(3)∵△CDE≌△BDA ,∴S △CDE +S △ADC =S △ADC +S △BDA ,∴S △ABC =S △ACE ,∵S △ACE =12AE·CE =12×24×7=84,∴S △ABC =84.【点睛】此题是三角形的综合题,考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.【题型6 利用勾股定理的逆定理求解】【例6】(2023春·山西吕梁·八年级统考期末)如图,在△ABC 中,AB =5,BC =4,AC =3,将三角形纸片沿AD 折叠,使点C 落在AB 边上的点E 处,则△BDE 的周长为( )A.3B.4C.5D.6【答案】D【分析】利用勾股定理的逆定理判断出∠C=90°,利用翻折不变性可得AE=AC=3,推出BE=2,即可解决问题.【详解】解:在△ABC中,∵AB=5,BC=4,AC=3,∴AB2=BC2+AC2,∴△ABC是直角三角形,且∠C=90°,由翻折的性质可知:AE=AC=3,CD=DE,∴BE=2,∴△BDE的周长=DE+BD+BE=CD+BD+BE=BC+BE=4+2=6,故选:D.【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-1】(2023春·湖北襄阳·八年级统考期中)如图,在△ABC中,点D在AB上,AB=AC,BC=5,BD=3,CD=4.求AC的长.【答案】AC=256【分析】由勾股定理的逆定理判定∠BDC=90°,再在Rt△ADC中利用勾股定理列方程即可解答.【详解】解:∵BC=5,BD=3,CD=4,∴BD2+CD2=32+42=25=BC2.∴∠BDC=90°.∴∠ADC=180°−∠BDC=90°.∴AD2+CD2=AC2.设AC=x.∵AB=AC,BD=3,∴AD=x−3.∴(x−3)2+42=x2.解得x=256.∴AC=256.【点睛】本题主要考查了勾股定理及其逆定理的应用,解题的关键在于熟练掌握定理,灵活运用.【变式6-2】(2023春·河南开封·八年级统考期末)已知△ABC的三边分别为a、b、c,且满足(a+2b−11)2+|2a−b−2|=10c−25−c2,请你判断△ABC的形状,并求出其周长与面积.【答案】△ABC是直角三角形,它的周长是12,面积是6【分析】首先把原等式变形为(a+2b−11)2+|2a−b−2|+(c−5)2=0,利用非负数的性质,建立三元一次方程组,求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状,进一步求得周长和面积即可.【详解】解:由题意得(a+2b−11)2+|2a−b−2|+c2−10c+25=0,∴(a+2b−11)2+|2a−b−2|+(c−5)2=0,∴a+2b−11=02a−b−2=0c−5=0,∴a=3,b=4,c=5,∵a2+b2=c2,∴△ABC是直角三角形,它的周长是3+4+5=12,面积是12×3×4=6.【点睛】此题考查了完全平方公式,非负数的性质,解三元一次方程组,勾股定理逆定理以及三角形的周长和面积的计算方法;注意解题的思路与方法的灵活性.【变式6-3】(2023春·陕西榆林·八年级校考期末)已知在△ACB中,AC=12,BC=5,AB=13,点E为边AC 上的动点,点F为边AB上的动点,则FE+EB的最小值是_________.【答案】12013【分析】先根据勾股定理的逆定理可得∠ACB =90°,再作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,然后根据两点之间线段最短、垂线段最短可得当B ′F ⊥AB 时,线段FE +EB 的值最小,最小值为B ′F ,最后利用三角形的面积公式即可得.【详解】解:∵在△ACB 中,AC =12,BC =5,AB =13,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,如图,作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,∴B ′C =BC =5,BB ′=2BC =10,B ′E =BE ,∴FE +EB =FE +B ′E ,由两点之间线段最短可知,当点B ′,E,F 共线时,FE +B ′E 最小,最小值为B ′F ,由垂线段最短可知,当B ′F ⊥AB 时,B ′F 的值最小,又∵S △ABB ′=12AB ⋅B ′F =12AC ⋅BB ′,∴12×13B ′F =12×12×10,解得B ′F =12013,即FE +EB 的最小值为12013,故答案为:12013.【点睛】本题考查了勾股定理的逆定理、两点之间线段最短、垂线段最短、轴对称的性质等知识点,熟练掌握轴对称的性质和勾股定理的逆定理是解题关键.【题型7 勾股逆定理的应用】【例7】(2023春·广东广州·八年级统考期中)如图,在笔直的公路AB 旁有一座山,从山另一边的C 处到公路上的停靠站A 的距离为AC =15km ,与公路上另一停靠站B 的距离为BC =20km ,停靠站A 、B 之间的距离为AB =25km ,为方便运输货物现要从公路AB 上的D 处开凿隧道修通一条公路到C 处,且CD ⊥AB .(1)请判断△ABC 的形状?(2)求修建的公路CD 的长.【答案】(1)直角三角形(2)12km【分析】(1)根据勾股定理的逆定理,由AC 2+BC 2=AB 2得到△ABC 是直角三角形.(2)利用△ABC 的面积公式可得,CD ⋅AB =AC ⋅BC ,从而求出CD 的长.【详解】(1)解:△ABC 是直角三角形.理由:∵AC =15km ,BC =20km ,AB =25km ,∴ 152+202=252,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴△ABC 是直角三角形.(2)解:∵CD ⊥AB ,∴S △ABC =12AB ⋅CD =12AC ⋅BC ,∴CD =AC⋅BC AB =15×2025=12(km).答:修建的公路CD 的长是12km .【点睛】本题考查了勾股定理,勾股定理逆定理的应用,以及三角形的面积公式等知识,熟练掌握勾股定理及其逆定理是解题的关键.【变式7-1】(2023春·广西南宁·八年级南宁市天桃实验学校校考阶段练习)森林火灾是一种常见的自然灾害,危害很大.随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,△ABC 区域内是一片森林,有一台救火飞机沿东西方向AB ,由点A 飞向点B ,已知点C 为其中一个着火点,且点C 与点A ,B 的距离分别为600m 和800m ,又AB =1000m ,飞机中心周围500m 以内可以受到洒水影响.(1)求△ABC 的面积.(2)着火点C 能否受到洒水影响?为什么?【答案】(1)240000m 2(2)受影响【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,再利用面积公式计算即可;(2)过点C 作CD ⊥AB 于D ,利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.【详解】(1)解:∵AC =600m ,BC =800m ,AB =1000m ,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∴S △ABC =12×AC ×BC =240000m 2;(2)如图,过点C 作CD ⊥AB 于D ,∴S △ΔABC =12AC ⋅BC =12CD ⋅AB ,∴600×800=1000CD ,∴CD =480,∵飞机中心周围500m 以内可以受到洒水影响,∴着火点C 受洒水影响.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.【变式7-2】(2023春·广西桂林·八年级统考期中)一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?【答案】电线杆和地面垂直,理由见解析【分析】由勾股定理的逆定理判断△ABD是直角三角形,△ABC是直角三角形,即可解答.【详解】解:电线杆和地面垂直,理由如下:连接BD在△ABD中,∵BD2+AB2=52+122=169=132=AD2,∴△ABD是直角三角形,且∠ABD=90°,∴AB⊥BD,在△ABC中,∵BC2+AB2=92+122=225=152=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴AB⊥BC,∴电线杆和地面垂直.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.【变式7-3】(2023春·八年级课时练习)海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是______.【答案】北偏东40°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【详解】由题意得,OA=12×5=60(海里),OB=16×5=80(海里),又∵AB=100海里,∵602+802=1002,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则B舰艇的航行方向是北偏东40°,故答案为:北偏东40°.【点睛】本题考查的是勾股定理的逆定理的应用和方位角的知识,根据题意判断出△AOB是直角三角形是解决问题的关键.【题型8勾股定理及其逆定理的综合】【例8】(2023春·全国·八年级期末)如图,在△ABC中,D是△ABC内一点,连接AD、BD,且AD⊥BD.已知AD=4,BD=3,AC=13,BC=12.则图中阴影部分的面积为________.【答案】24【分析】先根据勾股定理求出AB,然后根据勾股定理的逆定理,得△ABC是直角三角形,根据阴影部分的面积S等于S△ABC−S△ABD,即可.【详解】∵AD⊥BD,∴AB2=AD2+BD2,∵AD=4,BD=3,∴AB=5,∵AC=13,BC=12,∴AC2=169,BC2=144,AB2=25,∴AC2=BC2+AB2,∴△ABC是直角三角形,设阴影部分的面积S,∴S=S△ABC−S△ABD=12×AB×BC−12×AD×BD,∴S=24,∴设阴影部分的面积为:24.故答案为:24.【点睛】本题考查勾股定理的知识,解题的关键是掌握勾股定理的运用和勾股定理的逆定理.【变式8-1】(2023春·江西赣州·八年级期中)如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=14AB,求证:∠FEC=90°.【答案】见解析【分析】由正方形的性质和已知求得AF=1,FD=3,由中点的性质得AE=EB=2,利用勾股定理求得EF,EC,FC,再根据勾股定理的逆定理,即可得出结论.AB,【详解】证明:∵正方形ABCD的边长为4,且AF=14∴AF=1,FD=3,DC=BC=4,∵E为AB的中点,∴AE=EB=2,在Rt△AEF中,EF=在Rt△DFC中,FC===5,在Rt△EBC中,EC==∴EC2+EF2=FC2,∴△EFC是以EC、EF为直角边的直角三角形,∴∠FEC=90°.【点睛】本题考查了勾股定理和勾股定理的逆定理及正方形的性质,利用勾股定理求出三角形三边长,再利用勾股定理逆定理解答是证明此题的关键.【变式8-2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考阶段练习)为迎接六十周年校庆,重庆外国语学校准备将一块三角形空地ABC进行新的规划,如图,点D是BC边上的一点,过点D作垂直于AC的小路DE,点E在AC边上.经测量,AB=26米,AD=24米,BD=10米,AC比DC长12米.(1)求△ABD的面积;(2)求小路DE的长.【答案】(1)120平方米(2)14.4米【分析】(1)根据勾股定理逆定理得出△ABD是直角三角形,再根据三角形面积公式求解即可;(2)设DC =x 米,利用勾股定理求解出DC =18米,AC =30米,再利用等积法求解即可.【详解】(1)∵BD 2=102=100,AD 2=242=576,AB 2=262=676,∴BD 2+AD 2=AB 2,∴△ABD 是直角三角形,∠ADB =90°,∴S △ABD =12BD ⋅AD =12×10×24=120(平方米);(2)设DC =x 米,则AC =(x +12)米,由(1)知∠ADB =90°,由勾股定理得x 2+242=(x +12)2,解得x =18,∴DC =18米,AC =30米,∵DE ⊥AC ,∴S △ACD =12AC ⋅DE =12DC ⋅AD ,∴30DE =18×24,∴DE =14.4(米).【点睛】本题考查了勾股定理和勾股定理逆定理,熟练运用勾股定理逆定理证明是解题的关键.【变式8-3】(2023春·江苏宿迁·八年级校考期末)如图,已知正方形OABC 的边长为8,边OA 在x 轴上,边OC 在y 轴上,点D 是x 轴上一点,坐标为(2,0),点E 为OC 的中点,连接BD 、BE 、ED .(1)求点B 的坐标;(2)判断△BED 的形状,并证明你的结论.【答案】(1)(8,8)(2)△BED 是直角三角形【分析】(1)根据正方形的性质可得OA=OC=8,进而求出点B的坐标;(2)求出BD、BE、ED的平方,根据勾股定理逆定理判断即可.【详解】(1)解:正方形OABC的边长为8,边OA在x轴上,边OC在y轴上,所以OA=OC=8,因此,点B的坐标为(8,8).(2)解:△BED是直角三角形;点D是x轴上一点,坐标为(2,0),点E为OC的中点,∴OD=2,OE=CE=4,DA=6,∴ED2=OD2+OE2=20,EB2=BC2+CE2=80,DB2=BA2+AD2=100,∴ED2+EB2=DB2,∴△BED是直角三角形.【点睛】本题考查了正方形的性质和勾股定理及逆定理,解题关键是根据正方形性质写出点的坐标,利用坐标求出线段的平方.。
勾股定理的逆定理练习题(有答案)
![勾股定理的逆定理练习题(有答案)](https://img.taocdn.com/s3/m/6de821104a7302768e993939.png)
勾股定理的逆定理练习题1.小强在操场上向东走80m 后,又走了60m ,再走100m 回到原地。
小强在操场上向东走了80m 后,又走60m 的方向是 。
2.在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形? 为什么?3.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
4.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直? 为什么? 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。
6、若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状 。
7、已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。
求:四边形ABCD 的面积。
第7题 8、根据下列条件,分别判断a,b,c 为边的三角形是不是直角三角形 (1)a=7,b=24,c=25; (2) a=32,b=1,c=32( 填序号 )D9、已知ABC Δ的三边分别a,b,ca=22n m -,b=2mn,c=22n m +(m>n,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。
10、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?第10题11、如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC ,求证:AF ⊥EF .E NABC12、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)
![人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)](https://img.taocdn.com/s3/m/40f28063312b3169a451a464.png)
17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
《勾股定理》勾股定理的逆定理(含答案)
![《勾股定理》勾股定理的逆定理(含答案)](https://img.taocdn.com/s3/m/a45ac040f705cc175427094f.png)
第 3 章《勾股定理》 : 3.2 勾股定理的逆定理填空题1. 你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高 0.9m ,宽 1.2m 的栅栏门的相对角顶点间加一个加固木板,这条木板需 m号) 6.如图,有一圆锥形粮堆,其正视图是边长为 6m 的正三角形 ABC ,粮堆母线 AC 的中点 P 处有一老鼠正在偷吃粮食, 此时,小猫正在 B 处,它要沿圆锥侧面到达 P 处捕捉老鼠,则小猫所经过的最短路程是 m .(结果不取近似值) 7.如图,这是一个供滑板爱好者使用的 U 型池,该 U 型池可以看作是一个长方 体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为 4m 的半圆,其 边缘AB=CD=20,m 点E 在CD 上,CE=2m ,一滑板爱好者从 A 点滑到 E 点,则他滑 行的最短距离约为 m .(边缘部分的厚度忽略不计,结果保留整数)第 3 题) 2. 如图,将一根长 24cm 的筷子,底面直径为 5cm ,高为 12cm 的圆柱形水杯中, 设筷子露在杯子外面的长度为 h cm ,则 h 的最小值是 如图所示的一只玻璃杯,最高为 8cm ,将一根筷子插入其中,杯外最长4 厘 短 2 厘米,那么这只玻璃杯的内径是 厘米. 8 米高的路灯.当电工 B ′处,下滑后,两次梯脚间的距离为 2 cm 3. 米,最 4.如图,一架 10 米长的梯子斜靠在墙上,刚好梯顶抵达 师傅沿梯上去修路灯时,梯子下滑到了 米,则梯顶离路灯 米.第 5 题) 如图所示的圆柱体中底面圆的半径是 错误 !,高为 沿着圆柱体的侧面爬行到 C 点,则小虫爬行的最短路程是 5. .(结果保留根(第7题)(第8题)(第9题)8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面 A 点处有一只蚂蚁,它想得到上底面 B 处的食物,则蚂蚁经过的最短距离为cm .(π 取 3 )9.一只蚂蚁从长、宽都是3,高是8 的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.10.如图是一个三级台阶,它的每一级长、宽、高分别是 2 米、0.3 米、0.2米,A,B是这个台阶上两个相对的端点, A 点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到 B 点最短路程是米.第10 题)第12 题)11.在一个长为2 米,宽为 1 米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2 米的正方形,一只蚂蚁从点 A 处,到达C处需要走的最短路程是米.(精确到0.01 米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5 寸和3寸,A 和 B 是这个台阶的两个相对端点, A 点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= 解答题14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠ PBQ=6°0 ,且BQ=B,P 连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△ PQC的形状,并说明理由.15.如图,点O是等边△ ABC内一点.将△ BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠ AOB=11°0 .(1)求证:△ COD是等边三角形;(2)当α =150°时,试判断△ AOD的形状,并说明理由;(3)探究:当α 为多少度时,△ AOD是等腰三角形.16 .先请阅读下列题目和解答过程:“已知a、b、c 为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ ABC的形状.解:∵a2c2-b 2c2=a4-b 4①∴c2(a2-b 2)=(a2+b2)(a2-b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=9°0 ,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.18.如图,△ ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ ACE≌△ BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.19.请阅读下列解题过程:已知a、b、c 为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ ABC的形状.解:∵a2c2-b2c2=a4-b4,A∴c2(a2 -b 2)=(a2 +b2)(a2 -b 2),B ∴c2=a2+b2,C∴△ ABC为直角三角形.D问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是;(3)本题正确的结论是:.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.n2345a22-132-142-152-1b46810c22+132+142+152+11)请你分别观察a,b, c 与n 之间的关系,并用含自然n(n>1)的代数数式表示:a= ,b= ,c= ;(2)猜想:以a,b,c 为边的三角形是否为直角三角形并证明你的猜想.9 22.如图,在△ ABC 中,CD⊥AB于D,AC=4,BC=3,DB= .51)求CD,AD的值;2)判断△ ABC的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图 3 备用)24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为 3 米,DE为 1.68 米,那么这棵树大约有多高?(精确到0.1 米,3≈1.732 )25 .如图,有两棵树,一棵高10 米,另一棵高 4 米,两树相距8 米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=6°0 ,∠DAE=4°5 ,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5 米,求梯子顶端 A 下落了多少米?28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB 上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距 A 站多少千米处?29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么A城遭受这次台风影响有多长时间?30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.答案:填空题1.故答案为: 1.5 m.考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm.考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3.故答案为: 6 厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC 长,那么利用勾股定理可得内径.解:根据条件可得筷子长为12 厘米.如图AC=10厘米,BC=错误!=错误!= 6 厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt △ A′ OB′中,根据勾股定理,得:OA′ =6m.则AA′ =8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2 2 .考点:平面展开-最短路径问题.专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长, C 是边的中 点,矩形的宽即高等于圆柱的母线长.∵AB=π?错误 !=2,CB=2.∴AC= AB 2+BC 2 = 8 =2 2 , 故答案为: 2 2 .点评 :圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽 即高等于圆柱的母线长. 本题就是把圆柱的侧面展开成矩形, “化曲面为平面”, 用勾股定理解决.6. 故答案为: 3 5 m .考点:平面展开-最短路径问题. 专题:压轴题;转化思想.分析 :求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问 题,转化为平面上两点间的距离的问题. 根据圆锥的轴截面是边长为 6cm 的等边三角形可知,展开图是半径是 6的半圆.点B 是半圆的一个端点, 而点 P 是平分 半圆的半径的中点, 根据勾股定理就可求出两点 B 和 P 在展开图中的距离, 就是∴n=180°,即圆锥侧面展开图的圆心角是 180 度. 则在圆锥侧面展开图中AP=3, AB=6,∠BAP=90度. ∴在圆锥侧面展开图中 BP= 32+62 = 45 =3 5 m .故小猫经过的最短距离是 3 5 m .故答案是: 3 5 m .点评 :正确判断小猫经过的路线, 把曲面的问题转化为平面的问题是解题的关键. 7. 故答案为: 22m .考点:平面展开-最短路径问题.专题:压轴题.分析 :要求滑行的最短距离,需将该 U 型池的侧面展开,进而根据“两点之间线 段最短”得出结果.解答 : 解:其侧面展开图如图:AD=πR=4π,AB=CD=20.mDE=CD-CE=20-2=18,m在 Rt △ADE 中,AE= AD 2+DE 2 =错误!≈21.9 ≈22m . 故他滑行的最短距离约为6π, 则 6π =n π×6180 解: 圆锥的底面周长是22m.点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20.m本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm.考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B 所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B 所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理得AB= 12 2+(3 π )2=错误!=错误!=15cm.故蚂蚁经过的最短距离为15cm.( π 取3) 点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9.故答案为:10.考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为 6 和8,故矩形对角线长AB= 62+82=10 ,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5.考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解:三级台阶平面展开图为长方形,长为2,宽为( 0.2+0.3 )× 3,则蚂蚁沿台阶面爬行到 B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到 B 点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3 )×3] 2=2.52,解得x=2.5 .点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60 .考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2 ×2=2.4 米;宽为 1 米.于是最短路径为: 2.4 2+12=2.60 米.故答案为: 2.60 .点评 : 本题主要考查两点之间线段最短,有一定的难度,是中档题. 12.故答案为: 25寸.考点:平面展开-最短路径问题.分析 : 根据两点之间线段最短,运用勾股定理解答.解答 : 解:将台阶展开矩形,线段 AB 恰好是直角三角形的斜边,两直角边长分 别为 24 寸,7寸, 由勾股定理得 AB= 72+242 =25 寸.点评 : 本题结合实际,运用两点之间线段最短等知识来解答问题.13 . 故答案为: b=84,c=85; 考点:勾股数. 专题:规律型.分析 :认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个 数为从 3开始连续的奇数, 第二、三个数为连续的自然数; 进一步发现第一个数在 52=12+13中, 12=5 2-1 ,13=5 2+1 ;点评 : 认真观察各式的特点,总结规律是解题的关键.解答题14.考点:等 边三角形的 性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型. 分析 : 根据等边三角形的性质利用 SAS 判定△ ABP ≌△ CBQ ,从而得到 AP=CQ ;设 PA=3a ,PB=4a ,PC=5a ,由已知可判定△ PBQ 为正三角形从而可得到 PQ=4a ,再根 据勾股定理判定△ PQC 是直角三角形.解答:解:(1)猜想: AP=CQ ,证明:∵∠ ABP+∠PBC=6°0 ,∠ QBC ∠+ PBC=6°0 ,∴∠ABP=∠QBC .又 AB=BC , BP=BQ ,∴△ABP ≌△CBQ ,∴AP=CQ ;的平方是第二、三个数的和;最后得出第 n 组数为( 2n+1), (2 n +1)2- 1 2), (2n +1)2+1232-1 ),由此规律解决问题. 2 解答: 32-1在 32 =4+5 中,4= 232+1 ,5= 2则在 13、b 、c 中, b= 132-1 2 =84,c=1322+1 =85;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4,a且∠ PBQ=6°0 ,∴△PBQ为正三角形.∴PQ=4a.于是在△ PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2 ∴△PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;定理的逆勾股定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵ CO=C,D ∠OCD=6°0 ,∴△COD是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=15°0 时,△ AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ ADC=∠BOC=15°0 ,又∵△ COD是等边三角形,∴∠ODC=6°0 ,∴∠ ADO=9°0 ,即△AOD是直角三角形;(7 分)(3)解:①要使AO=AD,需∠ AOD∠= ADO.∵∠AOD=36°0 - ∠AOB-∠COD- α =360°- 110°- 60°- α =190°- α ∠ADO=α - 60°,∴190°- α=α- 60°∴α=125°;②要使OA=O,D需∠ OAD∠= ADO.∵∠AOD=19°0 - α,∠ADO=α- 60°,∵∠OAD=18°0 - (∠AOD∠+ ADO)=50°,∴α- 60°=50°∴α=110°;③要使OD=A,D 需∠ OAD∠= AOD.∵190°- α=50°∴α=140°.综上所述:当α 的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12 分)说明:第(3)小题考生答对 1 种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型.分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“ 2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2 分)(2)等号两边不能同除a2-b 2,因为它有可能为零.(4 分)(3)(从头或直接从第③步写解答过程都行),∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),移项得:c2(a2-b2)- (a2+b2)(a2-b2)=0,得(a2-b2)(c2-a2-b2)=0,(5 分)∴a2 =b2或c2=a2+b2(6 分)∴△ABC是直角三角形或等腰三角形.(7 分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17.考点:勾股定理;勾股定理的逆定理.分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.解答:解:(1)∵AD=3,AB=4,∠BAD=9°0 ,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18.考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题.分析:(1)根据SAS判定△ ACE≌△ BCD,从而得到∠ EAC=∠DBC,根据角之间的关系可证得AF⊥BD.(2)互相垂直,只要证明∠ AFD=90°,从而转化为证明∠ EAC+∠CDB=90即可解答:(1)证明:∵△ ACB和△ ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACE=∠BCD=9°0 ,在△ACE和△BCD,∠AC =BC∠ACE =∠ BCDCE=CD∴△ ACE≌△ BCD(SAS);(2)解:直线AE与BD互相垂直,理由为:证明:∵△ ACE≌△ BCD,∴∠EAC=∠DBC,又∵∠ DBC+∠CDB=9°0 ,∴∠ EAC+∠CDB=9°0 ,∴∠AFD=90°,∴AF⊥BD,即直线AE与BD互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C步(2)等式两边同时除以a2-b2(3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状.解答:解:(1)C;(2)方程两边同除以(a2-b 2),因为(a2-b2)的值有可能是0;(3)∵c2(a2-b 2)=(a2+b2)(a2-b2)∴c2=a2+b2或a2 -b 2=0-b2=0a+b=0 或a-b=0a+b≠0c2=a2+b2或a-b=0c2=a2+b2或a=b 该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20.考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△ BDC是直角三角形,则四边形ABCD的面积=直角△ ABD的面积+直角△ BDC 的面积.解答:解:∵在△ ABD中,AB⊥AD,AB=3,AD=4,∴BD= AB2+AD 2= 32+42=5 .在△BDC中,CD=12,BC=13,BD=5.∵122+52=132,即CD2+BD2 =BC2,∴△ BDC是直角三角形,且∠ BDC=9°0 ,1 1 1 1∴S四边形ABC D=S△ABD+S△BDC =2 AB?AD2+ BD?C2D ×3×4+2×5×12=36,即四边形ABCD的面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n,n2+1;考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a,b,c 与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.解答:解:(1)由题意有:n2-1,2n,n2+1;(2)猜想为:以a,b,c 为边的三角形是直角三角形.证明:∵ a=n2-1 ,b=2n;c=n2 +1∴a2+b2=(n2-1 )2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2 而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c 为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22.考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ ABC 是直角三角形.9 解答:解:(1)∵CD⊥AB且CB=3,BD= ,故△ CDB为直角三角形,5理由:∵ AD=156 ,BD=59 , 55 9 ∴ AB=AD+BD= +=5 , 16 ∴AC 2+BC 2=42+32=25=52=AB 2,∴根据勾股定理的逆定理,△ ABC 为直角三角形.点评 : 本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目. 23. 80 故答案为: 32m 或( 20+4 5 )m 或 3 m .勾股定理的应用; 分类讨论. 等腰三角形的性质.考点 专题分析 :根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的 性质利用勾股定理解答.解答:解:在 Rt △ABC 中,∠ ACB=9°0 , AC=8,BC=6 由勾股定理有: AB=10,应分以下三种情况: ①如图 1,当 AB=AD=10时,∵AC ⊥BD ,∴CD=CB=6,m∴△ ABD 的周长=10+10+2×6=32m .②如图 2,当 AB=BD=10时,∵BC=6m ,∴CD=10-6=4m ,∴AD=4 5 m ,∴△ABD 的周长=10+10+4 5 = ( 20+4 5 )m .③如图 3,当AB 为底时,设AD=BD=,x 则CD=x-6,由勾股定理得: AD= 82+(x-6)2 =x25解得, x= 3 ,80∴△ ABD 的周长为: AD+BD+AB 3=m .2)△ ABC 为直角三角形. 2 2- 12 2 - CD 2 = 42 - ( )2 5 16 5 在 Rt △CAD 中, AD= AC 2 ∴在 Rt △CDB 中, CD= CB 2 (95 -BD 2 = -BD = 32 - )2 (5 12 5点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为∠ CAD=3°0 ,则AC=2C,D再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ACD中,∠ CAD=3°0 ,AD=3,设CD=x,则AC=2x,由AD2+CD2 =AC2,得,32+x2=4x2,x= 3 =1.732 ,所以大树高 1.732+1.68 ≈3.4 (米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过 C 点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6,m 在Rt△AEC中,AC= AE 2+EC 2=错误!=10m,故小鸟至少飞行10m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考点:勾股定理的应用.分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△DAE中,∵∠ DAE=4°5 ,∴∠ADE=∠DAE=4°5 ,AE=DE= 8 ,∴AD2=AE2+DE2=36m( 8 ) 2+( 8 ) 2=16,∴AD=4,即梯子的总长为 4 米.∴AB=AD4=.在Rt △ ABC中,∵∠ BAC=6°0 ,∴∠ ABC=3°0 ,1∴AC=2 AB=2,∴BC2=AB2-AC2=42-22=12,∴BC= 12 =2 3 m ;∴点B到地面的垂直距离BC=2 3 m .点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解答:解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.5 2=4,∴AC=2,∵BD=0.5,∴CD=2.在Rt△ECD中,EC2=ED2-CD2=2.52 -2 2=2.25,∴EC=1.5,∴AE=AC-EC=2-1.5=0.5 .答:梯子顶端下滑了0.5 米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C, D 两村到 E 站的距离相等,需要证明DE=CE,再根据△DAE≌△ EBC,得出AE=BC=10k;m解答:解:∵使得C,D两村到E站的距离相等.∴DE=C,E∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2 =BE2 +BC2,设AE=x,则BE=AB-AE(= 25-x ),∵ DA=15km,CB=10km,∴x2+152=(25-x )2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:( 1)点到直线的线段中垂线段最短,故应由 A 点向 BF 作垂线,垂足为 C , 若 AC > 200则 A 城不受影响,否则受影响;(2)点A 到直线 BF 的长为 200千米的点有两点,分别设为 D 、G ,则△ ADG 是等 腰三角形,由于 AC ⊥BF ,则 C 是 DG 的中点,在 Rt △ADC 中,解出 CD 的长, 则可求 DG 长,在 DG 长的范围内都是受台风影响, 再根据速度与距离的关系则可求时间.解答:解:(1)由 A 点向 BF 作垂线,垂足为 C , 在Rt △ABC 中,∠ABC=3°0 , AB=320km ,则 AC=160km , 因为 160< 200,所以 A 城要受台风影响;因为 DA=AG ,所以△ ADG 是等腰三角形,因为 AC ⊥BF ,所以 AC 是 BF 的垂直平分线, CD=G ,C 在 Rt △ADC 中,DA=200千米, AC=160千米,由勾股定理得, CD= DA 2- AC 2 = 2002 -160 2 =120 千米,则 DG=2DC=24千0 米,遭受台风影响的时间是: t=240 ÷40=6(小时).点评 :此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.30.考点:勾 股定理的应 用.分析 : 连接 AC ,根据已知条件运用勾股定理逆定理可证△ ABC 和△ACD 为直角三 角形,然后代入三角形面积公式将两直角三角形的面积求出来, 两者面积相加即 为四边形 ABCD 的面积.AG=200千米. 则还有一点 G ,有∵∠B=90°,∴△ABC 为直角三角形,∵AC 2=AB 2+BC 2=82+62=102, ∵AC >0,∴AC=10,在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676, ∴AC 2+CD 2=AD 2,∴△ ACD 为直角三角形,且∠ ACD=9°0 ,点评 :通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过 程变得简单.∴S1 ×6×8+12 ×10×24=144. 四 边 形 A B C ACD 1 2。
《勾股定理的逆定理》测试题
![《勾股定理的逆定理》测试题](https://img.taocdn.com/s3/m/c841afd45022aaea998f0ffc.png)
尼 尔 斯 . 尔 ( 麦 物理 学家 .8 5 1 6 ) 玻 丹 1 8 — 9 2
口 江苏省启 东中学
一
龚贤文
5 如 果 AAB . C的 三 边 长 a b c满 足 关 系式 ( + ,、 0
、
填 空题 ( 每小 题 3分 , 3 共 0分 )
时 , 三角形 是 直角 三角形 . 此
C. 5。 4
2 . 正 方 形 组 成 的 网 格 中标 有 A C E O在 B、D、 F、 G 四条 线段 . 图 8其 中能构 成一个 直 角三角 形三 H 如 .
1 若 三 角形 的 三 边 长 分 别 为 x l x 2 x 3 当 . + ,+ ,+ ,
— —
2一 021 11 b6 ) b 8  ̄ +一 +
c : . aAB C是
= ,0 = 0 贝 0
—
,
—
6 =
— —
,
三角 形.
2 如 图 1 某 天 , 明在 A 时 测得 某树 的 影长 为 . , 小
时
m .
—
—
—
—
—
—
C
c
C
。
D
图3
图4
P
图 1
图2
7 若 三角形 的 三边长 a b C满 足 a : 51 : , . ,、 :c : 1 b= 23 则 这个 三 角形 中最 大角 的度数 为
.
— —
3 .AAB 中 , B 1 m, C 1 m, C边 上 的 C A = 0a B = 6a B
A1 .个 B 2个 . C 3个 . D. 4个
( ).3 00 ,.5 4 00 ,. 00 . 4
勾股定理逆定理练习题
![勾股定理逆定理练习题](https://img.taocdn.com/s3/m/342a020e0740be1e650e9a32.png)
CAD 第6题1.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的图形的面积是 2.已知三角形的三边长之比为1∶1∶2,则此三角形一定是( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形3.在Rt △ABC 中,若ACBCAB =4,则下列结论中正确的是( )A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形4.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A .仍是直角三角形 B .不可能是直角三角形 C .是锐角三角形 D .是钝角三角形 4.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( ) A .0 B .1 C .2 D .3 5.如图,一电线杆A B 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 约为1.732,结果保留三个有效数字)( )A .5.00米B .8.66米C .17.3米D .5.77米6.如图,△ABC 中,CD ⊥AB 于D ,若AD=2BD ,AC=6,BC=3,则BD 的长为( ) A .3 B .12C .1D .4 7、△ABC 的三边分别为下列各组值,其中不是直角三角形三边的是( )A .a=41,b=40,c=9B .a=1.2,b=1.6,c=2C .a=12,b=13,c=14 D .a=35,b=45,c=1 8、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是( )9.下列命题的逆命题是真命题的是( ) A .若a=b ,则a 2=b 2B .全等三角形的周长相等C .若a=0,则ab=0D .有两边相等的三角形是等腰三角形 10.下列数组为三角形的边长:(1)5,12,13;(2)10,12,13;(3)7,24,25;(4)6,8,10,其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组11.如果△ABC 的三边长a ,b ,c 满足a 2+b 2=c 2,则△ABC 是______三角形,_____=90°,• 这个定理叫做_______. 12、一个命题成立,那么它的逆命题_______成立 3、△ABC 中,AB=7,AC=24,BC=25,则∠A=______.13.已知两条线段的长为3cm 和2cm ,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形.14.一轮船以16海里/时的速度从A 港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里.15.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当他把绳子的下端拉开5m•后,发现下端刚好接触地面,你能帮助他把旗杆的高度求出来是__________.16.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______. 17.直角三角形的三边长为连续偶数,则这三个数分别为__________. 13. 如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.这棵树在折断之前有__________米.14、若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .15、已知两条线段的长为5cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形. 16、如图1,在四边形ABCD 中,AD ⊥DC ,AD =8,DC =6,CB =24,AB =26.则四边形ABCD的面积为____________.17、如图3所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,则这块地的面积是__________2m . 18、1.判断由下列各组线段a 、b 、c 的长,能组成的三角形是不是直角三角形,并说明理由.(1)a =6.5,b =7.5,c =4;(2)a =11,b =60,c =61; (3)a =38,b =2,c =310;BCA第5题图图3ABCD(4)a =433,b =2,c =414;19、如图3,AD=7,AB =25,BC =10,DC =26,DB =24,求四边形ABCD 的面积.19、如图4,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9. (1)求DC 的长. (2)求AB 的长.(3)求证: △ABC 是直角三角形.20、已知:如图,∠ABD=∠C=90°,AD=12,AC=BC ,∠DAB=30°,求BC 的长.CABD 图4CABD图。
勾股定理逆定理
![勾股定理逆定理](https://img.taocdn.com/s3/m/076fd23052ea551810a687b5.png)
勾股定理的逆定理(1)知识领航1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.2. 满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5、;6、8、10;5、12、13等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.e 线聚焦【例】如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5. 在△ACD 中,∵ AC 2+CD 2=25+122=169, 而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.双基淘宝仔细读题,一定要选择最佳答案哟!1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组 2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是()A .直角三角形B .钝角三角形C .锐角三角形D .不能确定3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍 4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 25.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D综合运用认真解答,一定要细心哟!6. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.7. 一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?ADA D8. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.A D C B勾股定理的逆定理(2)知识领航1.应用勾股定理及其逆定理解决简单的实际问题,建立数学模型.2.体会从“形”到“数”和从“数”到“形”的转化,培养转化、推理的能力.e 线聚焦【例】如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?分析:为减小思考问题的“跨度”,可将原问题分解成下述“子问题”:(1)△ABC 是什么类型的三角形?(2)走私艇C 进入我领海的最近距离是多少?(3)走私艇C 最早会在什么时间进入?这样问题就可迎刃而解.解:设MN 交AC 于E ,则∠BEC =900.又AB 2+BC 2=52+122=169=132=AC 2, ∴△ABC 是直角三角形,∠ABC =900.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE , 则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288, ∴CE =13144. 13144÷169144≈0.85(小时), 0.85×60=51(分). 9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.双基淘宝仔细读题,一定要选择最佳答案哟!1. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.3. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾A ME NC B顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,124.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .5.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . 6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .综合运用◆ 认真解答,一定要细心哟!7.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,且CD =16cm ,BD =12cm ,求△ABC 的周长.8.如图,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?9.如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .拓广创新◆ 试一试,你一定能成功哟!10.如图,在△ABC 中,∠ACB =90º,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,P A =3,求∠BPC 的度数.B12 5。
勾股定理及逆定理的应用练习
![勾股定理及逆定理的应用练习](https://img.taocdn.com/s3/m/172f043e0b4c2e3f5727633c.png)
ABA1 B 1DC D1 C 12 1 4勾股(逆)定理的应用姓名 学号一、选择题(每题3分,共9分)( )1.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为.A .6cmB .8.5cmC .3013cmD .6013cm( )2.有四个三角形:(1)△ABC 的三边之比为3:4:5;(2)△A ′B ′C ′的三边之比为5:12:13; (3)△A ′B ′C ′的三个内角之比为1:2:3; (4)△CDE 的三个内角之比为1:1:2.其中是直角三角形的有.A .(1)(2) B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)( )3.下面四组数中是勾股数的一组是A .6,7,8B .5,8,13C .1.5,2,2.5D .5,12,13二、填空:(每空4分,共44分)1、如图,是一个三级台阶,它的每一级的长、宽和高分别等于5dm ,3dm 和1dm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是 (第1题) 2.如图,有一圆柱形油罐,现要从油罐底部的一点A 环绕油罐建梯子,并且要正好建到A 点正上方的油罐顶部的B 点,已知油罐高AB=5米,油罐底部周长为12米,那么梯子最短要 米。
(第2题) (第3题)3. 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为4. 如图,边长为5的正方体中,一只蚂蚁从A 顶点出发沿着正方体的外表面爬到B 顶点的最短路程是(第4题) (第5题)(第6题)5.如图,三个村庄A、B、C之间的距离分别为AB=15km,BC=9km,AC=12km.已知A、B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,现在要从C村修一条笔直公路CD直达AB.已知公路的造价为10000元/km,求修这条公路的最低造价是6.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),最短路线长为7.已知直角三角形两边的长为3和4,则此三角形的周长为____ ______.8.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要__________元.(第8题) (第9题) (第11题)9.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?•为什么?【9分】2.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC•落在AB上,求DC的长.【9分】3..观察下列图形,回答问题:【9分】问题(1):若图①中的△DEF 为直角三角形,正方形P 的面积为9,正方形Q 的面积为15,则正方形M 的面积为问题(2):如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,这三个半圆面积321,,S S S 之间的关系是问题(3):如图③,如果直角三角形两直角边长分别为3和4,以直角三角形三边为直径作三个半圆,请你利用上面结论求出阴影部分的面积.4.如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA•垂直AB 于A ,CB 垂直AB 于B ,已知AD=15km ,BC=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站建在距A 站多少千米处?【10分】5.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?【10分】。
2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)
![2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)](https://img.taocdn.com/s3/m/3b4a67024a73f242336c1eb91a37f111f1850d30.png)
2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.下列几组数据中,不能作为直角三角形的三条边的是()A.1,2,B.3,4,5C.1,,D.4,12,13 2.在△ABC中,若AB=3,BC=5,AC=,则下列说法正确的是()A.△ABC是锐角三角形B.△ABC是直角三角形且∠C=90°C.△ABC是钝角三角形D.△ABC是直角三角形且∠B=90°3.如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.下列各组数中,是勾股数的是()A.7,8,9B.6,8,10C.5,12,14D.3,4,65.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=45°6.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为()A.2.5m B.3m C.1.5m D.3.5m7.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是()A.B.C.D.8.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是()A.30°B.45°C.50°D.60°二.填空题9.一个三角形的三边长为8cm、17cm、15cm,则其面积为cm2.10.如图,已知∠BAC=90°,BC=,AB=1,AD=CD=1,则∠BAD=.11.如图,长方体木箱的长、宽、高分别为12cm,4cm,3cm,则能放进木箱中的直木棒最长为cm.12.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑤组勾股数为.13.如图,露在水面上的鱼线BC长为6m,钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,若BB'的长为2m,则钓鱼竿AC的长为m.14.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.15.如图是某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=8米,BC=6米,他们踩坏了米的草坪,只为少走米的路.16.图是屋架设计图的一部分,点E、F分别为斜梁AB、AC的中点,D为横梁BC的中点,EM⊥BC于点M,FN⊥BC于点N,若AB=AC=6m,∠BAC=120°,则EM+AD+FN 等于m,四边形AEDC的周长为m.三.解答题17.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.18.为了绿化环境,我市某中学有一块四边形的=空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?19.“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C处,过了1.5秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为40米,判断这辆小汽车是否超速?若超速,则超速了多少?若没有超速,说明理由.20.如图,有一艘货船和一艘客船同时从港口A出发,客船与货船速度的比为4:3,出发1小时后,客船比货船多走了5海里.货船沿东偏南10°方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距50海里.(1)求两船的速度分别是多少?(2)求客船航行的方向.21.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.22.位于沈阳的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?23.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以16海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.(1)如图1,若反走私艇A和走私艇C的距离是10海里,A、B两艇的距离是6海里;反走私艇B测得距离C艇8海里,若走私艇C的速度不变,则再过多少小时它会进入我国领海?(2)如图2,若反走私艇A和走私艇C的距离是12海里,A、B两艇的距离是8海里,反走私艇B测得距离C艇10海里,发现走私艇C时,反走私艇B便立即沿领海线MN 对走私艇C进行拦截.若要使拦截成功,假设走私艇C的速度不变,那么反走私艇B的速度至少应为多少海里/时?(结果中若有根号,则保留根号).参考答案一.选择题1.解:A、12+()2=22,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、32+42=52,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、12+()2=()2,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、42+122≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:D.2.解:在△ABC中,AB=3,BC=5,AC=,∴AC2=34,AB2+BC2=9+25=34,∴AC2=AB2+BC2,∴△ABC是直角三角形,∠B=90°,故选:D.3.解:设原直角三角形的两直角边分别为a,b,斜边为c,则a2+b2=c2,∵三条边长同时扩大10倍为10a,10b,10c,∴(10a)2+(10b)2=100a2+100b2=100(a2+b2)=100c2,∴(10c)2=100c2,∴(10a)2+(10b)2=(10c)2,∴如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是直角三角形,故选:C.4.解:A、72+82≠92,故不是勾股数,故选项不符合题意;B、62+82=102,能构成直角三角形,都是整数,是勾股数,故选项符合题意;C、52+122≠142,故不是勾股数,故选项不符合题意;D、32+42≠62,故不是勾股数,故选项不符合题意.故选:B.5.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.6.解:设BO=xm,依题意得:AC=0.5m,BD=0.5m,AO=2m.在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=22+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(2﹣0.5)2+(x+0.5)2,∴22+x2=(2﹣0.5)2+(x+0.5)2,解得:x=1.5,∴AB==2.5(m),即梯子的长度AB为2.5m,故选:A.7.解:选项A如图:A、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项符合题意;选项B如图:B、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项不符合题意;选项C如图:C、∵AB2=22+22=8,AC2=22+22=8,BC2=16,∴△ABC是直角三角形,故本选项不符合题意;选项D如图:D、∵AC2=12+32=10,BC2=12+32=10,AB2=22+42=20,∴△ABC是直角三角形,故本选项不符合题意.故选:A.8.解:延长AP到点C,连接BC,如右图所示,由图可得,∠CPB=∠P AB+∠PBA,PC==,BC==,PB==,∴BC2+PC2=PB2,CP=CB,∴△BCP是等腰直角三角形,∴∠CPB=45°,∴∠P AB+∠PBA=45°,故选:B.二.填空题9.解:∵82+152=172,∴此三角形是直角三角形,∴此直角三角形的面积为:×8×15=60(cm2).故答案为:60.10.解:∵∠BAC=90°,BC=,AB=1,∴AC==,∵AD=CD=1,12+12=()2,AD2+CD2=AC2,∴∠D=90°,∴∠DAC=45°,∴∠BAD=90°﹣45°=45°.故答案为:45°.11.解:∵侧面对角线BC2=32+42=52,∴CB=5cm,∵AC=12cm,∴AB==13(cm),∴空木箱能放的最大长度为13cm,故答案为:13.12.解:根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+2),第二个是:(n+1)(n+3),第三个数是:(n+2)2+1,故可得第⑤组勾股数是14,48,50.故答案为:14,48,50.13.解:设AB′=xm,∵AC′=AC,∴AB′2+B′C′2=AB2+BC2,∴x2+82=(x+2)2+62.解得x=6,∴AB=8m,∴AC===10(m),故答案为:10.14.解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.15.解:在Rt△ABC中,∠ABC=90°,AB=8米,BC=6米,∴AC===10(米),∴BC+AB﹣AC=6+8﹣10=4(米),∴他们踩坏了10米的草坪,只为少走4米的路,故答案为:10,4.16.解:∵AB=AC=6m,∠BAC=120°,D为横梁BC的中点,∴∠B=∠C=30°,∠BAD=∠DAC=60°,∵点E、F分别为斜梁AB、AC的中点,EM⊥BC于点M,FN⊥BC于点N,∴AE=AD=AB=3m,FN=EM=BE=AB=1.5m,∴△AED是等边三角形,∴EM+AD+FN=3+1.5+1.5=6(m),∵AD=3m,AC=6m,∴DC==3(m),∴四边形AEDC的周长为:3+3+3+6=(12+3)m.故答案为:6,(12+3).三.解答题17.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.18.解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36(平方米);(2)需费用36×300=10800(元).19.解:小汽车已超速,理由如下:根据题意得:AC=24米,AB=40米,∠ACB=90°,在Rt△ACB中,根据勾股定理得:BC===32(米),∵小汽车1.5秒行驶32米,∴小汽车行驶速度为76.8千米/时,∵76.8>60,∴小汽车已超速,超速76.8﹣60=16.8(千米/时).20.解:(1)设两船的速度分别是4x海里/小时和3x海里/小时,依题意得4x﹣3x=5.解得x=5,∴4x=20,3x=15,∴两船的速度分别是20海里/小时和15海里/小时;(2)由题可得,AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°,又∵货船沿东偏南10°方向航行,∴客船航行的方向为北偏东10°方向.21.解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.22.解:在Rt△ABC中,∠ABC=90°,BC=8m,AC=17m,∴AB===15(m),∵工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,∴CD=17﹣0.35×20=10(m),∴BD===6(m),∴AD=AB﹣BD=9(m).答:此时游船移动的距离AD的长是9m.23.解:(1)由题意,AC=10海里,AB=6海里,BC=8海里,∴AB2+BC2=AC2,∴∠ABC=90°.由面积法得AC•BE=AB•BC,即10BE=6×8,∴BE=.在Rt△BEC中,CE==,∵艇C的速度为16海里/时,∴所求的时间为÷16=,答:再过小时艇C会进入我国领海.(2)由题意,AC=12海里,AB=8海里,BC=10海里,设CE=x,由勾股定理,得AB2﹣AE2=BC2﹣CE2,即82﹣(12﹣x)2=102﹣x2,解得x=,∴CE==7.5,再由勾股定理,得BE==(海里)设反走私艇B的速度为y海里/时,则=,解得y=.检验可知y=是方程的解,且适合题意.答:反走私艇B的速度至少应为海里/时.。
勾股定理的逆定理练习题
![勾股定理的逆定理练习题](https://img.taocdn.com/s3/m/7116985ca66e58fafab069dc5022aaea988f4161.png)
勾股定理的逆定理练习题勾股定理是数学中的一个基本定理,被广泛应用于几何学和物理学等领域。
它的形式简洁,但是应用广泛,可以解决很多实际问题。
在学习勾股定理的过程中,我们不仅要掌握它的原理和应用,还需要熟练掌握它的逆定理,即勾股定理的逆向推导。
在这篇文章中,我们将通过一些练习题来巩固对勾股定理逆定理的理解和应用。
练习题一:已知一个直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长度。
解答:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
设另一条直角边的长度为x,则有:5² = 3² + x²25 = 9 + x²x² = 16x = 4练习题二:一个直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长度。
解答:同样地,我们可以利用勾股定理来解决这个问题。
设另一条直角边的长度为y,则有:10² = 6² + y²100 = 36 + y²y² = 64y = 8练习题三:一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边的长度。
解答:利用勾股定理,设另一条直角边的长度为z,则有:13² = 5² + z²169 = 25 + z²z² = 144z = 12通过以上三个练习题,我们可以看到逆定理的应用非常简单,只需要将勾股定理的公式稍作变形即可。
逆定理的掌握对于解决实际问题非常重要,因为在实际应用中,我们经常会遇到已知斜边和一条直角边,需要求解另一条直角边的情况。
除了直角三角形,勾股定理的逆定理在其他几何形状中也有应用。
例如,在长方形中,如果我们已知长方形的对角线长度和一条边的长度,可以通过逆定理求解另一条边的长度。
同样地,在正方形、菱形等几何形状中也可以应用逆定理来求解未知边长。
总结起来,勾股定理的逆定理是一个非常实用的工具,它可以帮助我们解决很多实际问题。
初二数学勾股定理的逆定理试题
![初二数学勾股定理的逆定理试题](https://img.taocdn.com/s3/m/12d7a9eb6c175f0e7dd13751.png)
初二数学勾股定理的逆定理试题1.已知甲、乙两人从同一处出发,甲往东走了4km,乙往南走了3km,这时甲、乙两人相距千米.【答案】5【解析】因为甲向东走,乙向南走,其刚好构成一个直角.两人走的距离分别是两直角边,则根据勾股定理可求得斜边即两人的距离.如图,∵∠AOB=90°,OA=4km,OB=3km,∴,则这时甲、乙两人相距5千米.【考点】本题考查的是勾股定理的应用点评:善于观察题目的信息是解题以及学好数学的关键.2.在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=___________【答案】5【解析】根据BD,AD,AB的长度可以判定△ABD为直角三角形,即AD⊥BC,又D为BC的中点,可以判定△ABC为等腰三角形,从而求得结果.在△ABD中,已知AB=5,AD=4,BD=3,满足AB2=AD2+BD2,∴△ABD是直角三角形,即AD⊥BC,又∵D为BC的中点,∴△ABC为等腰三角形,且AB=AC,∴AC=5.【考点】本题考查的是直角三角形的判定,等腰三角形的性质点评:本题中首先要根据勾股定理的逆定理来判定直角三角形,求证△ABC是等腰三角形是解题的关键.3.一个直角三角形,有两边长分别为6和8,下列说法正确的是A.第三边一定为10B.三角形的周长为25C.三角形的面积为48D.第三边可能为10【答案】D【解析】分情况讨论:主要看两个数中较大的数的情况,8是斜边和8不是斜边两种情况求解.①当8是斜边时,根据勾股定理得第三边是;②当8是直角边时,第三边是;故选D.【考点】本题考查的是勾股定理点评:此类题重点注意哪一条边是斜边不确定,所以要分两种情况考虑.4.直角三角形的斜边为20cm,两条直角边之比为3∶4,那么这个直角三角形的周长为A.27cm B.30cm C. 40cm D.48cm【答案】D【解析】可根据一个直角三角形的两条直角边长的比是 3:4,得出两直角边为3x,4x,再利用勾股定理,直接代入即可求得结果.∵一个直角三角形的两条直角边长的比是 3:4,∴设两条直角边长的长是 3x,4x,∴(3x)2+(4x)2=202,解得:x=4或-4(不合题意舍去)∴3x=12,4x=16,∴这个三角形的周长是:12+16+20=48cm.故选D.【考点】本题考查的是勾股定理的应用点评:利用两直角边的比值表示出两直角边的长是解题关键.5.下列命题中是假命题的是A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形.B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形.C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形.D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形.【答案】C【解析】若一个三角形中有一个直角,或三边满足勾股定理的逆定理,依次分析各项即可。
初中数学勾股定理及逆定理练习题(附答案)
![初中数学勾股定理及逆定理练习题(附答案)](https://img.taocdn.com/s3/m/ee30112e81c758f5f71f67ac.png)
初中数学勾股定理及逆定理练习题一、解答题1.如图所示的一块地,4,3,13,12,AD m CD m AB m BC m ====求这块地的面积.2.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点(1)判断ABC 的形状,并说明理由.(2)求BC 边上的高.3.如图,在Rt ABC 中90,7cm C BC ∠=︒=.动点P 在线段AC 上从点C 出发,沿CA 方向运动;动点Q 在线段BC 上同时从点B 出发,沿BC 方向运动.如果点,P Q 的运动速度均为1cm /s ,那么运动几秒时,它们相距5cm4.如图,在ABC ∆中,45ABC ∠=︒,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点F .(1)求证:ACD FBD ∆≅∆(2)若5,1AB AD ==,求BF 的长5.如图,将长方形ABCD 沿直线EF 折叠,使点C 与点A 重合,折痕交AD 于点E ,交BC 于点F ,连接CE .(1)求证:AE AF CE CF===;(2)设AE a=,请写出一个a b c,,三者之间的数量关系式.=,DC c=,ED b6.如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE△,延长△沿AE对折至AFEEF交BC于点G,连接AG.(1)求证:ABG AFG△△;≅(2)求BG的长.7.如图,长方体盒子的长、宽、高分别是12cm,8cm,30cm,在AB的中点C处有一滴蜂蜜,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.8.如图,在正方形ABCD中,AB边上有一点3E AE=,,1+EB=,在AC上有一点P,使EP BP 最短,求EP BP+的最短长度.9.如图,四边形ABCD 是舞蹈训练场地,要在场地上铺上草坪网,经过测量得知:90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)判断D ∠是不是直角,并说明理由;(2)求四边形ABCD 需要铺的草坪网的面积.10.台风是一种自然灾害,它以台风中心为圆心在周围数百千米的范围内形成极端气旋,有极强的破坏力如图,有一台风中心由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点,A B 的距离分别为300km AC =,400km BC =,且500km AB =,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?11.如图,每个小正方形的边长是1.(1)求ABC △的周长.(2)画出BC 边上的高,并求出ABC △的面积.(3)画出AB 边上的高,并求出高.12.如图,在ABC △中,20AB =,12AC =,16BC =,把ABC △折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)面积.13.已知ABC △的三边分别为a b c ,,,且4a b +=,1ab =,c =ABC △的形状. 14.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力据气象观测,距沿海某城市A 正南方向240km 的B 处有一台风中心,其中心风力为12级,每远离台风中心25km ,风力就会减弱一级该台风中心现正以20km/h 的速度沿北偏东30°方向往C 处移动,如图,且台风中心的风力不变若城市所受风力到达或超过4级,则称受到台风影响(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)(1)城市A 是否会受到台风影响?请说明理由(2)若城市A 会受到台风影响,那么台风影响该城市的时间有多长?(3)若城市A 会受到台风影响,那么该城市受到台风影响的最大风力为几级?15.如图,在长方形纸片ABCD 中,3cm AB =,9cm AD =,将此长方形纸片折叠,使点D 与点B 重合,折痕为EF ,求ABE △的面积.16.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D'处,BC交AD'于点BC=,求阴影部分的面积.,,8cm6cmE AB=17.如图,点D是ABC△,且4△内一点,把ABD△绕点B顺时针旋转60°得到CBEAD=,CD=.3BD=,5(1)判断DEC△的形状,并说明理由.(2)求ADB∠的度数.18.在一次意外事故中,有一根高为16m的电线杆在A处断裂,如图,电线杆的顶部C落在离电线杆底部B处8m远的地方,求电线杆断裂处A到地面的距离.19.如图,在等腰直角三角形ABC中,90∠=︒,点D为AC边的中点,过点D作DE DFABC⊥,CF=,求EF的长.交AB于点E,交BC于点F,若4AE=,320.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?21.如图,已知一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长17米,云梯底部距地面2 米,问发生火灾的住户窗口距地面多高?22.已知a,b,c,为△ABC 的三边长,且满足a 2 +b 2+c 2+50=6a+8b+10c,试判断△ABC 的形状.23.如图所示,在长方形ABCD 中, 8AB =,4BC =,将长方形沿AC 折叠,使点D 落在点D '处,求重叠部分AFC ∆的面积.24.如图,一个梯子AB 长25米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为15米,梯子滑动后停在DE 的位置上,测得BD 长为5米,求梯子顶端A 下落了多少米?25.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.参考答案1.答案:解:连接AC∵90,4,3, 5.ADC AD CD AC ∠=︒==∴=由13,12AB BC ==可得222,AC BC AB ABC +=∴△是直角三角形∴30S ABC =△6,S ACD =△30624-=所以这块土地的面积为224m解析:2.答案:(1)结论:ABC 是直角三角形.理由:2222222221865,2313,6452BC AC AB =+==+==+=,222AC AB BC ∴+=, ∴ABC 是直角三角形.(2)设BC 边上的高为则有1122AC AB BC h ⋅⋅=⋅⋅, 13,AC AB BC ===.解析: 90,2ADB AD BD h ︒∠==∴ 3.答案:设运动x 秒时,它们相距5cm ,则()7cm,cm CQ x CP x =-= 根据题意得:()22275x x =+-解得123,4x x ==答:运动3秒或4秒时,它们相距5cm解析:4.答案:(1)证明:45,ABC CD AB ︒∠=⊥90CDB CDA ∴∠=∠=︒CDB ∴∆为等腰直角三角形BD CD ∴=BE AC ⊥90CEF FDB ∴∠=∠=︒又CFE BFD ∠=∠ACD FBD ∴∠=∠在ACD ∆和FBD ∆中,90ACD FBD BD CDCDA FDB ∠=∠⎧⎪=⎨⎪∠=∠=⎩︒ ()ACD FBD ASA ∴∆≅∆(2)ACD FBD ∆≅∆ 1AD FD ∴==又5AB =4BD ∴=∴在Rt BDF ∆中,BF === 解析:5.答案:(1)证明:由题意知,AF CF =,AE CE =,AFE CFE ∠=∠. 在长方形ABCD 中,//AD BC ,AEF CFE ∴∠=∠, AFE AEF ∴∠=∠,AE AF EC CF ∴===.(2)由题意知,AE EC a ==,ED b =,DC c =, 由90D ∠=︒知,222ED DC CE += ,即222b c a +=. 解析:6.答案:(1)证明:在正方形ABCD 中,AD AB =,90D B ∠=∠=︒. 将ADE △沿AE 对折至AFE △,AD AF ∴=,DE EF =,90D AFE ∠=∠=︒.AB AF ∴=,90B AFG ∠=∠=︒.又AG AG =,()Rt Rt HL ABG AFG ∴≅△△.(2)ABG AFG ≅△△,BG FG ∴=.设()0BG FG x x ==>,则6GC x =-, E 为CD 的中点,3CE DE EF ∴===,3EG x ∴=+. 在Rt CEG △中,()()222363x x +-=+,解得2x =,2BG ∴=. 解析:7.答案:分为三种情况:(1)如图①,连接EC .在Rt EBC △中,12820cm EB =+=,13015cm 2BC =⨯=,由勾股定理得25cm EC =(2)如图②,连接EC .同理可得25cm CE >.(3)如图③,连接EC .同理可得25cm CE >. 综上可知,小虫爬行的最短路程是25cm.解析:8.答案:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP .此时EP BP +最短.易知BD AC ⊥,且BO OD =,BP PD ∴=,则BP EP ED +=.3AE =,134AD AB ==+=,∴在Rt ADE △中,由勾股定理得222234255ED =+==, EP BP ∴+的最短长度为5.解析:9.答案:(1)D ∠是直角,理由如下:如图,连接AC ,90B ∠=︒,24m AB =,7m BC =,222AC AB BC ∴=+22247625=+=,()25m AC ∴=. 又15m CD =,20m AD =,222152025+=即222DC AD AC +=,ACD ∴△是直角三角形,且D ∠是直角. (2)ABC ADC ABCD S S S =+四边形△△()211234m 22AB BC AD DC =⋅+⋅=. 故四边形ABCD 需要铺的草坪网的面积为2234m . 解析:10.答案:(1)海港C 受台风影响.理由如下:如答图,过点C 作CD AB ⊥.300km AC =,400km BC =,500km AB =.222AC BC AB ∴+=,ABC ∴△是直角三角形,AC BC CD AB ∴⋅=⋅,300400500CD ∴⨯=⨯,()300400240km 500CD ⨯∴==.以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响(2)当250km EC =,250km FC =时,台风正好影响C 港口. 70km ED EC ==,140km EF ∴=.台风的速度为20km/h ,∴受台风影响的时间为()140207h ÷=,答:台风影响该海港持续的时间为7h.解析:11.答案:(1)AB AC =,2BC =,故ABC △的周长为2(2)作图略,ABC △的面积12442=⨯⨯=.(3)作图略,AB 边上的高42=⨯÷解析:12.答案:设CD x =在ABC △中,20AB =,12AC =,16BC =,222AC BC AB ∴+=,90ACB ∴∠=︒.把ABC △折叠,使AB 落在直线AC 上,BD B D '∴=16x =-,B C AB AC '=-20128=-=.在Rt DCB '△中,90DCB '∠=︒,222CD B C DB ''∴+=,()222816x x ∴+=-,解得6x =.∴重叠部分(阴影部分)的面积为1612363⨯⨯=. 解析:13.答案:ABC △是直角三角形理由如下22a b +()22a b ab =+-242114=-⨯=,2214c ==,222a b c ∴+=,ABC ∴△是直角三角形. 解析:14.答案:(1)城市A 会受到台风影响理由如下:如图,过点A 作AD BC ⊥于点D .在Rt ADB △中,30ABD ∠=︒,240km AB =,()11240120km 22AD AB ∴==⨯=.由题意知,距台风中心在()()12425200km -⨯=以内时,会受到台风影响.120200<,∴城市A 会受到台风影响..(2)设台风中心移至E 处时,城市A 开始受到台风影响,台风中心移至F 处时,城市A 脱离台风影响,连接AE AF ,,则200km AE AF ==.由勾股定理,得222DE AE AD =-222200120160=-=,160km DE ∴=.同理可得160km DF =.∴城市A 受台风影响的时间为()160216h 20⨯=. (3)当台风中心位于D 处时,对城市A 的影响最大.120km AD =,∴台风从D 处到A 处,其风力将减弱12025 4.8÷=(级),A ∴处的风力为12 4.87.2-=(级),∴该城市受到台风影响的最大风力为7.2级解析:15.答案:设cm BE x =,由折叠的性质知cm DE BE x ==,则()9cm AE AD DE x =-=-.在Rt ABE △中,由勾股定理,得222BE AE AB =+,即()22293x x =-+,解得5x =.5cm DE BE ∴==, ()9954cm AE x ∴=-=-=.12ABE S AB AE ∴=⋅△()21346cm 2=⨯⨯=. 解析:16.答案:由折叠的性质,可知D D '∠=∠,CD CD '=.又CD AB =,D B ∠=∠,CD AB '∴=,B D '∠=∠在ABE △和CD E '△中, AEB CED B D AB CD '∠=∠⎧⎪'∠=∠⎨⎪'=⎩,ABE CD E '∴≅△△,AE CE ∴=.设cm AE CE x ==,则()8cm BE x =-在Rt ABE △中,222AB BE AE +=即()22268x x +-=,254x ∴=,25cm 4CE AE ==. 12S CE AB ∴=⋅阴影()2125756cm 244=⨯⨯=. 解析:17.答案:(1)DEC △是直角三角形理由如下: ABD △绕点B 顺时针旋转60°得到CBE △,CBE ABD ∴≅△△,3BE BD ∴==,4CE AD ==又60DBE ∠=︒,BDE ∴△是等边三角形,3DE BD ∴==.又5CD =,222234DE CE ∴+=+22255CD ===,DEC ∴△是直角三角形(2)由(1)得90DEC ∠=︒,BDE △是等边三角形,60BED ∴∠=︒,BEC DEC BED ∴∠=∠+∠9060150=︒+︒=︒.ABD CBE ≅△△,150ADB BEC ∴∠=∠=︒.解析:18.答案:在Rt ABC △中,90ABC ∠=︒.设m AB x =,则()16m AC x =-由勾股定理,得222AB BC AC +=,即()222816x x +=-,解得6x =.故电线杆断裂处A 到地面的距离为6m.解析:19.答案:连接BD .在等腰直角三角形ABC 中,90ABC ∠=︒,点D 为AC 边的中点,BD AC ∴⊥,BD CD AD ==,45ABD ∠=︒,45C ∠=︒,ABD C ∴∠=∠. 又DE DF ⊥,BD AC ⊥,EDB BDF FDC BDF ∴∠+∠=∠+∠,EDB FDC ∴∠=∠,在EDB △与FDC △中,EBD C BD CD EDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()...EDB FDC A S A ∴≅△△,3BE CF ∴==,7AB ∴=,则7BC =,4BF ∴=.在Rt EBF △中,222EF BE BF =+223425=+=,5EF ∴=.解析:20.答案:解:能将旗杆的长度求出来理由如下:设旗杆的长度为x 米,根据勾股定理得:2225(1)x x +=+解得:12x =答:旗杆的高度为12米.解析:21.答案:设窗口距地面高为(2)x +米,根据勾股定理有222178x =-,∴15x =,则217x +=,所以窗口距地面高17米.解析:22.答案:△ABC 是直角三角形解析:∵a 2+b 2+c 2+50=6a+8b+10c,∴a 2-6a+9+b 2-8b+16+c 2-10c+25=0,即(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b=4,c=5,∵32+42=52,∴△ABC 是直角三角形23.答案:在长方形ABCD 中,∵//AB CD ,∴BAC DCA ∠=∠.又由折叠的性质可得DCA FCA ∠=∠,∴BAC FCA ∠=∠,∴AF CF =.设AF x =,则8BF AB AF x =-=-.在Rt BCF ∆中, 4BC =,8BF x =-,CF x =,90B ∠=︒,∴()22248x x +-=.解得5x =. ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 解析:24.答案:5米解析:在RT ABC ∆中,根据勾股定理得: 20AC =米,由于梯子的长度不变,在RT CDE ∆中,根据勾股定理,求出CE ,从而即可得出答案.在Rt ABC ∆中, 25AB =米, 15BC =米, 故20AC ===米,在Rt ECD ∆中, 25AB DE ==米, ()15520CD =+=米, 故15EC ==米,故20155AE AC CE =-=-=米.答:梯子顶端A 下落了5米.考点:勾股定理的应用25.答案: 因为 ()()22211222S a b a ab b =+=++梯形, 又因为S 梯形221111(2)2222ab ba c ab c =++=+ 所以22211(2)(2)22a ab b ab c ++=+得c2=a2+b2.解析:试题分析:此等腰梯形的面积有三部分组成,利用等腰梯形的面积等于三个直角三角形的面积之和列出方程并整理.考点:勾股定理的证明.。
勾股定理的逆定理专题训练(含答案)
![勾股定理的逆定理专题训练(含答案)](https://img.taocdn.com/s3/m/15938a1aec630b1c59eef8c75fbfc77da26997e1.png)
勾股定理的逆定理专题训练(含答案)
1.三角形ABC的两边分别为5和12,另一边c为奇数,并且a+b+c是3的倍数。
求c的值和三角形的类型。
2.三角形中两条较短的边为a+b和a-b(a>b),求第三条边使得三角形为直角三角形。
3.已知三角形ABC的三边a,b,c满足a²+b²+c²+50=2(m-1)余m+1,求三角形的类型。
4.已知三角形ABC中,BC=6,BC边上的高为7,求AC 边上的高。
5.已知一个三角形的三边分别为3k,4k,5k(k为自然数),求三角形的类型和理由。
6.已知一个三角形的三边分别为7cm,24cm,25cm,求三角形的面积。
7.给出几组数,判断哪组能构成直角三角形的三边长。
8.给出几组数,判断哪组能构成直角三角形的三边长。
9.等边三角形的三条高把这个三角形分成直角三角形的个数是多少?
10.已知四边形ABCD中,AB=3,BC=4,CD=12,
AD=13,求四边形的面积。
11.已知三角形ABC中,AC=17,AD=8,CD=15,
AB=10,求三角形的类型和面积。
12.已知三角形ABC中,AB=17cm,BC=30cm,求三角形的类型和面积。
13.判断一个机器零件是否符合要求。
14.已知四边形ABCD中,∠B=90,BC上的中线
AD=8cm,判断三角形ABC的类型和理由。
15.为了庆祝红宝石婚,XXX和XXX举办了一场数学竞赛,其中包括了勾股定理的逆定理的专题训练。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的逆定理 专题训练
1.给出下列几组数:①111,,345
;②8,15,16;③n 2-1,2n ,n 2+1;④m 2-n 2,2mn ,m 2+n 2(m>n>0).其中—定能组成直角三角形三边长的是( ).
A .①②
B .③④
C .①③④
D .④
2.下列各组数能构成直角三角形三边长的是( ).A .1,2,3 B .4,5,6 C .12,13,14 D .9,40,41
3.等边三角形的三条高把这个三角形分成直角三角形的个数是( ).A .8 B .10 C .11
个D .12个
4.如果一个三角形一边的平方为2(m 2+1),其余两边分别为m -1,m + l ,那么
这个三角形是( );
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
5.ABC ∆的两边分别为5,12,另—边c 为奇数,且a + b + c 是3的倍数,则c 应为_________,此三角形为________.
6.三角形中两条较短的边为a + b ,a - b (a>b ),则当第三条边为_______时,此三角形为直角三角形.
7.若A B C ∆的三边a ,b ,c 满足a 2+b 2+c 2+50=6a +8b +l0c ,则此三角形是_______三角形,面积为______.
8.已知在ABC ∆中,BC =6,BC 边上的高为7,若AC =5,则AC 边上的高为 _________.
9.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为______,理由是_______.
10.一个三角形的三边分别为7cm ,24 cm ,25 cm ,则此三角形的面积为_________。
11.如图18-2-5,在ABC ∆中,D 为BC 上的一点,若AC =l7,AD =8,CD=15,AB =10,求ABC ∆的周长和面积.
12.已知ABC ∆中,AB =17 cm ,BC =30 cm ,BC 上的中线AD =8 cm ,请你判断ABC ∆的形状,并说明理由 .
,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的14.如图18-2-7,四边形ABCD中,B=90
面积.
15.为了庆祝红宝石婚纪念日,詹克和凯丽千家举行聚会.詹克忽然发现他的年龄的平方与凯丽年龄的平方的差,正好等于他的子女数目的平方,已知詹克比凯丽大一岁,现在他们都不到70岁.请问,当年结婚时,两个人各是多少岁?现在共有子女几人?(在西方,结婚40周年被称为红宝石婚,且该国的合法结婚年龄为16岁)
16.有一只喜鹊正在一棵高3 m的小树的树梢上觅食,它的巢筑在距离该树24 m且高为14 m的一棵大树上,巢距离大树顶部1m,这时,它听到巢中幼鸟求助的叫声,便立即赶过去.如果它飞行的速度为5m/s,那么它至少需要几秒才能赶回巢中?。
四、思维拓展
17.给出一组式子:32+42=52,52+122=132,72+242=252,92+402=412,…
(1)你能发现关于上述式子的一些规律吗?
(2)请你运用规律,或者通过试验的方法(利用计算器),给出第五个式子.
18.我们知道,以3,4,5为边长的三角形为直角三角形,称3,4,5为勾股数组,记为(3,4,5),类
似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.
(1)请你根据上述四组勾股数的规律,写出第六组勾股数;
(2)试用数学等式描述上述勾股数组的规律;
(3)请证明你所发现的规律.
13.一种机器零件的形状如图18-2-6,规定这个零件中的∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图(单位:mm),这个零件符合要求吗?
五、中考热身
19.如图18-2-8,校园内有两棵树,相距12m,一棵树高13m,另一棵树高8m.一
只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______m.。