数学建模随机微分方程法
数学建模的主要建模方法
数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
随机微分方程求解
随机微分方程求解随机微分方程(RandomDifferentialEquations)是一类重要的数学方程,可以用来描述现实世界中复杂的动力系统及随机驱动的物理系统。
该方程可以广泛用于描述金融市场、海洋系统、生物系统、社会及经济系统等领域的复杂性。
因此,随机微分方程的求解十分重要。
本文将详细介绍随机微分方程求解的方法和步骤。
首先,我们需要了解随机微分方程的定义。
随机微分方程是一种连续不断变化的动力系统,它用来描述随时间变化的系统性质和活动。
其次,我们需要研究随机微分方程的结构。
它是一种传递函数方程,由延迟、偏微分和随机部分组成。
其中,延迟表示系统状态对历史影响的程度,而偏微分表示系统状态的变化率,随机部分表示其他外部因素的影响。
然后,接下来就是根据随机微分方程的结构,求解该方程的结果。
首先,我们需要根据延迟和偏微分项构造含有时间变量的传递函数。
接着,要计算出响应函数,以确定系统在不同时间点的状态。
最后,我们需要根据传递函数和响应函数求解该随机微分方程,从而得出最终的结果。
在求解随机微分方程时,要运用到一些数学知识,包括微积分、线性系统理论、概率论及数值方法等。
这些数学知识和工具可以帮助我们构建出准确的模型,从而更准确地预测随机微分方程的解。
最后,我们可以使用一些数值方法解决随机微分方程。
常用的数值方法有有限差分法、有限元法和有限元积分法等。
这些数值方法可以用来解决复杂的随机微分方程,并得出准确的结果。
以上就是随机微分方程求解的方法及步骤,可以作为学术研究和实际应用的基础和指南。
此外,为了更好地解决随机微分方程,还需要不断完善数学建模的方法,使其能够更加准确地捕捉现实世界的复杂性。
数学建模十大经典算法( 数学建模必备资料)
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
高三数学建模知识点梳理
高三数学建模知识点梳理数学建模是一项将现实世界中的问题转化为数学模型,并通过数学方法进行求解和分析的技术。
对于高三学生来说,掌握数学建模的基本知识点对于提高数学素养和解决实际问题具有重要意义。
本文将对高三数学建模的知识点进行梳理,帮助大家更好地理解和应用。
1. 数学建模的基本概念1.1 什么是数学建模数学建模是一种模拟现实世界问题的方法,通过将实际问题抽象为数学模型,并用数学语言和符号进行表述,从而为问题的求解和分析提供一种数学框架。
1.2 数学建模的步骤数学建模的一般步骤包括:问题分析、假设与简化、模型的建立、模型的求解、模型的验证与改进、模型的应用。
2. 数学建模的方法与技巧2.1 建立模型的方法建立模型的方法主要有以下几种:(1)解析模型:通过数学公式和逻辑推理来描述系统的运行规律。
(2)数值模型:通过数值模拟和计算来近似描述系统的行为。
(3)统计模型:通过统计分析和概率论方法来描述系统的随机性。
(4)机器学习模型:通过训练数据和算法来发现数据的规律性。
2.2 模型的求解方法模型的求解方法主要有以下几种:(1)微分方程法:利用微分方程来描述系统的动态变化。
(2)代数方程法:利用代数方程来描述系统的静态关系。
(3)线性规划法:利用线性规划来求解优化问题。
(4)非线性规划法:利用非线性规划来求解优化问题。
(5)最优化方法:利用各种优化算法来求解最优化问题。
2.3 模型的验证与改进模型的验证与改进主要包括以下几个方面:(1)模型的一致性:确保模型与实际问题在数学表述上的一致性。
(2)模型的准确性:通过实验数据和实际应用来检验模型的准确性。
(3)模型的适应性:根据实际情况对模型进行调整和改进。
3. 数学建模的应用领域数学建模广泛应用于自然科学、社会科学、工程技术等各个领域,具体包括:(1)物理科学:如天体运动、量子力学、热力学等。
(2)生物科学:如遗传算法、神经网络、生态模型等。
(3)经济学:如市场预测、优化生产、经济博弈等。
数学建模 微分方程模型讲解
量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
数学建模,第三章-微分方程模型
8小时20分-2小时57分=5小时23分
即死亡时间大约在下午5:23,因此张某不能被 排除在嫌疑犯之外。
理学院
3.2 目标跟踪模型
例1 饿狼追兔问题 黑 龙 现有一直兔子,一只狼,兔子位于狼的正西100米处,假 江 科 设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的 技 巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度 学 是兔子的2倍。兔子能否安全回到巢穴? 整理得到下述模型: 院 解:设狼的行走轨迹为y=f(x),则有:
理பைடு நூலகம்院
本章将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
黑 龙 江 科 技 学 院 数 学 建 模
数 学 建 模
B
60
2 2xf' ' x 1 f' x y' x 0 , y 0 100 x 100 解得狼的行走轨迹为: 100 0 100 (0,h) 0, f' f 假设在某一时刻,兔子跑到 处,而狼在 (x,y)处,则有:
理学院
y y0 g e
g
车间空气中CO2浓度y 与时间t的数学模型
黑 龙 江 科 技 学 院 数 学 建 模
3.4 学习模型
一般认为,对一项技术工作,开始学得较快,但随着学 得越来越多时,内容也越来越复杂,学员学得就会越来越慢。
员学习的速度,则随y的增长而下降。
dy 设y%表示已经掌握了这项工作的百分数, dt
数学建模知识点总结
数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
数学建模中的差分方程与微分方程
数学建模是一门研究如何用数学方法解决实际问题的学科,它在现代科学、工程技术以及社会经济领域中扮演着重要的角色。
在数学建模的过程中,我们经常会遇到需要描述连续或离散变化的问题,而差分方程与微分方程则成为了解决这类问题的有力工具。
差分方程是描述离散变化的方程,它将一个变量与它在前一时刻或前几个时刻的取值联系起来。
在数学建模中,差分方程常常被用来描述离散的时间或空间变化,比如物种数量的变化、金融市场的波动等。
差分方程最简单的形式是递推式,它用一个前一时刻的变量的值来表示当前时刻的变量的值。
例如,一个典型的一阶差分方程可以写作:$x_{n+1}=f(x_n)$,其中$x_n$表示第$n$个时刻的变量的值,$f(x_n)$表示根据$x_n$计算出的$x_{n+1}$的函数。
通过递推式,我们可以得到变量在不同时刻的取值,进而研究它的变化规律。
微分方程是描述连续变化的方程,它涉及到变量对时间的导数或各个变量之间的关系。
微分方程在数学建模中的应用非常广泛,尤其在物理学、生物学等自然科学领域中经常被用来描述变化的物理现象。
微分方程的形式多种多样,比如一阶线性微分方程、二阶非线性微分方程等等。
一阶微分方程的一般形式可以写作:$\frac{dx}{dt}=f(x,t)$,其中$x$表示一个或多个变量,$t$表示时间,$f(x,t)$表示$x$和$t$的关系。
通过求解微分方程,我们可以得到变量随时间的变化规律,并进一步分析问题。
在实际问题中,差分方程与微分方程往往会相互呼应和融合,一些问题既可以用差分方程描述离散变化,也可以用微分方程描述连续变化。
这时,我们可以通过将差分方程转化为微分方程或将微分方程离散化为差分方程来求解问题。
例如,在人口增长的问题中,我们可以通过建立一个差分方程来描述每一年的人口数量,而利用微分方程的分析方法可以得到人口增长的长期行为。
又例如,在物理学中,连续介质的运动可以用微分方程描述,而粒子的运动可以用差分方程描述。
数学建模中的微分方程及其应用研究
数学建模中的微分方程及其应用研究随着科技的不断发展,数学建模已经成为了一个不可或缺的工具。
数学建模是指将现实问题抽象为数学模型,通过数学方法来预测和解决问题。
微分方程是数学建模中的关键工具之一。
在本文中,我将介绍微分方程在数学建模中的重要性以及其应用研究。
一、微分方程的定义和分类微分方程是描述一个或多个未知函数及其导数之间关系的方程,通常用来描述自然现象。
微分方程可以分为常微分方程和偏微分方程两种。
常微分方程是指只涉及一个自变量的导数的方程,例如:$\frac{dy}{dx}= f(x,y)$偏微分方程是指涉及多个自变量的导数的方程,例如:$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}=0$二、微分方程在数学建模中的重要性微分方程在数学建模中有着广泛的应用。
它可以用来研究自然现象中的变化关系,例如物理学中的运动规律、化学中的反应过程,甚至是医学中的疾病治疗。
通过微分方程的求解,我们可以得到有关系统的重要信息,比如系统的稳定性、解的性质、系统的动态行为等等。
三、常微分方程在数学建模中的应用常微分方程是数学建模中最常见的工具之一。
在数学建模中,解决一个常微分方程通常需要以下步骤:1. 根据问题描述建立数学模型。
2. 对模型中的常微分方程进行求解。
3. 通过解析解或数值解来得到所需的结果。
以下是常微分方程在数学建模中的一些应用:1. 表示天体运动的牛顿运动定律。
牛顿运动定律可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -G\frac{Mm}{r^2}$其中,$m$ 是天体的质量,$M$ 是太阳的质量,$r$ 是天体和太阳之间的距离,$G$ 是万有引力常数,$x$ 是天体相对太阳的位置。
通过求解这个方程,我们可以得到天体的运动轨迹。
2. 描述弹簧振动的简谐运动。
弹簧振动可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -kx$其中,$m$ 是弹簧质量,$k$ 是弹簧的弹性系数,$x$ 是弹簧相对平衡位置的偏移量。
微分方程模型
r0
r0
x(t ) x0
x(t ) 0
人口将始终保持不变! 人口将按指数规律减少直 至绝灭!
2 T ln r
人口倍增时间
Malthus模型预测美国人口
Malthus模型预测美国人口
Malthus模型预测的优缺点
优点 缺点 原因 短期预报比较 准确 不适合中长期预报 预报时假设人口增长率 r 为常数。没有考虑环 境对人口增长的制约作用。
机动
目录
上页
下页
返回
结束
医学(流行病,传染病问题)模型,经济(商业销 售,财富分布,资本主义经济周期性危机)模 型,战争(正规战,游击战)模型等。 下面,我们给出如何利用方程知识建立 数学模型的几种方法。
机动
目录
上页
下页
返回
结束
1.利用题目本身给出的或隐含的等量 关系建立微分方程模型。这就需要我们仔 细分析题目,明确题意,找出其中的等量关 系,建立数学模型。 2.从一些已知的基本定律或基本公式出 发建立微分方程模型.我们要熟悉一些常用 的基本定律,基本公式.例如力学中的牛顿第 二运动定律,电学中的基尔霍夫定律等.从 这些知识出发我们可以建立相应的微分方 程模型。
到t t时刻, 除去死亡的人外 , 活着的都变成了
r dr1 , r dr dr1 区间内的人, t t时刻年龄在
即p(r dr 1 , t dt) dr.这里dr 1 dt.
而在这段时间內死去的 人数为 r , t pr , t drdt, 它们之间的关系为 : pr , t dr pr dr 1 , t dt dr r , t p r , t drdt r , t pr , t drdt
随机微分方程(stochastic differential equation,sde)
随机微分方程(stochastic differential equation,sde) 1. 引言1.1 概述随机微分方程(Stochastic Differential Equation,SDE)是一类描述随机现象的微分方程。
相比于传统的确定性微分方程,SDE中包含了一个或多个随机项,能够更准确地描述现实世界中的不确定性和变动性。
SDE在各个领域中广泛应用,特别是金融学、物理学和生物学等领域。
1.2 文章结构本文将从以下几个方面介绍随机微分方程及其应用:定义与基本概念、解随机微分方程的方法与技巧,以及在实际问题中的应用。
具体可以分为三个主要部分:引言、主体内容和结论展望。
1.3 目的本文旨在介绍随机微分方程的基本概念、解法和应用,并探讨其在金融学、物理学和生物学等领域中的实际应用。
通过对随机微分方程的深入了解,读者可以更好地理解和利用该方法来解决实际问题,并对未来研究提出展望。
以上为“1. 引言”部分的内容。
2. 随机微分方程的定义与基本概念2.1 随机过程简介随机过程是一类描述随着时间推移而随机变化的数学模型。
它可以看作是时间参数上的一族随机变量的集合。
随机过程常用于描述具有随机性质的现象,如金融市场中的股票价格、天气预报中的温度变化等。
2.2 随机微分方程的定义随机微分方程是一类描述含有随机项(通常为噪声)的微分方程。
它通常采用以下形式表示:dX(t) = a(X(t), t)dt + b(X(t), t)dW(t)其中,X(t)是未知函数,a(X(t), t)和b(X(t), t)是已知函数,dW(t)表示Wiener 过程(也称为布朗运动或白噪声)。
这个方程表示了X在无穷小时间段dt内发生微小变化dX(t),其中包含一个确定性项a(X(t), t)dt和一个随机项b(X(t), t)dW(t)。
2.3 常见的随机微分方程模型在实际应用中,有许多不同类型的随机微分方程模型被广泛使用。
- Ornstein-Uhlenbeck 过程:该模型描述了维持平衡状态的粒子在受到随机扰动时的演化过程。
微分方程在数学建模中应用
总结
描述对象特征随时间(空间)变化的特征 分析对象特征的变化规律 根据函数及其变化率之间的关系确定函
数 根据建模目的和问题分析做出简化假设 按照内在规律或用类比的方法建立微风
方程
模型1:马尔萨斯(Malthus)模型
马尔萨斯通过对大量的人口数据进行分析, 做出了如下假设:单位时间内人口增长量与人
口总数成正比,即人口净增长率 r 基本上是一 常数 ,r b d , b 为出生率,d 为死亡率。
设时刻 t的人口总数为N(t),时间从 t 到t t
人口增长量为:
N(t t) N(t) rN (t)t
模型2
区分已感染者(病人)和未感染者(健康人)
假设
1)总人数N不变,病人和健康 人的 比例分别为 i(t), s(t)
SI 模型
2)每个病人每天有效接触人 ~ 日 数为, 且使接触的健康人致病 接触率
建模
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
已感染人数 (病人) i(t)
假设
每个病人每天有效接触(足以
使人致病)人数为
建模
i(t t) i(t) i(t)t
di i
dt i(0) i0
i(t) i0et
t i
分析一下
若有效接触的是病人,则不能使病人数增加 ?
必须区分已感染者(病人)和未感染者(健康人)
Malthus模型呈现的是J型增长,只适应 于短期内,并无外界因素影响。而Logistic 模型呈现S型,适应于中长期且有外界因素 影响。
Malthus模型和Logistic模型的推广
Malthus模型与Logistic模型虽然都是 为了研究种群数量的增长情况而建立的, 但它们也可用来研究其他实际问题,只要 这些实际问题的数学模型有相同的微分方 程即可。
数学建模公选课:第五讲-微分方程模型
详细描述
龙格-库塔方法具有较高的精度和稳定性,适用于求解各种复杂的一阶和二阶常微分方程。
04
微分方程模型的应用实例
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常使用微分方程来描述人口随时间变化的规律。该模型基于假设,如人口增长率与当 前人口数量成正比,来建立微分方程。通过求解该微分方程,可以预测未来人口数量。
模型建立
如何根据实际问题建立合适的微分方 程模型是一个挑战。
02
高维问题
对于高维微分方程,如何求解是一个 难题。
01
03
非线性问题
非线性微分方程的求解更加复杂和困 难。
未来展望
随着科学技术的发展,微分方程模型 的应用领域将更加广泛,求解技术也 将更加成熟和多样化。
05
04
多尺度问题
如何处理不同时间尺度的微分方程是 一个挑战。
数学建模公选课:第五讲 -微分方程模型
• 微分方程模型简介 • 微分方程模型的建立 • 微分方程模型的求解方法 • 微分方程模型的应用实例 • 微分方程模型的发展趋势与展望
01
微分方程模型简介
微分方程的基本概念
微分方程是描述数学模型中变量随时间变化的数学表达式,通常表示为包含未知函 数及其导数的等式。
05
微分方程模型的发展趋势与展望
微分方程模型在各领域的应用前景
物理领域
描述物体的运动规律,如牛顿 第二定律、波动方程等。
经济领域
分析市场供需关系和预测经济 趋势。
工程领域
预测和控制系统的动态行为, 如电路、机械系统等。
生物医学领域
数学建模实验答案_微分方程模型
数学建模实验答案_微分⽅程模型实验07 微分⽅程模型(2学时)(第5章微分⽅程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt=-= 其中,i (t )是第t 天病⼈在总⼈数中所占的⽐例。
k 是每个病⼈每天有效接触的平均⼈数(⽇接触率)。
i 0是初始时刻(t =0)病⼈的⽐例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最⼤值,并在曲线图上标注。
提⽰:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图⽤fplot 函数,调⽤格式如下: fplot(fun,lims)fun 必须为⼀个M ⽂件的函数名或对变量x 的可执⾏字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可⽤fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最⼤值⽤求解边界约束条件下的⾮线性最⼩化函数fminbnd,调⽤格式如下:x=fminbnd('fun',x1,x2)fun必须为⼀个M⽂件的函数名或对变量x的可执⾏字符串。
返回⾃变量x在区间x1本题可⽤x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指⽰最⼤值坐标⽤线性绘图函数plot,调⽤格式如下:plot(x1,y1, '颜⾊线型数据点图标', x2,y2, '颜⾊线型数据点图标',…)本题可⽤hold on; %在上⾯的同⼀张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使⽤⽂本标注函数text,调⽤格式如下:格式1text(x,y,⽂本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注⽂本在图中添加的位置。
12.数学建模-随机微分方程法
(3) 股票价格的随机模型 在对任何资产(例如股票)进行投资时,投资者所关心的是对资 产投资的回报率多大,而不是该资产的绝对增加量多大。例如, 有两种股票 A 与 B , 假定它们每年每股都平均增加10元,股票 A 的 市价为 100元/ 股,股票 B 的市价为 1000元/ 股。 显然,股票 A 是 投资者的最佳选择,因为它的回报率为 10 % , 而股票B的回报率 只有 1 % 。 在进行股票投资时,如果记 Si 是第 i 天的股票价格,则投资的 S i +1 Si 日回报率为:
dz = ε dt
对于维纳过程而言, 对于维纳过程而言 我们常称其随机变量在某个时刻的平均值为该 平均漂移” 变量在该时刻的 “平均漂移”, 而称在单位时间处的平均漂移为该维 纳过程的漂移率 ; 同时还称此随机变量在单位时间处的方差值为该 . 维纳过程的方差率. 上面讨论到的维纳过程, 维纳过程的方差率 上面讨论到的维纳过程 其漂移率应是 0 , 方差 率应是 1 . 这里 , 漂移率为 0 , 意味着在未来任何时刻 , z 的期望值 的一段时间段后, 等于它的当前值 ; 方差率为 1 , 意味着在长度为 T 的一段时间段后 z 的变化的方差为 1×T = T . × 的维纳过程,我们常称之为 漂移率为 0、方差率为 1 的维纳过程 我们常称之为 基本维纳过 、 程 . 软件程序可以写为: 生成 基本维纳过程 的 Mathematica 软件程序可以写为:
R e a l , 1 ,
- 1 0 0 , 1 0 0
;
* D t
0 . 5
,
i ,
1 0 0
= y
,
i
i i ,
+ 0 . 3 D t
1 0 0
1 ,
数学建模之微分方程建模与平衡点理论
数学建模之微分方程建模与平衡点理论-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。
(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。
(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
一、模型的建立与求解1.1传染病模型(1)基础模型假设:t 时刻病人人数()x t 连续可微。
每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。
建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。
(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。
人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。
2.每位病人每天平均有效接触λ人,λ为日接触率。
有效接触后健康者变为病人。
依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:diNNsi dtλ= (4) 由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2~dii dt图形如下,结论:在不考虑治愈情况下①当12i =时di dt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。
数学建模微分方程的应用举例
数学建模——微分方程的应用举例分布图示★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题内容要点一、衰变问题例1 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量.解 用x 表示该放射性物质在时刻t 的质量, 则dtdx表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为.kx dtdx-= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少.解方程(8.1)得通解.ktCex -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解,)(00t t k e x x --=它反映了某种放射性元素衰变的规律.注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素(U 238)的半衰期约为50亿年;通常的镭(Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.二、 逻辑斯谛方程:逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型.一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型.如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比.设树生长的最大高度为H (m), 在t (年)时的高度为h (t ), 则有)]()[()(t h H t kh dtt dh -= (8.2) 其中0>k 是比例常数. 这个方程为Logistic 方程. 它是可分离变量的一阶常数微分方程.下面来求解方程(8.2). 分离变量得,)(kdt h H h dh=-两边积分,)(⎰⎰=-kdt h H h dh得 ,)]ln([ln 11C kt h H h H+=-- 或,21kHt H C kHt e C e hH h ==-+故所求通解为,11)(22kHtkHt kHt CeH e C He C t h -+=+= 其中的⎪⎪⎭⎫ ⎝⎛>==-0112H C e C C C 是正常数. 函数)(t h 的图象称为Logistic 曲线. 图8-8-1所示的是一条典型的Logistic 曲线, 由于它的形状, 一般也称为S 曲线. 可以看到, 它基本符合我们描述的树的生长情形. 另外还可以算得.)(lim H t h t =+∞→这说明树的生长有一个限制, 因此也称为限制性增长模式.注: Logistic 的中文音译名是“逻辑斯谛”. “逻辑”在字典中的解释是“客观事物发展的规律性”, 因此许多现象本质上都符合这种S 规律. 除了生物种群的繁殖外, 还有信息的传播、新技术的推广、传染病的扩散以及某些商品的销售等. 例如流感的传染、在任其自然发展(例如初期未引起人们注意)的阶段, 可以设想它的速度既正比于得病的人数又正比于未传染到的人数. 开始时患病的人不多因而传染速度较慢; 但随着健康人与患者接触, 受传染的人越来越多, 传染的速度也越来越快; 最后, 传染速度自然而然地渐渐降低, 因为已经没有多少人可被传染了.下面举两个例子说明逻辑斯谛的应用.人口阻滞增长模型 1837年, 荷兰生物学家V erhulst 提出一个人口模型00)(),(y t y by k y dtdy=-= (8.3)其中b k ,的称为生命系数.我们不详细讨论这个模型, 只提应用它预测世界人口数的两个有趣的结果.有生态学家估计k 的自然值是0.029. 利用本世纪60年代世界人口年平均增长率为2%以及1965年人口总数33.4亿这两个数据, 计算得,2=b 从而估计得:(1)世界人口总数将趋于极限107.6亿. (2)到2000年时世界人口总数为59.6亿.后一个数字很接近2000年时的实际人口数, 世界人口在1999年刚进入60亿. 新产品的推广模型 设有某种新产品要推向市场, t 时刻的销量为),(t x 由于产品性能良好, 每个产品都是一个宣传品, 因此, t 时刻产品销售的增长率,dtdx与)(t x 成正比, 同时, 考虑到产品销售存在一定的市场容量N , 统计表明dtdx与尚未购买该产品的潜在顾客的数量)(t x N -也成正比, 于是有)(x N kx dtdx-= (8.4)其中k 为比例系数. 分离变量积分, 可以解得kNtCeNt x -+=1)( (8.5)由,)1()1(,)1(2322222kNt kNt kNt kNt kNt Ce Ce e N Ck dt x d Ce ke CN dt dx -----+-=+= 当N t x <)(*时, 则有,0>dt dx 即销量)(t x 单调增加. 当2)(*N t x =时, ;022=dt x d 当2)(*N t x >时, ;022<dt x d 当2)(*Nt x <时, 即当销量达到最大需求量N 的一半时, 产品最为畅销, 当销量不足N 一半时, 销售速度不断增大, 当销量超过一半时, 销售速度逐渐减少.国内外许多经济学家调查表明. 许多产品的销售曲线与公式(8.5)的曲线(逻辑斯谛曲线)十分接近. 根据对曲线性状的分析, 许多分析家认为, 在新产品推出的初期, 应采用小批量生产并加强广告宣传, 而在产品用户达到20%到80%期间, 产品应大批量生产; 在产品用户超过80%时, 应适时转产, 可以达到最大的经济效益.三、价格调整模型在本章第一节例3已经假设, 某种商品的价格变化主要服从市场供求关系. 一般情况下,商品供给量S 是价格P 的单调递增函数, 商品需求量Q 是价格P 的单调递减函数, 为简单起见, 分别设该商品的供给函数与需求函数分别为P P Q bP a P S βα-=+=)(,)( (8.6)其中βα,,,b a 均为常数, 且.0,0>>βb当供给量与需求量相等时, 由(8.6)可得供求平衡时的价格baP e +-=βα 并称e P 为均衡价格.一般地说, 当某种商品供不应求, 即Q S <时, 该商品价格要涨, 当供大于求, 即Q S >时, 该商品价格要落. 因此, 假设t 时刻的价格)(t P 的变化率与超额需求量S Q -成正比, 于是有方程)]()([P S P Q k dtdP-= 其中,0>k 用来反映价格的调整速度.将(8.6)代入方程, 可得)(P P dtdPe -=λ (8.7) 其中常数,0)(>+=k b βλ方程(8.7)的通解为t e Ce P t P λ-+=)(假设初始价格,)0(0P P =代入上式, 得,0e P P C -=于是上述价格调整模型的解为t e e e P P P t P λ--+=)()(0由于0>λ知, +∞→t 时, .)(e P t P →说明随着时间不断推延, 实际价格)(t P 将逐渐趋近均衡价格e P .四、人才分配问题模型每年大学毕业生中都要有一定比例的人员留在学校充实教师队伍, 其余人员将分配到国民经济其他部门从事经济和管理工作. 设t 年教师人数为),(1t x 科学技术和管理人员数目为),(2t x 又设1外教员每年平均培养α个毕业生, 每年人教育、科技和经济管理岗位退休、死亡或调出人员的比率为βδδ),10(<<表示每年大学生毕业生中从事教师职业所占比率),10(<<δ于是有方程111x x dt dx δαβ-= (8.8) 212)1(x x dtdx δβα--= (8.9) 方程(8.8)有通解t e C x )(11δαβ-=(8.10)若设,)0(101x x =则,101x C =于是得特解te x x )(101δαβ-= (8.11)将(8.11)代入(8.9)方程变为tex x dtdx )(1022)1(δαββαδ--=+ (8.12) 求解方程(8.12)得通解t te x eC x )(122)1(δαβδββ---+= (8.13)若设,)0(202x x =则,110202x x C ⎪⎪⎭⎫⎝⎛--=ββ于是得特解 tt ex e x x x )(101020211δαβδββββ--⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--= (8.14) (8.11)式和(8.14)式分别表示在初始人数分别为)0(),0(21x x 情况, 对应于β的取值, 在t 年教师队伍的人数和科技经济管理人员人数. 从结果看出, 如果取,1=β即毕业生全部留在教育界, 则当∞→t 时, 由于,δα>必有+∞→)(1t x 而,0)(2→t x 说明教师队伍将迅速增加. 而科技和经济管理队伍不断萎缩, 势必要影响经济发展, 反过来也会影响教育的发展. 如果将β接近于零. 则,0)(1→t x 同时也导致,0)(2→t x 说明如果不保证适当比例的毕业生充实教师选择好比率β, 将关系到两支队伍的建设, 以及整个国民经济建设的大局.五、追迹问题设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走; 甲从乙的左侧O 点出发, 始终对准乙以)1(0>n mv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻t , 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是有,1tan 0xyt v y --='=θ (8.15) 由题设, 曲线的弧长OP 为,1002t nv dx y x='+⎰解出t v 0代入(8.15), 得.11)1(02⎰'+=+'-x dx y ny y x 两边对x 求导, 整理得.11)1(2y ny x '+=''- 这就是追迹问题的数学模型.这是一个不显含y 的可降阶的方程, 设p y x p y ''=''='),(, 代入方程得211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分, 得|,|ln |1|ln 1)1ln(12C x np p +--=++即 .1112nxC p p -=++ 将初始条件00||==='x x p y 代入上式, 得.11=C 于是,1112nxy y -='++' (8.16) 两边同乘,12y y '+-'并化简得,112n x y y --='+-' (8.17)(8.16)与(8.17)式相加, 得,11121⎪⎭⎫ ⎝⎛---='n n x x y两边积分, 得.)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+-代入初始条件0|0==x y 得,122-=n nC 故所求追迹曲线方程为 ),1(11)1(1)1(2211>-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+-=-+n n n n x n x n y n n n n甲追到乙时, 即曲线上点P 的横坐标,1=x 此时.12-=n n y 即乙行走至离A 点12-n n个单位距离时被甲追到.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t0.5 ,
ii) 一般化维纳过程 ( generalized wiener process )
在基本维纳过程的基础上, 还可以定义一个广义类型的维纳过程.
设随机变量 x 满足以下等式 : dx = a dt + b dz ( # )
其中 a 和 b 为常数 , 变量 z 遵循基本维纳过程 , 则称变量 x 遵循
一般化维纳过程.
从一般化维纳过程的定义式 ( # ) 可以看出, adt 项表明 x 是时间 t 的线性函数, 而 bdz 项可被看作是添加到 x 的变动轨迹上的噪声或 波动. 换言之 , 一个线性变化过程与一个基本维纳 ( 随机 ) 过程的 叠加结果便是一个一般化维纳 ( 随机 ) 过程.
如果变量 z 遵循 基本维纳过程 , 则 Δz 必须满足两个基本性质:
(a) z t (*) 其中ε是服从标准正态分布的一个随机变量 .
当
Δt
→0
时,
方程
(*)
可以写为
,
..
:
dz dt
(b) 对于任何两个不同时间间隔 Δt , Δz 的值是相互独立的.
从性质 (a) , 我们推得 Δz 本身具有正态分布, 其中 :
从而导致这种股票的价格当即上扬, 变成了每股20元, 结果这种所谓 已被 “察觉” 的一个月后必然获利机会瞬间就会消失 .
这说明上面的 “根据股票价格的历史发展情况可以推断出股票价格的
今后发展情况” 的 假定 是不成立的.
股票价格变化的这个性质被称为 “股价具有弱市场有效性 ” (the we
form of market efficiency).
因为 假定 根据过去一段时间内某种股票价格变化的情况, 可以判断 出 在未来的一段时间内, 例如在一个月后,这种股票将从现在价格
每股10元上涨到每股15元左右. 由于一个成熟的市场上, 所有的信息在市场上都能有效地 ( 均匀、同 时地 ) 传播, 这种股票价格变动的特征立即会被众多的投资者发现, 投资者第二天开市就会马上买入这种股票, 对这种股票的需求也会 立即增加,
过程表明只有变量的当前值与未来的预测有关, 而变量过去的历史 和变量从过去到现在的演变方式与未来的预测不相关. 或者说, 随机 变量过去的取值与今后的取值是相互独立的.
因此 ,在建立股票价格的数学模型时,通常的假设是: 股票价格遵循 马尔科夫过程 . 在以下提及的一个的实例中,我们可以看到,这样的
假设能经受实践的检验。
(2) 维纳 ( Wiener) 过程
i) 基本维纳过程
在马尔科夫随机过程的数学研究中,有一种特殊的马尔科夫过程,它
被称为 基本维纳过程 (wiener processes) .物理学中最早用它来描 绘某个粒子受到大量小分子碰撞的运动,有时它也被称为 布朗运动
(Brownian motion) .
Δz的均值 = E(z) E( t ) t E( ) t 0 0
Δz的方差 = D(z) D( t ) ( t )2 D( ) t 1 t
Δz的标准差 = D(z) t 性质 (b) 则隐含 z 遵循 马尔科夫过程 .
下面我们考虑在一段相当长的时间 T 中 z 值的变化量, 我们将它表示 为: z ( T ) – z ( 0 ) .
dz dt
对于维纳过程而言, 我们常称其随机变量在某个时刻的平均值为该 变量在该时刻的 “平均漂移”, 而称在单位时间处的平均漂移为该维 纳过程的漂移率 ; 同时还称此随机变量在单位时间处的方差值为该 维纳过程的方差.率. 上面讨论到的维纳过程, 其漂移率应是 0 , 方差 率应是 1 . 这里 , 漂移率为 0 , 意味着在未来任何时刻 , z 的期望值 等于它的当前值 ; 方差率为 1 , 意味着在长度为 T 的一段时间段后, z 的变化的方差为 1×T = T .
§13. 常见的数学建模方法(8) ---- 随机微分方程法
实例: 股票价格模型 1. 股票价格的随机变化过程
(1) 股票价格的马尔科夫性质
在实际经济生活中, 投资者都非常密切地注视着股票市场的变化,
总想试图通过各种各样的分析, 从股票市场的变化中寻找有用的信息
而从中获利.
但事实上, 这是不可能的 !
漂移率为 0、方差率为 1 的维纳过程,我们常称之为 基本维纳过 程. 生成 基本维纳过程 的 Mathematica 软件程序可以写为:
t 0.01; z 1 10; Do
N zi 1 z i Random Real, 10, 10 i, 1, 100 ;
a Table z i , i, 1, 100 ; ListPlot a, PlotJoined True,
弱市场有效性 主要是有两点内涵:
其一, 现在的价格是过去所有信息的完全反映, 没有任何信息的作用 会持续到以后 ;
其二, 对于某种资产的任何新信息,市场会立即作出反映.
从数学上来说, 这是一种称之为马尔科夫随机过程 所具有的性质.
马尔科夫过程 (Markov process) 是一种特殊类型的随机过程. 这个
N
i1
N i1
i 1
t D(i ) t = N Δt = T ,
i 1
i 1
因此, , 遵循维纳过程的随机变量 , 在任意长度为 T 的时间间隔内的
变化量服从于均值为 0、标准差为 T 的正态分布 .
当 Δt →0时, 体现维纳过程性质 (a) 的方程 (*) 可以写为 :
这可以被看作是在 N 个长度为 Δt 的小时间间隔中 z 的变化总量. 这里 N = T /Δt .
N
N
因此 , z ( T ) – z ( 0 ) = zi i t
i1
i1
其中 εi 服从标准正态分布, 且是相互独立的.
由此可得 z ( T ) – z ( 0 ) 是正态分布的,T) – z(0)] 的均值 = E( zi ) E( i t ) E(i t )
i1
i1
i1
N
t E( ) 0 i
i 1
N
N
N
[z(T) – z(0)] 的方差 = D( zi ) D(i t ) D(i t )