德阳市高中物理必修第3册第十章 静电场中的能量试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德阳市高中物理必修第3册第十章 静电场中的能量试卷检测题
一、第十章 静电场中的能量选择题易错题培优(难)
1.在真空中有水平放置的两个平行、正对金属平板,板长为l ,两板间距离为d ,在两极板间加一交变电压如图乙,质量为m ,电荷量为e 的电子以速度v 0 (v 0接近光速的1/20)从两极板左端中点沿水平方向连续不断地射入两平行板之间.若电子经过两极板间的时间相比交变电流的周期可忽略不计,不考虑电子间的相互作用和相对论效应,则( )
A .当U m <22
2
md v el 时,所有电子都能从极板的右端射出 B .当U m >22
2
md v el 时,将没有电子能从极板的右端射出
C .当22
2
2m md v U el =时,有电子从极板右端射出的时间与无电子从极板右端射出的时间之
比为1:2
D .当22
2
2m md v U el
=
时,有电子从极板右端射出的时间与无电子从极板右端射出的时间之比为12【答案】A 【解析】
A 、
B 、当由电子恰好飞出极板时有:l =v 0t ,
2
122d at =,m eU a md
=由此求出:22
2
m md v U el =
,当电压大于该最大值时电子不能飞出,故A 正确,B 错误;C 、当2222m md v U el =
,一个周期内有12的时间电压低于临界电压22
2
md v el ,因此有电子从极板右端射出的时间与无电子从极板右端射出的时间之比为1:1,故C 错误,D 、若
22
2
2m md v U el
=
,有电子从极板右端射出的时间与无电子从极板右端射出的时间之比为21
121
=-,则D 选项错误.故选A . 【点睛】该题考查了带电粒子的类平抛运动,和平抛运动具有相同规律,因此熟练掌握平抛运动规律是解决这类问题的关键.
2.如图所示,分别在M 、N 两点固定放置两个点电荷+Q 和-2Q ,以MN 连线的中点O 为
圆心的圆周上有A 、B 、C 、D 四点,COD 与MN 垂直,规定无穷远处电势为零,下列说法正确的是( )
A .A 点场强与
B 点场强相等 B .
C 点场强与
D 点场强相等 C .O 点电势等于零 D .C 点和D 点电势相等 【答案】D 【解析】 【分析】 【详解】
A 、由于2Q >Q ,A 点处电场线比
B 点处电场线疏,A 点场强小于B 点场强;故A 错误. B 、由于电场线关于MN 对称,
C 、
D 两点电场线疏密程度相同,则C 点场强等于D 点场强,但方向与两个电荷的连线不平行,故电场强度的方向不同,故电场强度大小相等,但方向不相同;故B 错误.
C 、根据等量异种电荷的对称性可知过O 点的中垂线与电场线垂直,中垂线为等势线,O 点的电势为零,现在是不等量的异种电荷,过O 点中垂线不再是等势线,O 点电势不为零,由U E d =⋅可知左侧的平均场强小,电势降低的慢,则零电势点在O 点右侧;C 错误.
D 、沿着电场线电势逐渐降低,结合电场分布的上下对称可知0C D ϕϕ=>;D 正确. 故选D . 【点睛】
本题考查判断电势、场强大小的能力,往往画出电场线,抓住电场线分布的特点进行判断.
3.一带电粒子在电场中仅受静电力作用,做初速度为零的直线运动,取该直线为x 轴,起始点O 为坐标原点,其电势能p E 与位移x 的关系如图所示,下列图象中合理的是( )
A .
B .
C .
D .
【答案】D 【解析】 【分析】 【详解】
粒子仅受电场力作用,做初速度为零的加速直线运动,电场力做功等于电势能的减小量,故:
P
E F x
∆=
∆ 即p E x -图象上某点的切线的斜率表示电场力;
A.p E x - 图象上某点的切线的斜率表示电场力,故电场力逐渐减小,根据
F E q
=
故电场强度也逐渐减小,故A 错误; B.根据动能定理,有:
k F x E ⋅∆=∆
故k E x -图线上某点切线的斜率表示电场力;由于电场力逐渐减小,与B 图矛盾,故B 错误;
C.按照C 图,速度随着位移均匀增加,根据公式
22
02v v ax -=
匀变速直线运动的2x v ﹣图象是直线,题图v x -图象是直线;相同位移速度增加量相等,又是加速运动,故增加相等的速度需要的时间逐渐减小,故加速度逐渐增加;而电场力减小导致加速度减小;故矛盾,故C 错误; D.粒子做加速度减小的加速运动,故D 正确.
4.如图所示,真空中有一个边长为L 的正方体,正方体的两个顶点M 、N 处分别放置电荷量都为q 的正、负点电荷.图中的a 、b 、c 、d 是其他的四个顶点,k 为静电力常量.下列
表述正确是( )
A .a 、b 两点电场强度大小相等,方向不同
B .a 点电势高于b 点电势
C .把点电荷+Q 从c 移到d ,电势能增加
D .同一个试探电荷从c 移到b 和从b 移到d ,电场力做功相同 【答案】D 【解析】
A 、根据电场线分布知,a 、b 两点的电场强度大小相等,方向相同,则电场强度相同.故A 错误.
B 、ab 两点处于等量异种电荷的垂直平分面上,该面是一等势面,所以a 、b 的电势相等.故B 错误.
C 、根据等量异种电荷电场线的特点,因为沿着电场线方向电势逐渐降低,则c 点的电势大于d 点的电势.把点电荷+Q 从c 移到d ,电场力做正功,电势能减小,故C 错误.
D 、因cb bd U U 可知同一电荷移动,电场力做功相等,则D 正确.故选D .
【点睛】解决本题的关键知道等量异种电荷周围电场线的分布,知道垂直平分线为等势线,沿着电场线方向电势逐渐降低.
5.空间某一静电场的电势φ在x 轴上分布如图所示,x 轴上两点B 、C 点电场强度在x 方向上的分量分别是E Bx 、E cx ,下列说法中正确的有
A .
B 、
C 两点的电场强度大小E Bx <E cx B .E Bx 的方向沿x 轴正方向
C .电荷在O 点受到的电场力在x 方向上的分量最大
D .负电荷沿x 轴从B 移到C 的过程中,电场力先做正功,后做负功 【答案】D 【解析】 【分析】
本题的入手点在于如何判断E Bx 和E Cx 的大小,由图象可知在x 轴上各点的电场强度在x 方向的分量不相同,如果在x 方向上取极小的一段,可以把此段看做是匀强电场,用匀强电场的处理方法思考,从而得到结论,此方法为微元法. 【详解】
A 、在
B 点和
C 点附近分别取很小的一段d ,由题图得,B 点段对应的电势差大于C 点段对应的电势差,将电场看做匀强电场,有E d
ϕ
∆=
,可见E Bx >E Cx ,A 项错误.C 、同理可知O 点的斜率最小,即场强最小,电荷在该点受到的电场力最小,C 项错误.B 、沿电场线方向电势降低,在O 点左侧,E Bx 的方向沿x 轴负方向,在O 点右侧,E Cx 的方向沿x 轴正方向,B 项错误.D 、负电荷沿x 轴从B 移到C 的过程中,电场力先向右后向左,电场力先做正功,后做负功,D 项正确.故选D . 【点睛】 挖掘出x φ-
图象两大重要性质:图象的斜率反映电场强度的大小,图象中ϕ降低的方向
反映场强沿x 轴的方向.
6.有一电场强度方向沿x 轴的电场,其电势ϕ随x 的分布满足0sin 0.5(V)x ϕϕπ=,如图所示。
一质量为m ,带电荷量为+q 的粒子仅在电场力作用下,以初速度v 0从原点O 处进入电场并沿x 轴正方向运动,则下列关于该粒子运动的说法中不正确...
的是
A .粒子从x =1处运动到x =3处的过程中电势能逐渐减小
B .若v 00q m ϕ0
6q m
ϕC .欲使粒子能够到达x =4处,则粒子从x =02q m
ϕ0
D .若0
065q v m
ϕ=0.5处,但不能运动到4处
【答案】B 【解析】 【分析】
仅有电场力做功,电势能和动能相互转化;根据正电荷在电势高处电势能大,在电势低处电势能小,判断电势能的变化。
粒子如能运动到1处,就能到达4处。
粒子运动到1处电势能最大,动能最小,由能量守恒定律求解最小速度。
【详解】
A .从1到3处电势逐渐减小,正电荷电势能逐渐减小,故A 正确;
B .粒子在运动过程中,仅有电场力做功,说明电势能和动能相互转化,粒子在1处电势能最大,动能最小,从0到1的过程中,应用能量守恒定律:
220011
(0)22
mv q mv ϕ=-+ 解得:0
2q v m
ϕ=
,故B 错误; C .根据上述分析,电势能和动能相互转化,粒子能运动到1处就一定能到达4处,所以粒子从0到1处根据能量守恒定律:
2
0112
q mv ϕ=
解得:0
12q v m
ϕ=
,故C 正确; D .根据0sin 0.5(V)x ϕϕπ=粒子在0.5处的电势为102
(V)ϕϕ=,从0到0.5处根据能量守恒定律:
22020211(
0)22
q mv mv ϕ-+= 可知:0
22q v m
ϕ0<<,所以粒子能到达0.5处,但不能运动到4处,故D 正确。
【点睛】
根据电势ϕ随x 的分布图线和粒子的电性,结合能量守恒定律判断电势能和动能的变化。
7.两个质量相同的小球用不可伸长的细线连结,置于场强为E 的匀强电场中,小球1和2均带正电,电量分别为和
(
>
).将细线拉直并使之与电场方向平行,如图所
示.若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球间
的库仑力)
A .T=(-)E
B .T=(-)E
C .T=(+)E
D .T=(
+
)E
【答案】A 【解析】 【分析】 【详解】
将两个小球看做一个整体,整体在水平方向上只受到向右的电场力,故根据牛顿第二定律可得
,对小球2分析,受到向右的电场力,绳子的拉力,由于
,球1
受到向右的电场力大于球2向右的电场力,所以绳子的拉力向右,根据牛顿第二定律有
,联立解得
,故A 正确;
【点睛】
解决本题关键在于把牛顿第二定律和电场力知识结合起来,在研究对象上能学会整体法和隔离法的应用,分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用隔离法可以较简单的分析问题
8.如图所示,一弹性轻绳(绳的弹力与其伸长量成正比)一端固定在A 点,弹性绳自然长度等于AB ,跨过由轻杆OB 固定的定滑轮连接一个质量为m 的绝缘带正电、电荷量为q
的小球。
空间中还存在着水平向右的匀强电场(图中未画出),且电场强度E =mg
q。
初始时A 、B 、C 在一条竖直线上,小球穿过水平固定的杆从C 点由静止开始运动,滑到E 点时速度恰好为零。
已知C 、E 两点间距离为L ,D 为CE 的中点,小球在C 点时弹性绳的拉力
为
32mg
,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。
下列说法正确的是
A .小球在D 点时速度最大
B .若在E 点给小球一个向左的速度v ,小球恰好能回到
C 点,则v gL C .弹性绳在小球从C 到
D 阶段做的功等于在小球从D 到
E 阶段做的功 D .若保持电场强度不变,仅把小球电荷量变为2q ,则小球到达E 点时的速度大小v 2gL 【答案】ABD 【解析】 【详解】
A.对小球分析可知,在竖直方向
sin kx θN mg =+
由与sin x θBC =,故支持力为恒力,即1
2
N mg =
,故摩擦力也为恒力大小为
14
f μN m
g ==
从C 到E ,由动能定理可得
2211
10422qEL mgL k BE k BC ⎛⎫---= ⎪⎝⎭
由几何关系可知22
2BE BC L -=,代入上式可得
3
2
kL mg =
在D 点时,由牛顿第二定律可得
1
cos 4
qE k BD θmg ma --=
由1cos 2BD θL =
,将3
2
kL mg =可得,D 点时小球的加速度为 0a =
故小球在D 点时的速度最大,A 正确; B.从E 到C ,由动能定理可得
2221
11102242k BE k BC qEL mgL m υ⎛⎫---=- ⎪
⎝⎭
解得
υ=故B 正确;
C.由于弹力的水平分力为cos kx θ,cos θ和kx 均越来越大,故弹力水平分力越来越大,故弹性绳在小球从C 到D 阶段做的功小于在小球从D 到E 阶段做的功,C 错误;
D.将小球电荷量变为2q ,由动能定理可得
22211
1124222E qEL mgL k BE k BC m υ⎛⎫---= ⎪⎝⎭
解得
E υ
故D 正确; 故选ABD 。
9.如图所示,质量相同的两个带电粒子P 、Q 以相同的初速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )
A .它们运动的时间t Q =t P
B .它们所带电荷量之比q P ∶q Q =1∶2
C .它们的电势能减少量之比ΔE P ∶ΔE Q =1∶2
D .它们的动能增量之比Δ
E k P ∶ΔE k Q =1∶4 【答案】ABD 【解析】 【详解】
A.带电粒子在垂直电场方向上不受力,都做匀速直线运动,位移相等,由x=v 0t 可知运动时间相等,即t Q =t P .故A 正确;
平行电场方向受到电场力,做初速度为零的匀加速直线运动,根据位移时间关系公式,有:
22122qE y at t m
==
, 解得:
2
2ym
q Et =
; B.由于两带电粒子平行电场方向分位移之比为 y P :y Q =1:2;所以它们所带的电荷量之比 q P :q Q =y P :y Q =1:2,故B 正确;
C.电势能的减小量等于电场力做的功即△E=qEy ,因为竖直位移之比为:y P :y Q =1:2,电荷量之比为:q P :q Q =1:2,所以它们电势能减少量之比为:△E M :△E N =1:4.故C 错误; D .根据动能定理,有:
qEx =△E k
而:
q P :q Q =1:2,x P :x Q =1:2
所以动能增加量之比:
△E kP :△E kQ =1:4
故D 正确; 故选ABD . 【点睛】
本题关键将两个带电粒子的运动分解为垂直电场方向和平行电场方向的分运动,然后结合运动学公式、牛顿运动定律和动能定理列式分析.
10.如右图所示,P 、Q 为两个等量的异种电荷,以靠近P 点的O 点为原点,沿两电荷的连线建立x 轴,沿直线向右为x 轴正方向,一带正电的粒子从O 点由静止开始在电场力作用下运动到A 点,已知A 点与O 点关于PQ 两电荷连线的中点对称,粒子的重力忽略不计,在从O 到A 的运动过程中,下列关于粒子的运动速度v 和加速度a 随时间t 的变化,粒子的动能E k 和运动径迹上电势φ随位移x 的变化图线肯定错误的是( )
A .A
B .B
C .C
D .D
【答案】ABD 【解析】 【详解】
等量异种电荷的电场线如图所示.
沿两点电荷连线从O 到A ,电场强度先变小后变大,一带正电的粒子从O 点由静止开始在电场力作用下运动到A 点的过程中,电场力一直做正功,粒子的速度一直在增大.电场力先变小后变大,则加速度先变小后变大.v-t 图象切线的斜率先变小后变大,该图是不可能的,故A 符合题意.根据沿着电场线方向电势逐渐降低,电场强度为E x
ϕ
=
,E 先减小
后增大,所以φ-x 图象切线的斜率先减小后增大,则B 图不可能,故B 符合题意;加速度先变小后变大,方向不变,C 图是可能的,故C 不符合题意.粒子的动能 E k =qEx ,电场强度先变小后变大,则E k -x 切线的斜率先变小后变大,则D 图不可能.故D 符合题意.则选ABD . 【点睛】
该题要掌握等量异种电荷的电场线的特点,结合物理规律分析图象切线斜率如何变化是解答的关键,不能只定性分析,那样会认为BD 是正确的.
11.在竖直平面内有水平向右、电场强度为E =1×104 N/C 的匀强电场,在场中有一个半径为R =2 m 的光滑圆环,环内有两根光滑的弦AB 和AC ,A 点所在的半径与竖直直径BC 成
37︒角,质量为0.04 kg 的带电小球由静止从A 点释放,沿弦AB 和AC 到达圆周的时间相
同.现去掉弦AB 和AC ,给小球一个初速度让小球恰能在竖直平面沿环内做圆周运动,取小球圆周运动的最低点为电势能和重力势能的零点,(cos370.8︒=,g =10 m/s 2)下列说法正确的是( )
A .小球所带电量为q =3.6×10-5 C
B .小球做圆周过程中动能最小值是0.5 J
C .小球做圆周运动从B 到A 的过程中机械能逐渐减小
D .小球做圆周运动的过程中对环的最大压力是3.0N 【答案】BCD 【解析】 【分析】 【详解】 解法一:
A .如图所示,令弦AC 与直径BC 的夹角为∠1,弦A
B 与水面夹角为∠2,由几何知识可得,
371=18.52
︒
∠=
︒,21=18.5∠=∠︒
对沿弦AB 带电小球进行受力分析,小球沿着弦AB 向上运动,则小球电场力向右,故小球带正电,小球受到水平向右电场力,竖直向下的重力,垂直弦AB 向上的支持力,则沿弦AB 上有:
1cos18.5sin18.5qE mg ma ︒-︒=…………①
同理对沿弦AC 的小球受力分析,沿弦AB 方向有:
2sin18.5cos18.5qE mg ma ︒+︒=…………②
设小球从A 点释放,沿弦AB 和AC 到达圆周的时间为t ,则:
211
2sin18.52R a t ︒=…………③
2
212cos18.52
R a t ︒=
…………④ 由③/④可得,
12sin18.5
=cos18.5a a ︒︒
…………⑤ 联立①②⑤可得,
cos18.5sin18.5sin18.5sin18.5cos18.5cos18.5qE mg qE mg ︒-︒︒
=︒+︒︒
…………⑥
化简可得,
22(cos 18.5sin 18.5)2sin18.5cos18.5qE mg ︒-︒=︒︒…………⑦
即cos37sin 37qE mg ︒=︒…………⑧
则5
4
tan 370.04100.75C 310C 110
mg q E -︒⨯⨯=
==⨯⨯…………⑨ 故A 错误.
B .小球恰能在竖直平面沿环内做圆周运动,小球受到水平方向的电场力,竖直向下的重力和沿半径指向圆心的支持力,电场力和重力的合力为:
()()
22
10.5N F qE mg =
+=,方向与竖直方向夹角为37°…………⑩
延长半径AO 交圆与D 点.小球在A 点可以不受轨道的弹力,重力和电场力的合力提供向心力,此时小球速度最小:
2
min 1mv F R
=…………⑪ 可得小球的最小动能
2k min 111
0.5J 22
E mv
F R =
== …………⑫ 故B 正确.
C .小球从做圆周运动从B 到A 的过程中电场力做负功,则小球机械能减小,故C 正确.
D .由B 得分析可知,小球在D 点时,对圆环的压力最大,设此时圆环对小球的支持力为
2
max 21mv F F R
-=…………⑬ 从A 到D ,由动能定理可得:
22max min 11
2sin 37+2cos3722
qE R mg R mv mv ⋅︒⋅︒=
-…………⑭
联立⑬⑭可得,23N
F=
由牛顿第三定律可得,小球对圆环的最大压力为:
22
'3N
F F
==
故D正确.
解法二:
A. 由题知,小球在复合场中运动,由静止从A点释放,沿弦AB和AC到达圆周的时间相同,则A点可以认为是等效圆周的最高点,沿直径与之对应圆周上的点可以认为是等效圆周的最低点,对小球进行受力分析,小球应带正电,如图所示,可得
mg tan37︒=qE
解得小球的带电量为
5
4
3
0.4
tan374
310C
10
mg
q
E
︒
-
⨯
===⨯
故A错误;
B. 小球做圆周过程中由于重力和电场力都是恒力,所以它们的合力也是恒力,小球的动能、重力势能和电势能之和保持不变,在圆上各点中,小球在等效最高点A的势能(重力势能和电势能之和)最大,则其动能最小,由于小球恰能在竖直平面沿环内做圆周运动,根据牛顿第二定律,在A点其合力作为小球做圆周运动的向心力
cos37
mg
︒
=m
2
A
v
R
小球做圆周过程中动能最小值
E kmin=
1
2
mv A2=
2cos37
mgR
︒
=
0.04102
20.8
⨯⨯
⨯
J=0.5J
故B正确;
C.由于总能量保持不变,小球从B到A过程中电场力做负功,电势能增大,小球的机械能逐渐减小,故C正确;
D.将重力与电场力等效成新的“重力场”,新“重力场”方向与竖直方向成37︒,等效重力
‘=
cos37
mg
G
︒
,等效重力加速度为
cos37
g
g
︒
=',小球恰好能做圆周运动,在等效最高点A
点速度为
A
v g R
='
v,由动能定理得
22
A 11·222
G R mv mv -'=
在等效最低点,由牛顿第二定律
2
N v F G m R
-='
联立解得小球在等效最低点受到的支持力
N 3.0N F =
根据牛顿第三定律知,小球做圆周运动的过程中对环的最大压力大小也为3.0N ,故D 正确.
12.如图所示,在x 轴相距为L 的两点固定两个等量异种点电荷+Q 、﹣Q ,虚线是以+Q 所
在点为圆心、
2
L
为半径的圆,a 、b 、c 、d 是圆上的四个点,其中a 、c 两点在x 轴上,b 、d 两点关于x 轴对称.下列判断正确的是( )
A .四点中d 点处的电势最低
B .b 、d 两点处的电势相等
C .b 、d 两点处的电场强度相同
D .将一试探电荷+q 沿圆周由a 点移至c 点,+q 的电势能减小 【答案】BD 【解析】 【分析】 【详解】
A.c 点在两个电荷连线的中点上,也是在两个电荷连线的中垂线上,所以它的电势和无穷远处的电势相等.而正电荷周围的电场的电势都比它高,即c 点的电势在四个点中是最低的;故A 错误.
B.该电场中的电势关于x 轴对称,所以b 、d 两点的电势相等;故B 正确.
C.该电场中的电场强度关于x 轴对称,所以b 、d 两点场强大小相等,方向是对称的,不相同的;故C 错误.
D.c 点的电势低于a 点的电势,试探电荷+q 沿圆周由a 点移至c 点,电场力做正功,+q 的电势能减小;故D 正确.
13.如图所示,在竖直平面内有一边长为L 的正方形区域处在场强为E 的匀强电场中,电
场方向与正方形一边平行.一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速V 0进入该正方形区域.当小球再次运动到该正方形区域的边缘时,具有的动能可能为( )
A .可能等于零
B .可能等于201
2
mv C .可能等于12mv 02+12qEL -1
2
mgL D .可能等于
12mv 02+23qEL +1
2
mgL 【答案】BCD 【解析】 【分析】
要考虑电场方向的可能性,可能平行于AB 向左或向右,也可能平行于AC 向上或向下.分析重力和电场力做功情况,然后根据动能定理求解. 【详解】
令正方形的四个顶点分别为ABCD ,如图所示
若电场方向平行于AC :
①电场力向上,且大于重力,小球向上偏转,电场力做功为12qEL ,重力做功为-1
2
mg ,根据动能定理得:E k −
12mv 02=12qEL −12mgL ,即E k =12mv 02+12qEL −1
2
mgL ②电场力向上,且等于重力,小球不偏转,做匀速直线运动,则E k =1
2
mv 02. 若电场方向平行于AC ,电场力向下,小球向下偏转,电场力做功为
1
2
qEL ,重力做功为12mgL ,根据动能定理得:E k −12mv 02=12qEL +12mgL ,即E k =12mv 02+12qEL +1
2mgL . 由上分析可知,电场方向平行于AC ,粒子离开电场时的动能不可能为0. 若电场方向平行于AB :
若电场力向右,水平方向和竖直方向上都加速,粒子离开电场时的动能大于0.若电场力
向右,小球从D
点离开电场时,有 E k −
12mv 02=qEL +12mgL 则得E k =12mv 02+qEL +1
2
mgL 若电场力向左,水平方向减速,竖直方向上加速,粒子离开电场时的动能也大于0.故粒子离开电场时的动能都不可能为0.故BCD 正确,A 错误.故选BCD . 【点睛】
解决本题的关键分析电场力可能的方向,判断电场力与重力做功情况,再根据动能定理求解动能.
14.如图甲所示,两平行金属板MN 、PQ 的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0。
已知t =0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场。
则( )
A .所有粒子最终都垂直电场方向射出电场
B .t =0之后射入电场的粒子有可能会打到极板上
C .所有粒子在经过电场过程中最大动能都不可能超过2E k0
D .若入射速度加倍成2v 0,则粒子从电场出射时的侧向位移与v 0相比必定减半 【答案】AC 【解析】 【分析】 【详解】
AB .粒子在平行极板方向不受电场力,做匀速直线运动,故所有粒子的运动时间相同;t =0时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,说明竖直方向分速度变化量为零,说明运动时间为周期的整数倍;故所有粒子最终都垂直电场方向射出电场;由于t =0时刻射入的粒子在电场方向上始终做单向的直线运动,竖直方向的位移最大,故所有粒子最终都不会打到极板上,A 正确,B 错误; C .t =0时刻射入的粒子竖直方向的分位移最大,为
1
2
d ;根据分位移公式,有 0
01 22ym v L d v +=⋅ 由于L =d ,故
ym 0v v =
故最大动能
()220ym k01
2
2k
E m v v E '=+= C 正确;
D .粒子入射速度加倍成2v 0,则粒子从电场出射时间减半,穿过电场的运动时间变为电场变化半周期的整数倍,则不同时刻进入电场的侧向位移与原v 0相比关系就不确定,如t =0时刻,粒子从电场出射时的侧向位移与v 0相比减半,4
T
t =
进入电场,入射速度v 0时,侧向位移为0,入射速度2v 0时,侧向位移为18
d ,D 错误。
故选AC 。
15.如图所示的匀强电场E 的区域内,由A 、B 、C 、D 、A '、B '、C '、D '作为顶点构成一正方体空间,电场方向与面ABCD 垂直.下列说法正确的是( )
A .AD 两点间电势差U AD 与A A '两点间电势差U AA '相等
B .带正电的粒子从A 点沿路径A→D→D '移到D '点,电场力做正功
C .带负电的粒子从A 点沿路径A→D→
D '移到D '点,电势能减小
D .带电的粒子从A 点移到C '点,沿对角线A C '与沿路径A→B→B '→C '电场力做功相同 【答案】BD 【解析】 【分析】 【详解】
由题意,电场的方向与面ABCD 垂直,所以面ABCD 是等势面,A 、D 两点的电势差为0,又因A 、A′两点沿电场线的方向有距离,顺着电场线方向电势降低,所以AA′两点间电势差U AA ′不为0,A 错误;
带正电的粒子从A 点到D 电场力不做功,而由D→D'电场力做正功,B 正确;同理,带负电的粒子从A 点沿路径A→D→D'移到D'点,电场力做负功,电势能增大,C 错误;由电场力做功的特点:电场力做功与路径无关,只与初末位置的电势差有关,则知带电的粒子从A 点移到C′点,沿对角线A C′与沿路径A→B→B′→C′电场力做功相同,D 正确;故选BD . 【点睛】
本题关键要掌握:1、只有电场力做功,电荷的电势能和动能之和保持不变.2、只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.3、电场力做的正功,等于电
势能的减少量;电场力做负功,等与电势能的增加量.
二、第十章 静电场中的能量解答题易错题培优(难)
16.如图所示,BCD 为固定在竖直平面内的半径为r=10m 的圆弧形光滑绝缘轨道,O 为圆心,OC 竖直,OD 水平,OB 与OC 间夹角为53°,整个空间分布着范围足够大的竖直向下的匀强电场.从A 点以初速v 0=9m/s 沿AO 方向水平抛出质量m=0.1kg 的小球(小球可视为质点),小球带正电荷q=+0.01C ,小球恰好从B 点沿垂直于OB 的方向进入圆弧轨道.不计空气阻力.求:
(1)A 、B 间的水平距离L (2)匀强电场的电场强度E
(3)小球过C 点时对轨道的压力的大小F N (4)小球从D 点离开轨道后上升的最大高度H
【答案】(1)9m (2)20/E N C =(3) 4.41N F N =(4) 3.375H m = 【解析】 【分析】 【详解】
(1)从A 到B ,0tan 53By By v v v at =︒=,,cos53y r =︒,212
y at = 解得1t s =,212/a m s =,09L v t m ==
(2)根据牛顿第二定律可得mg qE ma +=,解得20/E N C = (3)从A 到C ,根据动能定理可得2201122
c mar mv mv =
- 在C 点,2
c N v F ma m r
-=,解得 4.41N F N =
(4)对全过程运用动能定理,2
012
mv maH =,故 3.375H m = 【点睛】
应用动能定理应注意的几个问题(1)明确研究对象和研究过程,找出始末状态的速度.(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外).(3)有些力在物体运动过程中不是始终存在的.若物体运动过程中包括几个阶段,。